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Abstract

The aim of this paper is to establish a nonparametric estimation of some characteristics of the conditional
distribution. Kernel type estimators for the conditional cumulative distribution function and the successive
derivatives of the conditional density are introduced of a scalar response variable Y given a Hilbertian ran-
dom variable X when the observations are linked with a single-index structure. We establish the pointwise
almost complete convergence and the uniform almost complete convergence (with the rate) of the kernel es-
timate of this model. Asymptotic properties are stated for each of these estimates, and they are applied to the
estimations of the conditional mode and conditional quantiles.
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1 Introduction

The single-index models are becoming increasingly popular because of their importance in several areas of
science such as econometrics, biostatistics, medicine, financial econometric and so on. The single-index model,
a special case of projection pursuit regression, has proven to be a very efficient way of coping with the high
dimensional problem in nonparametric regression. Hardle et al. [16], Hristache et al. [18]. Delecroix et al. [6]
have studied the estimation of the single-index approach of regression function and established some asymp-
totic properties. The recent literature in this domain shows a great potential of these functional statistical
methods. The most popular case of functional random variable corresponds to the situation when we observe
random curve on different statistical units. The first work in the fixed functional single-model was given by
Ferraty et al. [10], where authors have obtained almost complete convergence (with the rate) of the regression
function in the i.i.d. case. Their results have been extended to dependent case by Ait Saidi ef al. [1]]. Ait Saidi
et al. [2] studied the case where the functional single-index is unknown. The authors have proposed for this
parameter an estimator, based on the the cross-validation procedure.

In the present work we study a single- index modeling in the case of the functional explanatory variable.
More precisely, we consider the problem of estimating some characteristics of the conditional distribution
of a real variable Y given a functional variable X when the explanation of Y given X is done through its
projection on one functional direction. The conditional distribution plays an important role in prediction
problems, such as the conditional mode the conditional median or the conditional quantiles. Nonparametric
estimation of the conditional density has been widely studied, when the data are real. The first related result in
nonparametric functional statistic was obtained by Ferraty et al. [12], the authors have established the almost
complete convergence (with rate) in the independent and identically distributed (i.i.d.) random variables. The
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asymptotic normality of this kernel estimator has been studied in the dependent data by Ezzahrioui and Ould
Said [9].

The goal of this paper is to establish a nonparametric estimation of some characteristics of the conditional
distribution where Kernel type estimators for the conditional cumulative distribution function and the succes-
sive derivatives of the conditional density in the single functional index model are introduced. We establish
the pointwise almost complete convergence and the uniform almost complete convergence (with the rate) of
the kernel estimate of this model. Asymptotic properties are stated for each of these estimates, and they are
applied to the estimations of the conditional mode and conditional quantiles.

Now, let us outline the paper. At first, in section 2, we present general notations and some conditions necessary
for our study, Then, in sections 3 we propose the estimator of the conditional cumulative distribution function
and that of the conditional density derivatives, and we give their pointwise almost complete convergence
(with rate). Then, in section 4, we study the uniform almost complete convergence of the conditional cumula-
tive distribution function (resp. the conditional density derivatives) estimator given in section 3. Section 5 is
devoted to some applications, in this part, we first consider the problem of the estimation of the conditional
mode in functional single-index model, then we investigate the asymptotic properties of the conditional quan-
tile function of a scalar response and functional covariate when the observations are in single functional index
model and data are independent and identically distributed (i.i.d.), after that the cross-validation method is
given, which is so important in guarding against testing hypotheses suggested by the data, especially where
further samples are hazardous, costly or impossible to collect.

In the end, we finish our paper by giving technical proofs of lemmas and corollary (Appendix).

2 General notations and conditions

All along the paper, when no confusion will be possible, we will denote by C, C’ or/and Cy , some generic
constant in R%, and in the following, any real function with an integer in brackets as exponent denotes its
derivative with the corresponding order.

Let X be a functional random variable, frv its abbreviation. Let (X, Y;) be a sample of independent pairs,
each having the same distribution as (X, Y), our aim is to build nonparametric estimates of several functions
related with the conditional probability distribution (cond-cdf) of Y given < X, 0 >=< x,0 >.

Let
VyeR, F(6,y,x) = (Y <y| <X, 0>=<x,0>).

be the cond-cdf of Y given < X,0 >=< x,60 >, for x € H, which also shows the relationship between X and Y
but is often unknown.

If this distribution is absolutely continuous with respect to the Lebesgues measure on R, then we will denote
by £(6,-,x). (resp. f9(6,-,x)) the conditional density (resp. its j order derivative) of Y given < X, >=<
x,0 >. In Sections 3 and 4, we will give almost complete convergenceﬂ results (with rates of ConvergenceEb for
nonparametric estimates of both functions F(6, -, x) and ) (6, -, x).

In the following, for any x € H and y € RR, let V; be a fixed neighborhood of x in H, Sg will be a fixed
compact subset of R, and we will use the notation By(x,h) = {X € H/0< | <x—X,0 > | < h}. Our non-
parametric models will be quite general in the sense that we will just need the following simple assumption
for the marginal distribution of < 8, X >:

(H1) (X € Bo(x,h)) = pg(h) >0,

together with some usual smoothness conditions on the function to be estimated. According to the type of
estimation problem to be considered, we will assume either

(H2) Y(y1,¥2) € SR X SR, V(x1,%2) € Ny x Ny, |[F(6,y1,%1) — F(0,y2,x2)| < Cox (||x1 — Xo|" + |y — yz\hz)/

1Recall that a sequence (Ty)uen of random variables is said to converge almost completely to some variable T, if for any € > 0, we
have }, (|T;, — T| > €) < co. This mode of convergence implies both almost sure and in probability convergence (see for instance Bosq
and Lecoutre, 1987).

2Recall that a sequence (T, ) e of random variables is said to be of order of complete convergence iy, if there exists some € > 0 for
which ¥, (|T,;| > €eu,) < oo. This is denoted by T, = O(uy,), a.co. (or equivalently by T, = Og.co. (1))
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b1>0,b2>0,

(H3)V(y1,42) € Sk X SR, V(x1,%2) € Ny x Ny, [f7(8,y1,x1) — fD (0,2, x2)| = Cox (Hxl — x| + |1 —yzlhz) ,
b1 >0, bz > 0.

3 Pointwise almost complete estimation
In this section we give the pointwise almost complete estimation (with rate) of the conditional cumulative

distribution as of the successive derivatives of the conditional density.

3.1 Conditional cumulative distribution estimation

The purpose of this section is to estimate the cond-cdf F*(0,-,x). We introduce a kernel type estimator
F*(6,-,x) of F*(0,-,x) as follows:

‘an (hg1<< x—X;,0 >)) H (h,;,l (y — Y,-))

F6,y,x) ="

3.1)
K (hlzl(< x—X;,0 >))

n
i—1

where K is a kernel, H is a cumulative distribution function (cdf) and hx = hx ,, (resp. hg = hy ) is a sequence
of positive real numbers which goes to zero as n tends to infinity, and with the convention 0/0 = 0. Note that
a similar estimate was already introduced in the case where X is a valued in some semi-metric space which
can be of infinite dimension by Ferraty ef al. [11]]. In our single functional index context, we need the following
conditions for our estimate:

(H4) H is such that, for all (y1,y2) € R?, |[H(y1) — H(y2)| < Cly1 — y2|
/|t|h2H<1)(t)dt < oo,

(H5) Kis a positive bounded function with support [—1,1],

(H6) lim Jig — 0 with Tim —28™_ _,
n—oo

n—co npg  (hx)
(H?7) nlim hy = 0 with nlim n* hy = oo for some « > 0.

o Comments on the assumptions

Our assumptions are very standard for this kind of model. Assumptions (H1) and (H5) are the same as
those given in Ferraty et al. [10]. Assumptions (H2) and (H3) is a regularity conditions which characterize the
functional space of our model and is needed to evaluate the bias term of our asymptotic results. Assumptions
(H4) and (H6)-(H?) are technical conditions and are also similar to those done in Ferraty et al. [12].

Theorem 3.1. Under the hypotheses (H1), (H2) and (H4)-(H7), and for any fixed y, we have

_ 1
E(6,y,x) — F(0,y,x)| = O(hY) +0(n%)+0 (,/%), a.co. (3.2)

Proof. Fori =1,...,n, we consider the quantities K;(6, x) := K(hlzl(< x—X;, 0 >))and, forally e R H;(y) =
H (hﬁl (y— Yi)) and let Fy(6,y, x) (resp. Fp (6, x)) be defined as

En(0,y,x) = - Y Ki(6,x)Hi(y)  (resp. Fp(8,x) = WZI@(GJ)).
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This proof is based on the following decomposition

F(0,y,x) — F(0,y,x) = fD(lglx){(?N(G,y,X)—?N(Q,y,X))—(F(Q,y,X)—fN(GIyIX))}
ﬁ;f(g;)) [1-Bp(0,0)} (3.3)

and on the following intermediate results.

Lemma 3.1. ([1]) Under the hypotheses (H1) and (H5)-H6), we have

= _ logn
[Fp(6,x) — 1] = Oq.co. ( W) , (3.4)
Corollary 3.1. Under the hypotheses of Lemma we have
Z (\FD 6,%)| <1/2) < co. (3.5)

Lemma 3.2. Under the hypotheses (H1), (H2) and (H4)-(H.6), we have

[F(8,y,%) — Fn(6,y,%)| = O (W) +0 (%), (3.6)

Lemma 3.3. Under the hypotheses (H1), (H2) and (H4)-(H7), we have

~ = logn
F 9/ X)) — F 6/ , X - Oa.co. . /1. N\ 7 37
B (6,5,%) ~ En (6,3, %) ( n%,x(hK)) 67)

3.2 Estimating successive derivatives of the conditional density

The main objective of this part is the estimation of successive derivatives of the conditional density of Y
given < X,0 >=< x,0 >, denoted by f(6, -, x). It is well known that, in nonparametric statistics, this latter
provides an alternative approach to study the links between Y and X and it can be also used, in single index
modelling, to estimate the functional index 6 if it is unknown.

So, at first, we propose to define the estimator ﬂj )(8,y,x) of f1)(8,y, x) as follows:

hy Y Kl (< x - X3,0 > ) HUD (g (y - Y;)
FU0,y,x) = = , yeR 3.8)
ZK(h,;l(< x—X;,0>))

Similar estimate was already introduced in the case where X is a valued in some semi-metric space which can
be of infinite dimension; Ferraty et al. [11]], then widely studied (see for instance by Attaoui et al. [3], for several
asymptotic results and references). In addition to the conditions introduced along the previous section, we
need the following ones, which are technical conditions and are also similar to those given in Ferraty et al.
[12]:

V(y1,y2) € R?, [HU (y1) — HUFD (y2)] < Cexlyl v2|
B8 4 500,97 <+, Jim Y [HO )| =0

(H9) hm hx = 0 with lim T
"k o (i)

The next result concerns the asymptotic behavior of the kernel functional estimator ]?(j) (6,-,x) of the j"
order derivative of the conditional density function.
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Theorem 3.2. Under Assumptions (H1), (H3)-(H5), and (H7)-(H9), and for any fixed y, we have, as n goes to infinity

. logn
F0,y,%) = FD(0,y,x)| = O (h) + O (i +o< ) a.c.o (3.9)
() (i) " e ()
Proof. This result is based on the same kind of decomposition as (3.3). Indeed, we can write:
. . 1 ; 1
F©O,y,x)— f0,y,x) = = F20,y,0) - (F20,1,%) - =
OO0 = fN0yx) = s (R Oy - (W On) - s
(FD 0.y~ 7 0.,2) (3.10)
fOO,5%) (»
+—=——=(1-Fp(b,
Fp(6,x) ( bl x))

where

n
J+1>
i (K1(9 x Z;Kz ()

Then, Theorem 3.2]can be deduced from both following lemmas, together with Lemma 3.Tand Corollary

IP 0,y,x) =

Lemma 3.4. Under the hypotheses (H1), (H2), (H3), (H5) and (H6) we have
. ) )
0, ,%) - (R @,9,0] =0 (W) +0 (7).,

Lemma 3.5. Under the hypotheses (H1)-(H7), we have

' ‘ logn
|f1(\})(9/y/x) - (ﬁ\})(er%x” = Ou.co. < ) ,
n b o (hi)

The proofs of the the above lemmas and corollary are given in the same manner as it was done in [12], since
they are a special case of the Lemmas 2.3.2,2.3.3,2.3.4 and 2.3.5. It suffices to replace fU) (y, x) (resp. ) (y, x))
by f(f) (8,y,x) (resp. fU)(8,y,x)), and Fp(x), (resp. Fp(x)) by Fp(6,x) (resp. Fp(6,x)) with d(x1,x,) =<
X1 —X,0 > O

4 Uniform almost complete convergence

In this section we derive the uniform version of Theorem [3.1]and Theorem The study of the uniform
consistency is an indispensable tool for studying the asymptotic properties of all estimates of the functional
index if is unknown. In the multivariate case, the uniform consistency is a standard extension of the pointwise
one, however, in the functional case, it requires some additional tools and topological conditions (see Ferraty
et al., 2009). Thus, in addition to the conditions introduced previously, we need the following ones. Firstly,
Consider

dSH doH
Sy C U B(xy,rn) and Oy C U B(tj,1x) (4.11)
k=1 j=1

with xy (resp. t;) € Hand ry, dr, d9M are sequences of positive real numbers which tend to infinity as n goes
to infinity.
4.1 Conditional cumulative distribution estimation

In this section we propose to study the uniform almost complete convergence of our estimator defined
above (3.1) for this, we need the following assumptions:
(A1) There exists a differentiable function ¢(-) such that Vx € Sy and V6 € Oy,

0 < Cp(h) < ¢pgx(h) <C'p(h) < oo and T >0, Vi < 170, ¢'(17) < C,
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(AZ) V(yl,yz) € SR X S]R,V(xl,xz) € Sy x Sy and V0 € O,

|F(6,y1,%1) — F(6,y2,x2)| < C(x0) (||x1 —x2)|P + [y — y2|bz) ,
(A3) The kernel K satisfy (H3) and Lipschitz’s condition holds

[K(x) = K(y)| < Cllx = yll,

(A4)Forr, =0 (IOgn) the sequences d3* and d9 satisfy:

n

(logn)?
n¢(hg)

Sy oy _ np(hy)
< logdy,™ +logd, <7logn ,

and ) n/22 (g5 491 1-F < oo for some B > 1
n=1

Remark 4.1. Note that Assumptions (A1) and (A2) are, respectively, the uniform version of (H1) and (H2). Assump-
tions (A1) and (A4) are linked with the the topological structure of the functional variable, see Ferraty et al. [13].

Theorem 4.3. Under Assumptions (A1)-(A4) and (H4), as n goes to infinity, we have

N b b log s + log 4o
sup sup sup |F(0,y,x) — F(6,y,x)| = O(hy') + O(hy7) 4 Oq.co. (4.12)
0€@y xeSH YESR n()b(hK)

In the particular case, where the functional single-index is fixed we get the following result.

Corollary 4.2. Under Assumptions (A1)-(A4) and (H4), as n goes to infinity, we have

=~ B b by log df”
sup sup |F(6,y,x) —F(0,y,x)| = O(hy) + O(h}7) + Ouco. 0 (4.13)
xeSy yGS]R 7’[4)( K)

Clearly The proofs of these two results namely the Theorem [4.3)and Corollary £.2can be deduced from the
following intermediate results which are only uniform version of Lemmas and Corollary 3.1}

Lemma 4.6. Under Assumptions (A1), (A3) and (A4), we have as n — oo

N 55 o
sup sup [Fp(6,x) — 1| = Ou.co <\/10gdn +logd, )

0O, xESy ne(hg)

Corollary 4.3. Under the assumptions of Lemmal4.6| we have,

Y (mf inf Fp(6,x) < ;) <o

= \veoy xesy
Lemma 4.7. Under Assumptions (A1), (A2) and (H4), we have, as n goes to infinity

sup sup sup |F(60,y,x) — (En(6,y,x))| = O(h?) + O(h?j) (4.14)
0@y xESH YESR

Lemma 4.8. Under the assumptions of Theorem 4.3 we have, as n goes to infinity

2 = log dS* + log d9%
sup sup sup [y (6,y,%) — [Fy(6,5,%)| | = Ouco \/ B+ 08
€@y xESH yESR ne(hg)
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4.2 Estimating successive derivatives of the conditional density

In this part we focus on the study of uniform almost complete convergence of our estimator defined above
. Thus, in addition to the conditions introduced in the section 4, we need the following ones.
(A5) V(yl,yz) € SR X S]R,V(XLJQ) S S}‘ X S].‘ and VO € @}‘,

F00,y1,3) = FD 0,2, 32)] < € (11 =32l + |y — w2l ,
(A6) For some y € (0,1), lim n"hy = o0, and for r,, = O (10%) the sequences d‘,ff and dy(?f satisfy:
n—oo

nhy " ¢ ()
logn

2
I% < log d3* +logdy” <
nhg K

and ) nGr0/2(ge7 gO7VI=F < oo, for some B > 1
n=1

Theorem 4.4. Under Hypotheses (A1), (A3) ,(A5)-(A6) and (HS8), as n goes to infinity, we have

: : log da? + log dy”
sup sup sup |70, ,x) — fU)(0,,x)| = O(HY) + O(h) + Ouco. | ||~ B0 (4.15)
0O xeSr yeSR nhH qb(h[()

Proof. This result is based on the same kind of decomposition (3.10), therefore, Theorem can be deduced
from both following lemmas, together with Lemma[4.6|and Corollary

Lemma 4.9. Under Assumptions (A1), (A5) and (H8), we have, as n goes to infinity

sup sup sup |f7(6,y,x) — (FJ (6,y,%)| = O(h2) + O(h2)

0e@f xeSr yES]R

Lemma 4.10. Under the assumptions of Theorem 4.4} we have, as n goes to infinity

A A logdy” +logd,
sup sup sup |fr' (6,1, %)] — | fx (6,1,%) || = Oq.co. :
0O xeSr yeSR N |: N :| ‘ e nh%+l¢9,x (hK)

5 Applications

5.1 The conditional mode in functional single-index model

In this section we will consider the problem of the estimation of the conditional mode in the functional
single-index model. The main objective, here, is to establish the almost complete convergence of the kernel
estimator of the conditional mode of Y given < X, 6 >=< x,60 > denoted by My(x), uniformly on fixed subset
Sy of H. To this end, we suppose that My(x) satisfies on Sy the following uniform uniqueness property (see,
Ould-said and Cai [23], for the multivariate case).

(A6) Ve > 0, 377 >0, Vq) 1Sy — SR,

sup [My(x) — ¢(x)| > €0 = sup |f(6, ¢(x),x) — f(6, Mp(x), x)| = 1.

XGSH XESH

We estimate the conditional mode Mj (x) with a random variable My such as

~

Mp(x) = arg sup f(0,y,x). (5.16)
YESR

Note that the estimate My is not necessarily unique, and if this is the case all the remaining of our paper
will concern any value My satisfying 1} The difficulty of the problem is naturally linked with the flatness
of the function f(6,y, x) around the mode My. This flatness can be controlled by the number of vanishing
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derivatives at point My, and this parameter will also have a great influence on the asymptotic rates of our
estimates. More precisely, we introduce the following additional smoothness condition.

fD(0, Mg(x),x) =0, if1<I<j
(A7)< and f o0 @,-,x), is uniformly continuous on Sy
such that, IF)(8,,x)] >C >0

Theorem 5.5. Under the assumptions of Theorem (4.4 hold together with (A6)-(A7) we have

o + Z logdy" )7
sup |Mp(x) — My(x)| = O(h) ) +O(h/ ) + Ouco. _
s [Wh(x) = My(x)| = O ) + O ) + Onen | { 8 005

Let us now define the application framework of our results to prediction problem by applying the result
in the above Theorem, we obtain the following result.

Corollary 5.4. Under the assumptions of Theorem we have as n goes to infinity

]\//I\g(x) — Mpy(x) — 0 a.co.

5.2 Conditional quantile in functional single-index model

In this part of paper we investigate the asymptotic properties of the conditional quantile function of a
scalar response and functional covariate when the observations are from a single functional index model and
data are independent and identically distributed (i.i.d.)

We will consider the problem of the estimation of the conditional quantiles. Saying that, we are implicitly
assuming the existence of a regular version for the conditional distribution of Y given < X, 0 >. Now, let tg(«)
be the a-order quantile of the distribution of Y given < X, 0 >=< x,60 >. From the cond-cdf F(6, -, x), it is easy
to give the general definition of the a-order quantile:

fo(w) = inf{t e R: F(0,t,x) > a}, Va € (0,1).

In order to simplify our framework and to focus on the main interest of our part (the functional feature of
< X,0 >), we assume that F(0, -, x) is strictly increasing and continuous in a neighborhood of tg(«). This is
insuring unicity of the conditional quantile ¢y(a) which is defined by:

to(a) = F71(6,a,x). (5.17)

In what remains, we wish to stay in a free distribution framework. This will lead to assume only smoothness
restrictions for the cond-cdf F(0, -, x) through nonparametric modelling (see Section 2).
As by-product of (5.17) and (3.1), it is easy to derive an estimator #g(a) of fg(a):

fo(x) = F1(0,a,x). (5.18)

As we will see later on, such an estimator is unique as soon as H is an increasing continuous function.
Naturally, we will estimate this quantile by mean of the conditional distribution estimator studied in previous
sections. Here also, as far as we know, the literature on (conditional and /or unconditional) quantile estimation
is quite important when the explanatory variable X is real (see for instance Samanta, 1989, for previous results
and Berlinet et al., 2001, for recent advances and references). In the functional case, the conditional quantiles
for scalar response and a scalar/multivariate covariate have received considerable interest in the statistical
literature. For completely observed data, several nonparametric approaches have been proposed, for instance,
Gannoun et al., (2003) introduced a smoothed estimator based on double kernel and local constant kernel
methods and Berlinet et al., (2001) established its asymptotic normality. Under random censoring, Gannoun
et al., (2005) introduced a local linear (LL) regression (see Koenker and Bassett (1978) for the definition) and
El Ghouch and Van Keilegom (2009) studied the same LL estimator. Ould-Said (2006) constructed a kernel
estimator of the conditional quantile under independent and identically distributed (i.i.d.) censorship model
and established its strong uniform convergence rate. Liang and De Ufia-Alvarez (2011) established the strong
uniform convergence (with rate) of the conditional quantile function under a-mixing assumption.
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Recently, many authors are interested in the estimation of conditional quantiles for a scalar response and func-
tional covariate. Ferraty et al., (2005) introduced a nonparametric estimator of conditional quantile defined as
the inverse of the conditional cumulative distribution function when the sample is considered as an a-mixing
sequence. They stated its rate of almost complete consistency and used it to forecast the well-known El Nifio
time series and to build confidence prediction bands. Ezzahrioui and Ould-Said (2008) established the asymp-
totic normality of the kernel conditional quantile estimator under a-mixing assumption. Recently, and within
the same framework, Dabo-Niang and Laksaci (2012) provided the consistency in L¥ norm of the conditional
quantile estimator for functional dependent data.
So, in this work we propose to estimate tg(«) by the estimate fg(«) defined as or as

F(0,%p(x), x) = a. (5.19)

To insure existence and unicity of this quantile, we will assume that
(A8) E(6, -, x) is strictly increasing,

Note that, because H is a cdf satisfying (H4), such a value #y(«) is always existing. It could be the case that it
is not unique, but if this happens all the remaining of the paper will concern any among all the values #;(«)

satisfying (5.19).

In order to insure unicity of ty(a) we will make the following, quite unrestrictive, assumption:

(A9) H is is strictly increasing,

As for the mode estimation problem discussed before, the difficulty occur in estimating the conditional quan-
tile ty(a) is linked with the flatness of the curve of the conditional distribution F(6, -, x) around t4(«). More
precisely, we will suppose that there exists some integer j > 0 such that:

and F) (6,-,x), is uniformly continuous on; Sr

FO(8,t9(n),x) =0, iE1<1<]
(A10)
such that, |FU) (6, tg(a), x)] > C >0

Theorem 5.6. If the conditions of Theorem [£.4)hold together with (A8)-(A10), we have

1

- Ul by logdsn \ ¥
sup [t t = nl +ht | 1o | 280 , a.co. 5.20
xegi‘ 9( ) 9( )‘ ( K H) ((7’1 (Px(hK) ( )

Proof. Let us write the following Taylor expansion of the function F(6, -, x):

i—1
F(6,tg(a),x) — F(6,t(a ] —Wﬂ”(e,te(a),x)
=1 !
n (fe(“);'?e(‘x)) 0) (g, ¢", x)

where t* is some point between tg(«) and t(a). It suffices now to use the first part of condition (A10) to be
able to rewrite this expression as:

F(O,to(w), x) ~ F8,To(a),x) = Zt"—”(f(l D to(w), ) — F0 (@), )
1=

L (e(e) — to(a))! Fi- (6,1, %),
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As long as we could be able to check that
n=oo i
3r>0, ¥ ( FU-D(g, ¢, x) < T) < oo, (5.21)
n=1

we would have
(to(@) = Fo(@) = O (F(6,tala), x) — (0, t(a), %)) (5.22)

-1
+ 0 (JZ(fe(“) — (@) (FUV(8, to(w), x) — FU71(0, te<a>,x>> , a.co.

=1

By comparing the rates of convergence given in Theorems 4.3|and we see that the leading term in right
hand side of equation (5.22) is the first one. So we have

(to(@) ~ To(@))) = Ouco. (F(6, to(w), x) = F(0, to(w), %) ),

Because of Theorem [4.4} this is enough to get the claimed result, and so (5.21) is the only result that remains to
check. This will be done directly by using the uniform continuity of the function fU~1) (6, -, x) given by second
part of (A10) together with the third part of (A7) and with the following lemma.

Lemma 5.11. If the conditions of Theorem [4.3|hold together with (A8) and (A9), then we have:
to(a) —tg(a) — 0, a.co. (5.23)
O

The next part is devoted to another type of application called the cross-validation method, this application
has been already given in [2].

5.3 The cross-validation method

This method is widely applied, it can be used to compare the performances of different predictive model-
ing procedures. For instance, in optical character recognition; a mechanical or electronic conversion of scanned
or photographed images of typewritten or printed text into machine-encoded/computer-readable text, this
later is widely used as a form of data entry from some sort of original paper data source, whether passport
documents, invoices, bank statement, receipts, business card, mail, or any number of printed records. It can
also be used in variable selection; the process of selecting a subset of relevant features for use in model con-
struction.

After this short introduction let’s give an application of the method:

1. The regression operator 7p(x) depends on the functional parameter 6, So, a crucial question arises: how
to choose the functional index 8? The answer is nontrivial and a firstway consists in extending the
standard cross-validation procedure to our functional context. For this, one considers various quadratic
distances, namely the averaged squared error

n
ASE(0) = n 1Y (rg, (X)) —70(X)))?, (5.24)
j=1
the integrated squared error
ISE(6) = [(reo(xo) —Fo(Xo))2|Z1, .. z} , (5.25)

and the mean integrated squared error

MISE(6) = [ISE(6)]. (5.26)
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The main goal consists in finding a 6 which minimizes (in some sense) over ®, these quantities. How-
ever, because all these quadratic distances depend on the unknown regression operator rg,, the criterion
used in practice for choosing 6 is

n ) 2
Cv(e) =n') (Y]- —?;f(xj)) (5.27)
where 7, /is the leave-one-out estimate of rg(x), given by

(n—1)"1 inK (h,;l(< x—X;,0 >))
i=1

7o (x) = i;,i : (5.28)
(n—1)"1) K (hg1(< x—X;,0 >))
=2

So, the selection rule will be to choose 8-y which minimizes the so-called cross-validation criterion
CV(0). Clearly, for a given 6, CV () is a computable quantity. It measures a quadratic distance between
(Yq,...,Yy) and its prediction ?;](Xl),. . .,?;](Xn) when, for each i, ’r;i(.) is built without the ith data
(Xi,Y;). So, the method of cross-validation consists in choosing among several candidates 6, the one who
is the most adapted to our data set (X;, Y;) in terms of prediction. This method is inspired by the cross-
validation ideas which have been proposed in various standard nonparametric estimation problems (see
[17] for the regression problem, [22] for the density and [26] for the hazard function).

From a practical point of view, some questions arise in order to implement this single-functional index
model. What about the identifiability of the model given a sample of observed curves (x1, ..., x;)? How
to build the set of functional indexes @ z? What about the choice of the bandwidth h?

Emphasizes the good behaviour of this simple cross-validated procedure, even in pathological situa-
tions. To see that, one focuses on a favourable case (i.e. 8y € O ).

First of all, one builds a sample of n curves curves as follows:
xi(t;) = ajcos(27tt;) + bisin(4rmt;) + 2¢;(t; — 0.25)(t; — 0.5),
where 0 = t; < tp < ... < t,_1 < t; = 1 are equispaced points, the 4;’s, b;'s and c;’s being in-

dependent observations uniformly distributed on [0, 1]. Once the curves are defined, one simulates a
single-functional index model as follows:

Choose one 6y(-).

Choose one link function (-).

Compute the inner products < 6y, x1 >,..., < 0y, x5 >.

Generate independently ¢4, ...,¢&,, from a centred Gaussian of variance equal to 0.05 times the
empirical variance of
r(< 6g,x1 >),...,7(< By, x; >) (i.e. signal-to-noise ratio = 0.05).

¢ Simulate the corresponding responses: Y; = (< 6, x; >) + ¢€;.

Finally, the observations (xy, Yy )k=1,..» are used for the learning step and the others (i.e. (x;,Y]);—u11, n
allow the computation of the mean square error of prediction:

1

n—m.
J

MSEP =

n
Y (Y (< bey,x; >))*
=n—

m

In order to highlight the specificity of such a single-functional index model, the obtained predictions
are compared with those coming from a pure nonparametric functional data analysis (NPFDA) method
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(see [12] for details and references therein). Actually, the NPFDA regression method uses the following
kernel estimator:

Xn:YI ( X,,x))

VieH, 7(x)="=k
K d(X;, x)
YK (X, )

(5.29)

for estimating the regression operator m in the nonparametric model Y; = r(X;) +¢;, foralli=1,...,n,
where d(.,.) is a fixed semi-metric.

If one looks at the NPFDA kernel estimator ( , it suffices to replace the fixed semi-metric d(-, -) with
dgy (+,-). What does this mean? It means that the functional index model can be seen as one way of
building an nonparametric functional data analysis (NPFDA) kernel estimator with a data-driven semi-
metric. In particular, in pure nonparametric functional models when one has no idea of the semi-metric,
the functional index model appears to be a method for performing an adaptative one. The functional
index model makes the NPFDA method more flexible. In this sense, the functional index model is not a
competitive statistical technique with respect to the NPFDA method, but rather a complementary one.

2. If we wish to predict a real characteristic denoted Y of X, knowing the curve X,,_;, we have to consider
the observations (X;, y;) where y; is the characteristic we want to provide at the instant i. For example:

e If we want to predict the value of the process at time t; knowing the curve X, 1, we set ¥; =
Xz‘+1(tj)-
e For the sup, we pose Y; = sup, X;,1(t).

o If we look for the time where the process reaches maximum, we set Y; = argsup, X;1(f).

By using the conditional mode as a prediction tool, we can predict Y by M@,l ).

6 Appendix
Proof of Lemmal[d.6|For all x € Sy and 6 € @y, we set

k(x) = argker{rll_i_gn} [[x = x¢[| and j(6) =) = argjer{rll}gn} 16 — £]l-

Let us consider the following decomposition

sup sup Fp(6,x) — (fD(Q,x))’ < sup sup Fp(6,x) — (I?D(G,xk(x))‘
xeSy 0Oy XESH 0€Oy

I

+ sup sup |Fp (8, xx(r)) — ?D(tj(e)rxk(x))’
xeSy 0@y

I,

+ sup sup |Fp(tjp), Xk(x)) — (ﬁD(tj(e)/xk(x)))‘

XESH 0€Oy

I3

+ sup sup ’ (ﬁD(tj(G)rxk(x))) - (ﬁD(G/ xk(x)))‘

XESH €Oy

Iy

+ sup sup ‘ (I?D(G,xk(x))) = (fD((’fx))‘

xeSy 0Oy

15
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For I1; and I1,, we employe the Holder continuity condition on K, Cauchy Schwartz’s and the Bernstein’s
inequalities, we get

log A + log Ao \/log A + log Ao
I = O LI, =0 6.30
1 W (i) : 9] (020
Then, by using the fact that Il < Il; and Ils < I, we get for n tending to infinity
log dy + log d9™ \/log At + logdy™
I, =0 , IIs =0 6.31
4 W i) ; i) 30

Now, we deal with I13, for all # > 0, we have

log dy + log dyy ™
<H3 0 <\/ np(ix) )) <

~ = log d3 + log d9™
dgﬁdg)H max max (‘FD(tﬂg),xk(j{)) — (FD(tj(f))/xk(x))>‘ > (\/ g 7;14)(hK)g n )) .

ke {1y} je{1..dyHy

Applying Bernstein’s exponential inequality to

(i,(;llK) (K (2w ) = (K (o %)) )

Sn O
I = O \/logdn + log d;, '
ng(hx)

Lastly the result will be easily deduced from the latter together with (6.30) and (6.31).
Proof Corollary[4.3]It is easy to see that,

inf inf |Fp(6,x)] <1/2 = Jx € Sy, 30 € Oy, such that
0@y xeSy

then under (A7), we get

1—Fp(f,x) >1/2 = sup sup |1—Fp(6,x)| >1/2.

0cOy xSy

We deduce from Lemma [4.6 the following inequality

(inf inf |Fp(6,x)| §1/2> < <sup sup |1 — Fp(6, x)| §1/2>.

96@7—[ XESH

0e@y xSy
Consequently,
& —~ 1
inf inf F -
L (ot g Foto) <) <
O
Proof of Lemma[4.71One has
~ 1 n
En(6,y,x) = F(0,y,x) = K, (x,0) ;Ki(x,G)Hi(y) —F(0,y,x)
1
- K; (x,0) (Ki(x,0) [E(H1(y)| < X1,0 >) —F(6,y,x)]). (6.32)

Moreover, we have

(H)| < X1,0>) = [ H (5 (0 =2)) 6,2 X1)dz,
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now, integrating by parts and using the fact that H is a cdf, we obtain

(Hi(y)| < X1,0 >) = /H” F(0,y — hyt, X )dt.

Thus, we have

| (Hi(y)] < X1,6 >) = F(6,y,x)| < /H t) |F(0,y — hut, X1) — F(6,y, x)| dt.

Finally, the use of (A2) implies that
(X0 =PI < Cax [ HO @) (8 + |1215) . (6.33)

Because this inequality is uniform on (6,y, x) € @y x Sy x Sgr and because of (H4), (4.14) is a direct conse-

quence of (6.32), (6.33) and of Corollary [4.3]
O

Proof of Lemma [4.8) We keep the notation of the Lemma [4.6] and we use the compact of Sg, we can write
Zn

that, for some, t1,...,t;, € Sr, SR C U — Ly, ym + 1) with [, = n~ 1202 and z, < Cn~1/2h2, Taking
m=1
m =ar min — tml.
() & in | |y — tm]

Thus, we have the following decomposition:

Fn0,y,2) ~ (Ex@y0)| = [Fu(0,9,0) ~ En(0,9, %)
T
+ ’fN(B, Y, xk(;)) — (ﬁN(BI v, xk(x)))‘
T
+2 ‘ﬁN(tj(e)/]/r xk(wi

~

— En(tj(o), Ym(y) xk<x>)‘

I'3

2| (B tien v:31)) = (B (o) Yy ¥e) ) |

Iy
+’ (ﬁN(er.‘//xk(x))) - (ﬁN(Gr}/rx))’

I's

— Concerning I'; we have

1 n

nh

We use the Holder continuity condition on K, the Cauchy-Schwartz inequality, the Bernstein’s inequality and
the boundness of H (assumption (H4)). This allows us to get:

1 1

Bv(®r ) = B,y 00)| < 5 B | g KO H) = g Kile xk<x>>Hi(y>i .

~ ~ C 1&
‘FN(M,X) —In(0,y, xk(x))‘ < o) 7 Y [Ki(6, x)Hi(y) — Ki(, xi(x) ) Hi(y) |
iz
C 1&
< (P(hK)El;\ )| |Ki(0, %) — Ki(6, xi(x))|
< C'ry
— ¢(hx)

— Concerning I';, the monotony of the functions I?N(G, -, x) and I?N(G, -, X) permits to write, Vin < z,, Vx €
Sy, VO € Oy

EN (6, Ym(y) = In Xk(x)) < sup En(8,y,%) < En(0, Yuy) + Ins X))
ye(ym(y)flnzym(y)‘kln)
FN (0, Ym(y) — Ins X)) < sup Fn(0,,%) < EN (0, Y(y) + Lns Xi(r))- (6.34)

ye (ym(}/) 7lnrym(y) +l,,)



406 Abderrahim Mahiddine et al. / Mathematical Modelling for...

Next, we use the Holder’s condition on F(6, y, x) and we show that, for any i1, y» € Sg and forallx € Sy, 0 €
Oy

~ ~ 1
Fn(0,y1,x) — FN(erzrx)’ = X0 | (Ki(x,0)F(0,y1,X1)) — (Kq1(x,0)F(6,y2, X1))|
< Cly1 — o™ (6.35)

Now, we have, forally > 0

. - log dsHd9
(‘FN(G,y,xk(x)) ICAZ xk(x))‘ >1 g)

ne(hg)
- log daHd9m
max max max |Fn(0,vy,x — Fn(6,y, x > —
(]G{l A9y ke{1..dyny 1Sm<zn ey o)~ En(.y k(x))‘ 1 ne(hg)

<
= - log da7 dS”
2,dS"d9" max max max Fn(O,vy, x — Fn(6,y, x > —on Th
B je{l...dH}ke{l...d;fﬂ}lﬁmSZW (‘ N( Y k(x)) N( Y k(x))‘ T 1’[4)(]’[1()

<
Zan;fH dS)H exp (—C}yz log df”ds)”)

1
choising z, = O (I, 1) = O (n 2b2>, we get

- - log dyy" )" 1-cp?
(‘FN(Q,]/,XMX)) - FN(G,]/,X]((X))‘ >n W) < C/Zn (dﬁ”d??—l)

putting C? = B and using (A4), we get

- ( log df”d?”)
2 — Ya.co .
ne(hg)

— Concerning the terms I'3 and I'y, using Lipschitz’s condition on the kernel H, one can write

~ ~

En(tjo) Y Xk(x)) — FN(tj(G)/ym(y)/xk(x))‘ <

n
2 Kz Hz(y) - Hi(ym(y)

i—1
n

K;(

Tth(P hK z=Zl :

Once again a standard exponential inequality for a sum of bounded variables allows us to write

~ - B Iy Iy logn
En(tjo) Yo Xk(x)) = EN(Ej(o), Ym(y) Xk(z)) = O (hH) + Ou.co <hH 714’x(hI<)> .

Now, the fact that nlim nVhy = oo and I, = n~ /22 imply that:

o _ [ [logditdy™
hu(hx) np(hx) |’

s~ O ( log df” d,?” )
3 = Va.co .
ne(hg)

then
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Hence, for n large enough, we have

log dSHdS™
Fa < r4 = Oa.co ( %) .

— Concerning I's, we have

(ﬁN(Gry/xk(x))) - (ﬁN(Gr]/rx)) < sup ‘FN (6,y,x) = Fn(6,, Xi(x))|

xeSy

then following similar proof used in the study of I'; and using the same idea as for (I?D (6, xk(x) )> - (fD (6, x))

we get, for n tending to infinity,
I~ 0 ( log d,‘f” dnG)”
5 = Ya.co -7 N |-
n¢(hg)

Proof of Lemma Let Hl-(jH) (y) = HU+D (hﬁl (y — Yi)), note that

1

A(]')(Q x)—f00,y,x) = ———
fN y f y hgl Kl (x’ 9)

Ki(x,0) [ (Hl(j+1)(y)| < X,0 >) — W0 (6, y, x)D . (6.36)

Moreover,

(H )l < x,0>) /]R HO (g (y —2)) (0,2, X)dz,

(¢

= - liith [H (7t (y —2)) £V 0,2, %))
s /]R HO (gt (y —2)) £9(60,2, X)d=. 637)
Condition (HS8) allows us to cancel the first term in the right side of and we can write:
()1 < X,0>) =17 £00, 0| < 5" [ HOW) £ 0,y ~hat, X) = £0(0,,0)|
Finally, (A5) allows to write
[(HIV )] < X,0>) 1 0 0,5,%)] < Coatl! / HO (1) (12 + |#P2ni3 ) . 6.38)
This inequality is uniform on (6, y,x) € @ X Sr x Sg, now to finish the proof it is sufficient to use (H4).
O

Proof of Lemma Letl, =n 372 andz, < Cn~ 372
Consider the following decomposition

0w - (R On0) = |[A O -0 y00)

A
700950 — (700.9,50)]
A
2 |FY (0 9.3 x>)2 A oy iy )|
A
+2‘ ( 6)7 Yo Xk(x )))3 (Ag)(tjw)rl/m(y)'xk(x)))’
Ay

(700550 — (W 0.0.)

As
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~» Concerning A1, we use the Holder continuity condition on K, the Cauchy-Schwartz’s inequality and the
Bernstein’s inequality. With theses arguments we get

Sn Oy
A =0 10gd2]+1+ logd, '
(k)

Then using the fact that A5 < A;, we obtain

S ©
As <A =0 | 108d" +logdi™ | (6.39)
nhy, (g

~» For Ay, we follow the same idea given for I';, we get

Sy Oy
Ay =0 log d;; ZH—l&— log d,
¢(hx)

~» Concerning A3 and A4, Using Lipschitz’s condition on the kernel H,

In

72(7) 2(7)
N (tioy Yo Xkx)) — In (o) Ymty)r Xk0) | < =
‘ CARTIUN

using the fact that hm n"hy = oo and choosing I, = n~ —31-3 implies
[ |log A R e
it 9Une) i) ()
As— O log d3" + log dy"
3 = Ya.co h2j+1 .
nhy " ¢(hx)

log dS" + log d9*
A4 < A3 = Oa.co (\J & 2]+1 5 . (6.40)

So, for n large enough, we have

And as A4 < A3, we obtain

¢(hk)

Finally, the lemma can be easily deduced from (6.39) and (6.40)
a

Proof of Lemma Because of (H4) and (A9) the function F (8, -, x) is uniformly continuous and strictly
increasing. So, we have:

Ve >0, 36(€) > 0,Vy, |F(6,y,x) — F(6,ts(x),x)| < d(€) = |y — to(a)] <e.

This leads directly to

Ve >0, 36(e) >0, ([Bp(a) —to(w)| >€) < (\ﬁ(e,?g(a),x) —F(8, ty(a),x)| > (5(6))
(IF(O, to(a), x) = F(6, to(w), x)| = 6(e))

Finally, It suffices to use the result of Theorem [4.3]to get the claimed result.
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