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Abstract

The aim of this paper is to establish a nonparametric estimation of some characteristics of the conditional
distribution. Kernel type estimators for the conditional cumulative distribution function and the successive
derivatives of the conditional density are introduced of a scalar response variable Y given a Hilbertian ran-
dom variable X when the observations are linked with a single-index structure. We establish the pointwise
almost complete convergence and the uniform almost complete convergence (with the rate) of the kernel es-
timate of this model. Asymptotic properties are stated for each of these estimates, and they are applied to the
estimations of the conditional mode and conditional quantiles.

Keywords: Conditional single-index, Conditional cumulative distribution, Derivatives of conditional density,
Nonparametric estimation, Conditional mode, Conditional quantile, Kernel estimator, semi-metric choice.

2010 MSC: 62G07, 62G5, 62G20. c©2012 MJM. All rights reserved.

1 Introduction

The single-index models are becoming increasingly popular because of their importance in several areas of
science such as econometrics, biostatistics, medicine, financial econometric and so on. The single-index model,
a special case of projection pursuit regression, has proven to be a very efficient way of coping with the high
dimensional problem in nonparametric regression. Härdle et al. [16], Hristache et al. [18]. Delecroix et al. [6]
have studied the estimation of the single-index approach of regression function and established some asymp-
totic properties. The recent literature in this domain shows a great potential of these functional statistical
methods. The most popular case of functional random variable corresponds to the situation when we observe
random curve on different statistical units. The first work in the fixed functional single-model was given by
Ferraty et al. [10], where authors have obtained almost complete convergence (with the rate) of the regression
function in the i.i.d. case. Their results have been extended to dependent case by Aı̈t Saidi et al. [1]. Aı̈t Saidi
et al. [2] studied the case where the functional single-index is unknown. The authors have proposed for this
parameter an estimator, based on the the cross-validation procedure.

In the present work we study a single- index modeling in the case of the functional explanatory variable.
More precisely, we consider the problem of estimating some characteristics of the conditional distribution
of a real variable Y given a functional variable X when the explanation of Y given X is done through its
projection on one functional direction. The conditional distribution plays an important role in prediction
problems, such as the conditional mode the conditional median or the conditional quantiles. Nonparametric
estimation of the conditional density has been widely studied, when the data are real. The first related result in
nonparametric functional statistic was obtained by Ferraty et al. [12], the authors have established the almost
complete convergence (with rate) in the independent and identically distributed (i.i.d.) random variables. The
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asymptotic normality of this kernel estimator has been studied in the dependent data by Ezzahrioui and Ould
Saı̈d [9].

The goal of this paper is to establish a nonparametric estimation of some characteristics of the conditional
distribution where Kernel type estimators for the conditional cumulative distribution function and the succes-
sive derivatives of the conditional density in the single functional index model are introduced. We establish
the pointwise almost complete convergence and the uniform almost complete convergence (with the rate) of
the kernel estimate of this model. Asymptotic properties are stated for each of these estimates, and they are
applied to the estimations of the conditional mode and conditional quantiles.
Now, let us outline the paper. At first, in section 2, we present general notations and some conditions necessary
for our study, Then, in sections 3 we propose the estimator of the conditional cumulative distribution function
and that of the conditional density derivatives, and we give their pointwise almost complete convergence
(with rate). Then, in section 4, we study the uniform almost complete convergence of the conditional cumula-
tive distribution function (resp. the conditional density derivatives) estimator given in section 3. Section 5 is
devoted to some applications, in this part, we first consider the problem of the estimation of the conditional
mode in functional single-index model, then we investigate the asymptotic properties of the conditional quan-
tile function of a scalar response and functional covariate when the observations are in single functional index
model and data are independent and identically distributed (i.i.d.), after that the cross-validation method is
given, which is so important in guarding against testing hypotheses suggested by the data, especially where
further samples are hazardous, costly or impossible to collect.
In the end, we finish our paper by giving technical proofs of lemmas and corollary (Appendix).

2 General notations and conditions

All along the paper, when no confusion will be possible, we will denote by C, C′ or/and Cθ,x some generic
constant in R∗

+, and in the following, any real function with an integer in brackets as exponent denotes its
derivative with the corresponding order.

Let X be a functional random variable, frv its abbreviation. Let (Xi, Yi) be a sample of independent pairs,
each having the same distribution as (X, Y), our aim is to build nonparametric estimates of several functions
related with the conditional probability distribution (cond-cdf) of Y given < X, θ >=< x, θ >.
Let

∀y ∈ R, F(θ, y, x) = (Y ≤ y| < X, θ >=< x, θ >).

be the cond-cdf of Y given < X, θ >=< x, θ >, for x ∈ H, which also shows the relationship between X and Y
but is often unknown.
If this distribution is absolutely continuous with respect to the Lebesgues measure on R, then we will denote
by f (θ, ·, x). (resp. f (j)(θ, ·, x)) the conditional density (resp. its jth order derivative) of Y given < X, θ >=<

x, θ >. In Sections 3 and 4, we will give almost complete convergence1 results (with rates of convergence2) for
nonparametric estimates of both functions F(θ, ·, x) and f (j)(θ, ·, x).

In the following, for any x ∈ H and y ∈ R, let Nx be a fixed neighborhood of x in H, SR will be a fixed
compact subset of R, and we will use the notation Bθ(x, h) = {X ∈ H/0 < | < x − X, θ > | < h}. Our non-
parametric models will be quite general in the sense that we will just need the following simple assumption
for the marginal distribution of < θ, X >:

(H1) (X ∈ Bθ(x, h)) = φθ,x(h) > 0,

together with some usual smoothness conditions on the function to be estimated. According to the type of
estimation problem to be considered, we will assume either

(H2) ∀(y1, y2) ∈ SR × SR, ∀(x1, x2) ∈ Nx ×Nx, |F(θ, y1, x1) − F(θ, y2, x2)| ≤ Cθ,x

(
‖x1 − x2‖b1 + |y1 − y2|b2

)
,

1Recall that a sequence (Tn)n∈N of random variables is said to converge almost completely to some variable T, if for any ε > 0, we
have ∑n (|Tn − T| > ε) < ∞. This mode of convergence implies both almost sure and in probability convergence (see for instance Bosq
and Lecoutre, 1987).

2Recall that a sequence (Tn)n∈N of random variables is said to be of order of complete convergence un, if there exists some ε > 0 for
which ∑n (|Tn | > εun) < ∞. This is denoted by Tn = O(un), a.co. (or equivalently by Tn = Oa.co.(un)).
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b1 > 0, b2 > 0,

(H3) ∀(y1, y2) ∈ SR×SR, ∀(x1, x2) ∈ Nx ×Nx, | f (j)(θ, y1, x1)− f (j)(θ, y2, x2)| = Cθ,x

(
‖x1 − x2‖b1 + |y1 − y2|b2

)
,

b1 > 0, b2 > 0.

3 Pointwise almost complete estimation

In this section we give the pointwise almost complete estimation (with rate) of the conditional cumulative
distribution as of the successive derivatives of the conditional density.

3.1 Conditional cumulative distribution estimation

The purpose of this section is to estimate the cond-cdf Fx(θ, ·, x). We introduce a kernel type estimator
F̂x(θ, ·, x) of Fx(θ, ·, x) as follows:

F̂(θ, y, x) =

n

∑
i=1

K
(

h−1
K (< x − Xi, θ >)

)
H
(

h−1
H (y−Yi)

)
n

∑
i=1

K
(

h−1
K (< x − Xi, θ >)

) , (3.1)

where K is a kernel, H is a cumulative distribution function (cdf) and hK = hK,n (resp. hH = hH,n) is a sequence
of positive real numbers which goes to zero as n tends to infinity, and with the convention 0/0 = 0. Note that
a similar estimate was already introduced in the case where X is a valued in some semi-metric space which
can be of infinite dimension by Ferraty et al. [11]. In our single functional index context, we need the following
conditions for our estimate:

(H4) H is such that, for all (y1, y2) ∈ R2, |H(y1)− H(y2)| ≤ C|y1 − y2|∫
|t|b2 H(1)(t)dt < ∞,

(H5) K is a positive bounded function with support [−1, 1],

(H6) lim
n→∞

hK = 0 with lim
n→∞

log n
nφθ,x(hK)

= 0,

(H7) lim
n→∞

hH = 0 with lim
n→∞

nα hH = ∞ for some α > 0.

• Comments on the assumptions
Our assumptions are very standard for this kind of model. Assumptions (H1) and (H5) are the same as

those given in Ferraty et al. [10]. Assumptions (H2) and (H3) is a regularity conditions which characterize the
functional space of our model and is needed to evaluate the bias term of our asymptotic results. Assumptions
(H4) and (H6)-(H7) are technical conditions and are also similar to those done in Ferraty et al. [12].

Theorem 3.1. Under the hypotheses (H1), (H2) and (H4)-(H7), and for any fixed y, we have

|F̂(θ, y, x)− F(θ, y, x)| = O(hb1
K ) + O(hb2

H ) + O

(√
log n

nφθ,x(hK)

)
, a.co. (3.2)

Proof. For i = 1, . . . , n, we consider the quantities Ki(θ, x) := K(h−1
K (< x−Xi, θ >)) and, for all y ∈ R Hi(y) =

H
(

h−1
H (y−Yi)

)
and let F̂N(θ, y, x) (resp. F̂D(θ, x)) be defined as

F̂N(θ, y, x) =
1

n (K1(θ, x))

n

∑
i=1

Ki(θ, x)Hi(y) (resp. F̂D(θ, x) =
1

n (K1(θ, x))

n

∑
i=1

Ki(θ, x)).
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This proof is based on the following decomposition

F̂(θ, y, x)− F(θ, y, x) =
1

F̂D(θ, x)

{(
F̂N(θ, y, x)− F̂N(θ, y, x)

)
−
(

F(θ, y, x)− F̂N(θ, y, x)
)}

+
F(θ, y, x)
F̂D(θ, x)

{
1− F̂D(θ, x)

}
(3.3)

and on the following intermediate results.

Lemma 3.1. ( [1]) Under the hypotheses (H1) and (H5)-H6), we have

|F̂D(θ, x)− 1| = Oa.co.

(√
log n

nφθ,x(hK)

)
, (3.4)

Corollary 3.1. Under the hypotheses of Lemma 3.1, we have

∞

∑
n=1

(
|F̂D(θ, x)| ≤ 1/2

)
< ∞. (3.5)

Lemma 3.2. Under the hypotheses (H1), (H2) and (H4)-(H.6), we have

|F(θ, y, x)− F̂N(θ, y, x)| = O
(

hb1
K

)
+ O

(
hb2

H

)
, (3.6)

Lemma 3.3. Under the hypotheses (H1), (H2) and (H4)-(H7), we have

|F̂N(θ, y, x)− F̂N(θ, y, x)| = Oa.co.

(√
log n

nφθ,x(hK)

)
, (3.7)

3.2 Estimating successive derivatives of the conditional density

The main objective of this part is the estimation of successive derivatives of the conditional density of Y
given < X, θ >=< x, θ >, denoted by f (θ, ·, x). It is well known that, in nonparametric statistics, this latter
provides an alternative approach to study the links between Y and X and it can be also used, in single index
modelling, to estimate the functional index θ if it is unknown.

So, at first, we propose to define the estimator f̂ (j)(θ, y, x) of f (j)(θ, y, x) as follows:

f̂ (j)(θ, y, x) =

h−1−j
H

n

∑
i=1

K(h−1
K (< x − Xi, θ >))H(j+1)(h−1

H (y−Yi))

n

∑
i=1

K(h−1
K (< x − Xi, θ >))

, y ∈ R (3.8)

Similar estimate was already introduced in the case where X is a valued in some semi-metric space which can
be of infinite dimension; Ferraty et al. [11], then widely studied (see for instance by Attaoui et al. [3], for several
asymptotic results and references). In addition to the conditions introduced along the previous section, we
need the following ones, which are technical conditions and are also similar to those given in Ferraty et al.
[12]:

(H8)

 ∀(y1, y2) ∈ R2, |H(j+1)(y1)− H(j+1)(y2)| ≤ Cθ,x|y1 − y2|
∃ν > 0, ∀j′ ≤ j + 1, lim

y→∞
|y|1+ν

∣∣∣H(j′+1)(y)
∣∣∣ = 0.

(H9) lim
n→∞

hK = 0 with lim
n→∞

log n

nh2j+1
H φθ,x(hK)

= 0.

The next result concerns the asymptotic behavior of the kernel functional estimator f̂ (j)(θ, ·, x) of the jth

order derivative of the conditional density function.
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Theorem 3.2. Under Assumptions (H1), (H3)-(H5), and (H7)-(H9), and for any fixed y, we have, as n goes to infinity

| f̂ (j)(θ, y, x)− f (j)(θ, y, x)| = O
(

hb1
K

)
+ O

(
hb2

H

)
+ O

(√
log n

nh2j+1
H φθ,x(hK)

)
a.c.o (3.9)

Proof. This result is based on the same kind of decomposition as (3.3). Indeed, we can write:

f̂ (j)(θ, y, x)− f (j)(θ, y, x) =
1

F̂D(θ, x)

(
f̂ (j)
N (θ, y, x)− ( f̂ (j)

N (θ, y, x)
)
− 1

F̂D(θ, x)(
f (j)(θ, y, x)− f̂ (j)

N (θ, y, x)
)

(3.10)

+
f (j)(θ, y, x)

F̂D(θ, x)

(
1− F̂D(θ, x)

)
where

f̂ (j)
N (θ, y, x) =

1

n hj+1
H (K1(θ, x))

n

∑
i=1

Ki(θ, x)H(j+1)
i (y).

Then, Theorem 3.2 can be deduced from both following lemmas, together with Lemma 3.1 and Corollary 3.1.

Lemma 3.4. Under the hypotheses (H1), (H2), (H3), (H5) and (H6) we have

| f (j)(θ, y, x)− ( f̂ (j)
N (θ, y, x)| = O

(
hb1

K

)
+ O

(
hb2

H

)
,

Lemma 3.5. Under the hypotheses (H1)-(H7), we have

| f̂ (j)
N (θ, y, x)− ( f̂ (j)

N (θ, y, x)| = Oa.co.

(√
log n

n h2j+1
H φθ,x(hK)

)
,

The proofs of the the above lemmas and corollary are given in the same manner as it was done in [12], since
they are a special case of the Lemmas 2.3.2, 2.3.3, 2.3.4 and 2.3.5. It suffices to replace f̂ (j)(y, x) (resp. f (j)(y, x))
by f̂ (j)(θ, y, x) (resp. f (j)(θ, y, x)), and F̂D(x), (resp. FD(x)) by F̂D(θ, x) (resp. FD(θ, x)) with d(x1, x2) =<

x1 − x2, θ >

4 Uniform almost complete convergence

In this section we derive the uniform version of Theorem 3.1 and Theorem 3.2. The study of the uniform
consistency is an indispensable tool for studying the asymptotic properties of all estimates of the functional
index if is unknown. In the multivariate case, the uniform consistency is a standard extension of the pointwise
one, however, in the functional case, it requires some additional tools and topological conditions (see Ferraty
et al., 2009). Thus, in addition to the conditions introduced previously, we need the following ones. Firstly,
Consider

SH ⊂
dSHn⋃
k=1

B(xk, rn) and ΘH ⊂
dΘH

n⋃
j=1

B(tj, rn) (4.11)

with xk (resp. tj) ∈ H and rn, dSHn , dΘH
n are sequences of positive real numbers which tend to infinity as n goes

to infinity.

4.1 Conditional cumulative distribution estimation

In this section we propose to study the uniform almost complete convergence of our estimator defined
above (3.1) for this, we need the following assumptions:

(A1) There exists a differentiable function φ(·) such that ∀x ∈ SH and ∀θ ∈ ΘH,

0 < Cφ(h) ≤ φθ,x(h) ≤ C′φ(h) < ∞ and ∃η0 > 0, ∀η < η0, φ′(η) < C,
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(A2) ∀(y1, y2) ∈ SR × SR, ∀(x1, x2) ∈ SH × SH and ∀θ ∈ ΘH,

|F(θ, y1, x1)− F(θ, y2, x2)| ≤ C(x,θ)

(
‖x1 − x2‖b1 + |y1 − y2|b2

)
,

(A3) The kernel K satisfy (H3) and Lipschitz’s condition holds

|K(x)− K(y)| ≤ C‖x − y‖,

(A4) For rn = O
(

log n
n

)
the sequences dSHn and dΘH

n satisfy:

(log n)2

nφ(hK)
< log dSHn + log dΘH

n <
nφ(hK)
log n

,

and
∞

∑
n=1

n1/2b2(dSHn dΘH
n )1−β < ∞ for some β > 1

Remark 4.1. Note that Assumptions (A1) and (A2) are, respectively, the uniform version of (H1) and (H2). Assump-
tions (A1) and (A4) are linked with the the topological structure of the functional variable, see Ferraty et al. [13].

Theorem 4.3. Under Assumptions (A1)-(A4) and (H4), as n goes to infinity, we have

sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

|F̂(θ, y, x)− F(θ, y, x)| = O(hb1
K ) + O(hb2

H ) + Oa.co.

√ log dSHn + log dΘH
n

nφ(hK)

 (4.12)

In the particular case, where the functional single-index is fixed we get the following result.

Corollary 4.2. Under Assumptions (A1)-(A4) and (H4), as n goes to infinity, we have

sup
x∈SH

sup
y∈SR

|F̂(θ, y, x)− F(θ, y, x)| = O(hb1
K ) + O(hb2

H ) + Oa.co.

√ log dSHn
nφ(hK)

 (4.13)

Clearly The proofs of these two results namely the Theorem 4.3 and Corollary 4.2 can be deduced from the
following intermediate results which are only uniform version of Lemmas 3.1-3.3 and Corollary 3.1.

Lemma 4.6. Under Assumptions (A1), (A3) and (A4), we have as n → ∞

sup
θ∈ΘH

sup
x∈SH

|F̂D(θ, x)− 1| = Oa.co

√ log dSHn + log dΘH
n

nφ(hK)


Corollary 4.3. Under the assumptions of Lemma 4.6, we have,

∞

∑
n=1

(
inf

θ∈ΘH
inf

x∈SH
F̂D(θ, x) <

1
2

)
< ∞

Lemma 4.7. Under Assumptions (A1), (A2) and (H4), we have, as n goes to infinity

sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

|F(θ, y, x)− (F̂N(θ, y, x))| = O(hb1
K ) + O(hb2

H ) (4.14)

Lemma 4.8. Under the assumptions of Theorem 4.3, we have, as n goes to infinity

sup
θ∈ΘH

sup
x∈SH

sup
y∈SR

|F̂N(θ, y, x)−
[

F̂N(θ, y, x)
]
| = Oa.co.

√ log dSHn + log dΘH
n

nφ(hK)


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4.2 Estimating successive derivatives of the conditional density

In this part we focus on the study of uniform almost complete convergence of our estimator defined above
(3.8). Thus, in addition to the conditions introduced in the section 4, we need the following ones.

(A5) ∀(y1, y2) ∈ SR × SR, ∀(x1, x2) ∈ SF × SF and ∀θ ∈ ΘF ,

| f (j)(θ, y1, x1)− f (j)(θ, y2, x2)| ≤ C
(
‖x1 − x2‖b1 + |y1 − y2|b2

)
,

(A6) For some γ ∈ (0, 1), lim
n→∞

nγhH = ∞, and for rn = O
(

log n
n

)
the sequences dSFn and dΘF

n satisfy:

(log n)2

nh2j+1
H φ(hK)

< log dSFn + log dΘF
n <

nh2j+1
H φ(hK)
log n

,

and
∞

∑
n=1

n(3γ+1)/2(dSFn dΘF
n )1−β < ∞, for some β > 1

Theorem 4.4. Under Hypotheses (A1), (A3) ,(A5)-(A6) and (H8), as n goes to infinity, we have

sup
θ∈ΘF

sup
x∈SF

sup
y∈SR

| f̂ (j)(θ, y, x)− f (j)(θ, y, x)| = O(hb1
K ) + O(hb2

H ) + Oa.co.

√√√√ log dSFn + log dΘF
n

nh2j+1
H φ(hK)

 (4.15)

Proof. This result is based on the same kind of decomposition (3.10), therefore, Theorem 4.4 can be deduced
from both following lemmas, together with Lemma 4.6 and Corollary 4.3.

Lemma 4.9. Under Assumptions (A1), (A5) and (H8), we have, as n goes to infinity

sup
θ∈ΘF

sup
x∈SF

sup
y∈SR

| f (j)(θ, y, x)− ( f̂ (j)
N (θ, y, x))| = O(hb1

K ) + O(hb2
H )

Lemma 4.10. Under the assumptions of Theorem 4.4, we have, as n goes to infinity

sup
θ∈ΘF

sup
x∈SF

sup
y∈SR

∣∣∣ f̂ (j)
N (θ, y, x)]−

[
f̂ (j)
N (θ, y, x)

]∣∣∣ = Oa.co.

√√√√ log dSFn + log dΘF
n

nh2j+1
H φθ,x(hK)



5 Applications

5.1 The conditional mode in functional single-index model

In this section we will consider the problem of the estimation of the conditional mode in the functional
single-index model. The main objective, here, is to establish the almost complete convergence of the kernel
estimator of the conditional mode of Y given < X, θ >=< x, θ > denoted by Mθ(x), uniformly on fixed subset
SH of H. To this end, we suppose that Mθ(x) satisfies on SH the following uniform uniqueness property (see,
Ould-saı̈d and Cai [23], for the multivariate case).

(A6) ∀ε0 > 0, ∃η > 0, ∀ϕ : SH −→ SR,

sup
x∈SH

|Mθ(x)− ϕ(x)| ≥ ε0 =⇒ sup
x∈SH

| f (θ, ϕ(x), x)− f (θ, Mθ(x), x)| ≥ η.

We estimate the conditional mode M̂θ(x) with a random variable Mθ such as

M̂θ(x) = arg sup
y∈SR

f̂ (θ, y, x). (5.16)

Note that the estimate M̂θ is not necessarily unique, and if this is the case all the remaining of our paper
will concern any value M̂θ satisfying (5.16). The difficulty of the problem is naturally linked with the flatness
of the function f (θ, y, x) around the mode Mθ . This flatness can be controlled by the number of vanishing
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derivatives at point Mθ , and this parameter will also have a great influence on the asymptotic rates of our
estimates. More precisely, we introduce the following additional smoothness condition.

(A7)


f (l)(θ, Mθ(x), x) = 0, if;1 ≤ l < j
and f (j)(θ, ·, x), is uniformly continuous on SR

such that, | f (j)(θ, ·, x)| > C > 0

Theorem 5.5. Under the assumptions of Theorem 4.4 hold together with (A6)-(A7) we have

sup
x∈SH

|M̂θ(x)− Mθ(x)| = O(h
b1
j

K ) + O(h
b2
j

H ) + Oa.co.

( log dSHn

n1−γφ(hK)

) 1
2j


Let us now define the application framework of our results to prediction problem by applying the result
in the above Theorem, we obtain the following result.

Corollary 5.4. Under the assumptions of Theorem 5.5, we have as n goes to infinity

M̂θ(x)− Mθ(x) −→ 0 a.co.

5.2 Conditional quantile in functional single-index model

In this part of paper we investigate the asymptotic properties of the conditional quantile function of a
scalar response and functional covariate when the observations are from a single functional index model and
data are independent and identically distributed (i.i.d.)

We will consider the problem of the estimation of the conditional quantiles. Saying that, we are implicitly
assuming the existence of a regular version for the conditional distribution of Y given < X, θ >. Now, let tθ(α)
be the α-order quantile of the distribution of Y given < X, θ >=< x, θ >. From the cond-cdf F(θ, ·, x), it is easy
to give the general definition of the α-order quantile:

tθ(α) = inf{t ∈ R : F(θ, t, x) ≥ α}, ∀α ∈ (0, 1).

In order to simplify our framework and to focus on the main interest of our part (the functional feature of
< X, θ >), we assume that F(θ, ·, x) is strictly increasing and continuous in a neighborhood of tθ(α). This is
insuring unicity of the conditional quantile tθ(α) which is defined by:

tθ(α) = F−1(θ, α, x). (5.17)

In what remains, we wish to stay in a free distribution framework. This will lead to assume only smoothness
restrictions for the cond-cdf F(θ, ·, x) through nonparametric modelling (see Section 2).
As by-product of (5.17) and (3.1), it is easy to derive an estimator t̂θ(α) of tθ(α):

t̂θ(α) = F̂−1(θ, α, x). (5.18)

As we will see later on, such an estimator is unique as soon as H is an increasing continuous function.
Naturally, we will estimate this quantile by mean of the conditional distribution estimator studied in previous
sections. Here also, as far as we know, the literature on (conditional and/or unconditional) quantile estimation
is quite important when the explanatory variable X is real (see for instance Samanta, 1989, for previous results
and Berlinet et al., 2001, for recent advances and references). In the functional case, the conditional quantiles
for scalar response and a scalar/multivariate covariate have received considerable interest in the statistical
literature. For completely observed data, several nonparametric approaches have been proposed, for instance,
Gannoun et al., (2003) introduced a smoothed estimator based on double kernel and local constant kernel
methods and Berlinet et al., (2001) established its asymptotic normality. Under random censoring, Gannoun
et al., (2005) introduced a local linear (LL) regression (see Koenker and Bassett (1978) for the definition) and
El Ghouch and Van Keilegom (2009) studied the same LL estimator. Ould-Saı̈d (2006) constructed a kernel
estimator of the conditional quantile under independent and identically distributed (i.i.d.) censorship model
and established its strong uniform convergence rate. Liang and De Uña-Àlvarez (2011) established the strong
uniform convergence (with rate) of the conditional quantile function under α-mixing assumption.
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Recently, many authors are interested in the estimation of conditional quantiles for a scalar response and func-
tional covariate. Ferraty et al., (2005) introduced a nonparametric estimator of conditional quantile defined as
the inverse of the conditional cumulative distribution function when the sample is considered as an α-mixing
sequence. They stated its rate of almost complete consistency and used it to forecast the well-known El Niño
time series and to build confidence prediction bands. Ezzahrioui and Ould-Saı̈d (2008) established the asymp-
totic normality of the kernel conditional quantile estimator under α-mixing assumption. Recently, and within
the same framework, Dabo-Niang and Laksaci (2012) provided the consistency in Lp norm of the conditional
quantile estimator for functional dependent data.

So, in this work we propose to estimate tθ(α) by the estimate t̂θ(α) defined as (5.18) or as

F̂(θ, t̂θ(α), x) = α. (5.19)

To insure existence and unicity of this quantile, we will assume that

(A8) F(θ, ·, x) is strictly increasing,

Note that, because H is a cdf satisfying (H4), such a value t̂θ(α) is always existing. It could be the case that it
is not unique, but if this happens all the remaining of the paper will concern any among all the values t̂θ(α)
satisfying (5.19).

In order to insure unicity of t̂θ(α) we will make the following, quite unrestrictive, assumption:

(A9) H is is strictly increasing,

As for the mode estimation problem discussed before, the difficulty occur in estimating the conditional quan-
tile tθ(α) is linked with the flatness of the curve of the conditional distribution F(θ, ·, x) around tθ(α). More
precisely, we will suppose that there exists some integer j > 0 such that:

(A10)


F(l)(θ, tθ(α), x) = 0, if; 1 ≤ l < j
and F(j)(θ, ·, x), is uniformly continuous on; SR

such that, |F(j)(θ, tθ(α), x)| > C > 0

Theorem 5.6. If the conditions of Theorem 4.4 hold together with (A8)-(A10), we have

sup
x∈SH

|t̂θ(α)− tθ(α)| = O

(
h

b1
j

K + h
b2
j

H

)
+ O

( log dSHn
n φx(hK)

) 1
2j
 , a.co. (5.20)

Proof. Let us write the following Taylor expansion of the function F̂(θ, ·, x):

F̂(θ, tθ(α), x)− F̂(θ, t̂θ(α), x) =
j−1

∑
l=1

(tθ(α)− t̂θ(α))l

l!
F̂(l)(θ, tθ(α), x)

+
(tθ(α)− t̂θ(α))j

j!
F̂(j)(θ, t∗, x),

where t∗ is some point between tθ(α) and t̂θ(α). It suffices now to use the first part of condition (A10) to be
able to rewrite this expression as:

F̂(θ, tθ(α), x)− F̂(θ, t̂θ(α), x) =
j−1

∑
l=1

(tθ(α)− t̂θ(α))l

l!

(
f̂ (l−1)(θ, tθ(α), x)− f (l−1)(θ, tθ(α), x)

)
+

(tθ(α)− t̂θ(α))j

j!
f̂ (j−1)(θ, t∗, x),
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As long as we could be able to check that

∃τ > 0,
n=∞

∑
n=1

(
f (j−1)(θ, t∗, x) < τ

)
< ∞, (5.21)

we would have

(tθ(α)− t̂θ(α))j = O
(

F̂(θ, tθ(α), x)− F(θ, tθ(α), x)
)

(5.22)

+ O

(
j−1

∑
l=1

(tθ(α)− t̂θ(α))l( f̂ (l−1)(θ, tθ(α), x)− f (l−1)(θ, tθ(α), x)

)
, a.co.

By comparing the rates of convergence given in Theorems 4.3 and 4.4, we see that the leading term in right
hand side of equation (5.22) is the first one. So we have

(tθ(α)− t̂θ(α))j = Oa.co.

(
F̂(θ, tθ(α), x)− F(θ, tθ(α), x)

)
,

Because of Theorem 4.4, this is enough to get the claimed result, and so (5.21) is the only result that remains to
check. This will be done directly by using the uniform continuity of the function f (j−1)(θ, ·, x) given by second
part of (A10) together with the third part of (A7) and with the following lemma.

Lemma 5.11. If the conditions of Theorem 4.3 hold together with (A8) and (A9), then we have:

t̂θ(α)− tθ(α) → 0, a.co. (5.23)

The next part is devoted to another type of application called the cross-validation method, this application
has been already given in [2].

5.3 The cross-validation method

This method is widely applied, it can be used to compare the performances of different predictive model-
ing procedures. For instance, in optical character recognition; a mechanical or electronic conversion of scanned
or photographed images of typewritten or printed text into machine-encoded/computer-readable text, this
later is widely used as a form of data entry from some sort of original paper data source, whether passport
documents, invoices, bank statement, receipts, business card, mail, or any number of printed records. It can
also be used in variable selection; the process of selecting a subset of relevant features for use in model con-
struction.

After this short introduction let’s give an application of the method:

1. The regression operator r̂θ(x) depends on the functional parameter θ, So, a crucial question arises: how
to choose the functional index θ? The answer is nontrivial and a firstway consists in extending the
standard cross-validation procedure to our functional context. For this, one considers various quadratic
distances, namely the averaged squared error

ASE(θ) = n−1
n

∑
j=1

(
rθ0(Xj)− r̂θ(Xj)

)2 , (5.24)

the integrated squared error

ISE(θ) =
[
(rθ0(X0)− r̂θ(X0))

2 |Z1, . . . , Zn

]
, (5.25)

and the mean integrated squared error

MISE(θ) = [ISE(θ)] . (5.26)
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The main goal consists in finding a θ which minimizes (in some sense) over Θn these quantities. How-
ever, because all these quadratic distances depend on the unknown regression operator rθ0 , the criterion
used in practice for choosing θ is

CV(θ) = n−1
n

∑
j=1

(
Yj − r̂−j

θ (Xj)
)2

(5.27)

where r̂−j
θ is the leave-one-out estimate of rθ(x), given by

r̂−j
θ (x) =

(n− 1)−1
n

∑
i=1
i 6=j

YiK
(

h−1
K (< x − Xi, θ >)

)

(n− 1)−1
n

∑
i=1
i 6=j

K
(

h−1
K (< x − Xi, θ >)

) . (5.28)

So, the selection rule will be to choose θCV which minimizes the so-called cross-validation criterion
CV(θ). Clearly, for a given θ, CV(θ) is a computable quantity. It measures a quadratic distance between
(Y1, . . . , Yn) and its prediction r̂−j

θ (X1), . . . , r̂−j
θ (Xn) when, for each i, r̂−i

θ (.) is built without the ith data
(Xi, Yi). So, the method of cross-validation consists in choosing among several candidates θ, the one who
is the most adapted to our data set (Xi, Yi) in terms of prediction. This method is inspired by the cross-
validation ideas which have been proposed in various standard nonparametric estimation problems (see
[17] for the regression problem, [22] for the density and [26] for the hazard function).

From a practical point of view, some questions arise in order to implement this single-functional index
model. What about the identifiability of the model given a sample of observed curves (x1, . . . , xn)? How
to build the set of functional indexes ΘF ? What about the choice of the bandwidth h?

Emphasizes the good behaviour of this simple cross-validated procedure, even in pathological situa-
tions. To see that, one focuses on a favourable case (i.e. θ0 ∈ ΘF ).

First of all, one builds a sample of n curves curves as follows:

xi(tj) = aicos(2πtj) + bisin(4πtj) + 2ci(tj − 0.25)(tj − 0.5),

where 0 = t1 < t2 < . . . < tn−1 < tn = 1 are equispaced points, the ai’s, bi’s and ci’s being in-
dependent observations uniformly distributed on [0, 1]. Once the curves are defined, one simulates a
single-functional index model as follows:

• Choose one θ0(·).

• Choose one link function r(·).

• Compute the inner products < θ0, x1 >, . . . , < θ0, xn >.

• Generate independently ε1, . . . , εn, from a centred Gaussian of variance equal to 0.05 times the
empirical variance of
r(< θ0, x1 >), . . . , r(< θ0, xn >) (i.e. signal-to-noise ratio = 0.05).

• Simulate the corresponding responses: Yi = r(< θ0, xi >) + εi.

Finally, the observations (xk, Yk)k=1,...,m are used for the learning step and the others (i.e. (xl , Yl)l=m+1,...,n
allow the computation of the mean square error of prediction:

MSEP =
1

n−m

n

∑
j=n−m

(
Yj r̂
(
< θCV , xj >

))2 .

In order to highlight the specificity of such a single-functional index model, the obtained predictions
are compared with those coming from a pure nonparametric functional data analysis (NPFDA) method
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(see [12] for details and references therein). Actually, the NPFDA regression method uses the following
kernel estimator:

∀x ∈ H, r̂(x) =

n

∑
i=1

YiK
(

h−1(d(Xi, x)
)

n

∑
i=1

K
(

h−1(d(Xi, x)
) (5.29)

for estimating the regression operator m in the nonparametric model Yi = r(Xi) + εi, for all i = 1, . . . , n,
where d(., .) is a fixed semi-metric.

If one looks at the NPFDA kernel estimator (5.29), it suffices to replace the fixed semi-metric d(·, ·) with
dθCV (·, ·). What does this mean? It means that the functional index model can be seen as one way of
building an nonparametric functional data analysis (NPFDA) kernel estimator with a data-driven semi-
metric. In particular, in pure nonparametric functional models when one has no idea of the semi-metric,
the functional index model appears to be a method for performing an adaptative one. The functional
index model makes the NPFDA method more flexible. In this sense, the functional index model is not a
competitive statistical technique with respect to the NPFDA method, but rather a complementary one.

2. If we wish to predict a real characteristic denoted Y of Xn knowing the curve Xn−1, we have to consider
the observations (Xi, yi) where yi is the characteristic we want to provide at the instant i. For example:

• If we want to predict the value of the process at time tj knowing the curve Xn−1, we set Yi =
Xi+1(tj).

• For the sup, we pose Yi = supt Xi+1(t).

• If we look for the time where the process reaches maximum, we set Yi = arg supt Xi+1(t).

By using the conditional mode as a prediction tool, we can predict Y by M̂θ(Xn−1).

6 Appendix

Proof of Lemma 4.6 For all x ∈ SH and θ ∈ ΘH, we set

k(x) = arg min
k∈{1...rn}

‖x − xk‖ and j(θ) =) = arg min
j∈{1...ln}

‖θ − tj‖.

Let us consider the following decomposition

sup
x∈SH

sup
θ∈ΘH

∣∣∣F̂D(θ, x)−
(

F̂D(θ, x)
)∣∣∣ ≤ sup

x∈SH
sup

θ∈ΘH

∣∣∣F̂D(θ, x)− (F̂D(θ, xk(x))
∣∣∣︸ ︷︷ ︸

Π1

+ sup
x∈SH

sup
θ∈ΘH

∣∣∣F̂D(θ, xk(x))− F̂D(tj(θ), xk(x))
∣∣∣︸ ︷︷ ︸

Π2

+ sup
x∈SH

sup
θ∈ΘH

∣∣∣F̂D(tj(θ), xk(x))−
(

F̂D(tj(θ), xk(x))
)∣∣∣︸ ︷︷ ︸

Π3

+ sup
x∈SH

sup
θ∈ΘH

∣∣∣ (F̂D(tj(θ), xk(x))
)
−
(

F̂D(θ, xk(x))
)∣∣∣︸ ︷︷ ︸

Π4

+ sup
x∈SH

sup
θ∈ΘH

∣∣∣ (F̂D(θ, xk(x))
)
−
(

F̂D(θ, x)
)∣∣∣︸ ︷︷ ︸

Π5
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For Π1 and Π2, we employe the Hölder continuity condition on K, Cauchy Schwartz’s and the Bernstein’s
inequalities, we get

Π1 = O

√ log dSH
n + log dΘH

n
nφ(hK)

 , Π2 = O

√ log dSH
n + log dΘH

n
nφ(hK)

 (6.30)

Then, by using the fact that Π4 ≤ Π1 and Π5 ≤ Π2, we get for n tending to infinity

Π4 = O

√ log dSH
n + log dΘH

n
nφ(hK)

 , Π5 = O

√ log dSH
n + log dΘH

n
nφ(hK)

 (6.31)

Now, we deal with Π3, for all η > 0, we haveΠ3 > η

√ log dSH
n + log dΘH

n
nφ(hK)

 ≤

dSH
n dΘH

n max
k∈{1...dSH

n }
max

j∈{1...dΘH
n }

∣∣∣F̂D(tj(θ), xk(x))−
(

F̂D(tj(θ), xk(x))
)∣∣∣ > η

√ log dSH
n + log dΘH

n
nφ(hK)

 .

Applying Bernstein’s exponential inequality to

1
φ(hK)

(
Ki

(
tj(θ), xk(x)

)
−
(

Ki

(
tj(θ), xk(x)

)))
,

then under (A7), we get

Π3 = O

√ log dSH
n + log dΘH

n
nφ(hK)

 .

Lastly the result will be easily deduced from the latter together with (6.30) and (6.31). 2

Proof Corollary 4.3 It is easy to see that,
inf

θ∈ΘH
inf

x∈SH
|F̂D(θ, x)| ≤ 1/2 =⇒ ∃x ∈ SH, ∃θ ∈ ΘH, such that

1− F̂D(θ, x) ≥ 1/2 =⇒ sup
θ∈ΘH

sup
x∈SH

|1− F̂D(θ, x)| ≥ 1/2.

We deduce from Lemma 4.6 the following inequality(
inf

θ∈ΘH
inf

x∈SH
|F̂D(θ, x)| ≤ 1/2

)
≤

(
sup

θ∈ΘH

sup
x∈SH

|1− F̂D(θ, x)| ≤ 1/2

)
.

Consequently,
∞

∑
n=1

(
inf

θ∈ΘH
inf

x∈SH
F̂D(θ, x) <

1
2

)
< ∞

2

Proof of Lemma 4.7 One has

F̂N(θ, y, x)− F(θ, y, x) =
1

K1(x, θ)

[
n

∑
i=1

Ki(x, θ)Hi(y)

]
− F(θ, y, x)

=
1

K1(x, θ)
(K1(x, θ) [E (H1(y)| < X1, θ >)− F(θ, y, x)]) . (6.32)

Moreover, we have

(H1(y)| < X1, θ >) =
∫

R

H
(

h−1
H (y− z)

)
f (θ, z, X1)dz,
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now, integrating by parts and using the fact that H is a cdf, we obtain

(H1(y)| < X1, θ >) =
∫

R

H(1)(t)F(θ, y− hHt, X1)dt.

Thus, we have

| (H1(y)| < X1, θ >)− F(θ, y, x)| ≤
∫

R

H(1)(t) |F(θ, y− hHt, X1)− F(θ, y, x)| dt.

Finally, the use of (A2) implies that

| (H1(y)|X1)− Fx(y)| ≤ Cθ,x

∫
R

H(1)(t)
(

hb1
K + |t|b2 hb2

H

)
dt. (6.33)

Because this inequality is uniform on (θ, y, x) ∈ ΘH × SH × SR and because of (H4), (4.14) is a direct conse-
quence of (6.32), (6.33) and of Corollary 4.3.

2

Proof of Lemma 4.8 We keep the notation of the Lemma 4.6 and we use the compact of SR, we can write

that, for some, t1, . . . , tzn ∈ SR, SR ⊂
zn⋃

m=1

(ym − ln, ym + ln) with ln = n−1/2b2 and zn ≤ Cn−1/2b2 . Taking

m(y) = arg min
{1,2,...,zn}

|y− tm|.

Thus, we have the following decomposition:∣∣∣F̂N(θ, y, x)−
(

F̂N(θ, y, x)
)∣∣∣ =

∣∣∣F̂N(θ, y, x)− F̂N(θ, y, xk(x))
∣∣∣︸ ︷︷ ︸

Γ1

+
∣∣∣F̂N(θ, y, xk(x))−

(
F̂N(θ, y, xk(x))

)∣∣∣︸ ︷︷ ︸
Γ2

+2
∣∣∣F̂N(tj(θ), y, xk(x))− F̂N(tj(θ), ym(y), xk(x))

∣∣∣︸ ︷︷ ︸
Γ3

+2
∣∣∣ (F̂N(tj(θ), y, xk(x))

)
−
(

F̂N(tj(θ), ym(y), xk(x))
)∣∣∣︸ ︷︷ ︸

Γ4

+
∣∣∣ (F̂N(θ, y, xk(x))

)
−
(

F̂N(θ, y, x)
)∣∣∣︸ ︷︷ ︸

Γ5

↪→ Concerning Γ1 we have∣∣∣F̂N(θ, y, x)− F̂N(θ, y, xk(x))
∣∣∣ ≤ 1

n

n

∑
i=1

∣∣∣∣∣ 1
K1(θ, x)

Ki(θ, x)Hi(y)− 1
K1(θ, xk(x))

Ki(θ, xk(x))Hi(y)

∣∣∣∣∣ .

We use the Hölder continuity condition on K, the Cauchy-Schwartz inequality, the Bernstein’s inequality and
the boundness of H (assumption (H4)). This allows us to get:∣∣∣F̂N(θ, y, x)− F̂N(θ, y, xk(x))

∣∣∣ ≤ C
φ(hK)

1
n

n

∑
i=1

∣∣Ki(θ, x)Hi(y)− Ki(θ, xk(x))Hi(y)
∣∣

≤ C
φ(hK)

1
n

n

∑
i=1

|Hi(y)|
∣∣Ki(θ, x)− Ki(θ, xk(x))

∣∣
≤ C′rn

φ(hK)

↪→ Concerning Γ2, the monotony of the functions F̂N(θ, ·, x) and F̂N(θ, ·, x) permits to write, ∀m ≤ zn, ∀x ∈
SH, ∀θ ∈ ΘH

F̂N(θ, ym(y) − ln, xk(x)) ≤ sup
y∈(ym(y)−ln ,ym(y)+ln)

F̂N(θ, y, x) ≤ F̂N(θ, ym(y) + ln, xk(x))

F̂N(θ, ym(y) − ln, xk(x)) ≤ sup
y∈(ym(y)−ln ,ym(y)+ln)

F̂N(θ, y, x) ≤ F̂N(θ, ym(y) + ln, xk(x)). (6.34)



406 Abderrahim Mahiddine et al. / Mathematical Modelling for...

Next, we use the Hölder’s condition on F(θ, y, x) and we show that, for any y1, y2 ∈ SR and for all x ∈ SH, θ ∈
ΘH ∣∣∣F̂N(θ, y1, x)− F̂N(θ, y2, x)

∣∣∣ =
1

K1(x, θ)
| (K1(x, θ)F(θ, y1, X1))− (K1(x, θ)F(θ, y2, X1))|

≤ C|y1 − y2|b2 . (6.35)

Now, we have, for all η > 0∣∣∣F̂N(θ, y, xk(x))− F̂N(θ, y, xk(x))
∣∣∣ > η

√
log dSHn dΘH

n
nφ(hK)


= max

j∈{1...dΘH
n }

max
k∈{1...dSHn }

max
1≤m≤zn

∣∣∣F̂N(θ, y, xk(x))− F̂N(θ, y, xk(x))
∣∣∣ > η

√
log dSHn dΘH

n
nφ(hK)


≤

zndSHn dΘH
n max

j∈{1...dΘH
n }

max
k∈{1...dSHn }

max
1≤m≤zn

∣∣∣F̂N(θ, y, xk(x))− F̂N(θ, y, xk(x))
∣∣∣ > η

√
log dSFn dΘF

n
nφ(hK)


≤

2zndSHn dΘH
n exp

(
−Cη2 log dSHn dΘH

n

)
choising zn = O

(
l−1
n
)

= O
(

n
1

2b2

)
, we get

∣∣∣F̂N(θ, y, xk(x))− F̂N(θ, y, xk(x))
∣∣∣ > η

√
log dSHn dΘH

n
nφ(hK)

 ≤ C′zn

(
dSHn dΘH

n

)1−Cη2

putting Cη2 = β and using (A4), we get

Γ2 = Oa.co

√ log dSHn dΘH
n

nφ(hK)

 .

↪→ Concerning the terms Γ3 and Γ4, using Lipschitz’s condition on the kernel H, one can write∣∣∣F̂N(tj(θ), y, xk(x))− F̂N(tj(θ), ym(y), xk(x))
∣∣∣ ≤ C

1
nφ(hK)

n

∑
i=1

Ki(tj(θ), xk(x))
∣∣∣Hi(y)− Hi(ym(y)

∣∣∣
≤ Cln

nhHφ(hK)

n

∑
i=1

Ki(tj(θ), xk(x)).

Once again a standard exponential inequality for a sum of bounded variables allows us to write

F̂N(tj(θ), y, xk(x))− F̂N(tj(θ), ym(y), xk(x)) = O
(

ln
hH

)
+ Oa.co

(
ln
hH

√
log n

nφx(hK)

)
.

Now, the fact that lim
n→∞

nγhH = ∞ and ln = n−1/2b2 imply that:

ln
hHφ(hK)

= o

√ log dSHn dΘH
n

nφ(hK)

 ,

then

Γ3 = Oa.co

√ log dSHn dΘH
n

nφ(hK)

 .
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Hence, for n large enough, we have

Γ3 ≤ Γ4 = Oa.co

√ log dSHn dΘH
n

nφ(hK)

 .

↪→ Concerning Γ5, we have(
F̂N(θ, y, xk(x))

)
−
(

F̂N(θ, y, x)
)
≤ sup

x∈SH

∣∣∣F̂N(θ, y, x)− F̂N(θ, y, xk(x))
∣∣∣ ,

then following similar proof used in the study of Γ1 and using the same idea as for
(

F̂D(θ, xk(x))
)
−
(

F̂D(θ, x)
)

we get, for n tending to infinity,

Γ5 = Oa.co

√ log dSHn dΘH
n

nφ(hK)

 .

2

Proof of Lemma 4.9. Let H(j+1)
i (y) = H(j+1)

(
h−1

H (y−Yi)
)

, note that

f̂ (j)
N (θ, y, x)− f (j)(θ, y, x) =

1

hj+1
H K1(x, θ)

(
K1(x, θ)

[ (
H(j+1)

1 (y)| < X, θ >
)
− hj+1

H f (j)(θ, y, x)
])

. (6.36)

Moreover, (
H(j+1)

1 (y)| < X, θ >
)

=
∫

R

H(j+1)
(

h−1
H (y− z)

)
f (θ, z, X)dz,

= −
j

∑
l=1

hl
H

[
H(j−l+1)

(
h−1

H (y− z)
)

f (l−1)(θ, z, X)
]+∞

−∞

+ hj
H

∫
R

H(1)
(

h−1
H (y− z)

)
f (j)(θ, z, X)dz. (6.37)

Condition (H8) allows us to cancel the first term in the right side of (6.37) and we can write:∣∣∣ (H(j+1)
1 (y)| < X, θ >

)
− hj+1

H f (j)(θ, y, x)
∣∣∣ ≤ hj+1

H

∫
R

H(1)(t)
∣∣∣ f (j)(θ, y− hHt, X)− f (j)(θ, y, x)

∣∣∣ dt.

Finally, (A5) allows to write∣∣∣ (H(j+1)
1 (y)| < X, θ >

)
− hj+1

H f (j)(θ, y, x)
∣∣∣ ≤ Cθ,xhj+1

H

∫
R

H(1)(t)
(

hb1
K + |t|b2 hb2

H

)
dt. (6.38)

This inequality is uniform on (θ, y, x) ∈ ΘF × SF × SR, now to finish the proof it is sufficient to use (H4).
2

Proof of Lemma 4.10. Let ln = n−
3
2 γ− 1

2 and zn ≤ Cn−
3
2 γ− 1

2 .
Consider the following decomposition∣∣∣ f̂ (j)

N (θ, y, x)−
(

f̂ (j)
N (θ, y, x)

)∣∣∣ =
∣∣∣ f̂ (j)

N (θ, y, x)− f̂ (j)
N (θ, y, xk(x))

∣∣∣︸ ︷︷ ︸
∆1

+
∣∣∣ f̂ (j)

N (θ, y, xk(x))−
(

f̂ (j)
N (θ, y, xk(x))

)∣∣∣︸ ︷︷ ︸
∆2

+2
∣∣∣ f̂ (j)

N (tj(θ), y, xk(x))− f̂ (j)
N (tj(θ), ym(y), xk(x))

∣∣∣︸ ︷︷ ︸
∆3

+2
∣∣∣ ( f̂ (j)

N (tj(θ), y, xk(x))
)
−
(

f̂ (j)
N (tj(θ), ym(y), xk(x))

)∣∣∣︸ ︷︷ ︸
∆4

+
∣∣∣ ( f̂ (j)

N (θ, y, xk(x))
)
−
(

f̂ (j)
N (θ, y, x)

)∣∣∣︸ ︷︷ ︸
∆5
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 Concerning ∆1, we use the Hölder continuity condition on K, the Cauchy-Schwartz’s inequality and the
Bernstein’s inequality. With theses arguments we get

∆1 = O

√√√√ log dSHn + log dΘH
n

nh2j+1
H φ(hK)

 .

Then using the fact that ∆5 ≤ ∆1, we obtain

∆5 ≤ ∆1 = O

√√√√ log dSHn + log dΘH
n

nh2j+1
H φ(hK)

 . (6.39)

 For ∆2, we follow the same idea given for Γ2, we get

∆2 = O

√√√√ log dSHn + log dΘH
n

nh2j+1
H φ(hK)


 Concerning ∆3 and ∆4, Using Lipschitz’s condition on the kernel H,

∣∣∣ f̂ (j)
N (tj(θ), y, xk(x))− f̂ (j)

N (tj(θ), ym(y), xk(x))
∣∣∣ ≤ ln

hj+2
H φ(hk)

,

using the fact that lim
n→∞

nγhH = ∞ and choosing ln = n−
3
2 γ− 1

2 implies

ln
hj+2

H φ(hk)
= o

√√√√ log dSHn + log dΘH
n

nh2j+1
H φ(hK)


So, for n large enough, we have

∆3 = Oa.co

√√√√ log dSHn + log dΘH
n

nh2j+1
H φ(hK)

 .

And as ∆4 ≤ ∆3, we obtain

∆4 ≤ ∆3 = Oa.co

√√√√ log dSHn + log dΘH
n

nh2j+1
H φ(hK)

 . (6.40)

Finally, the lemma can be easily deduced from (6.39) and (6.40)
2

Proof of Lemma 5.11. Because of (H4) and (A9) the function F̂(θ, ·, x) is uniformly continuous and strictly
increasing. So, we have:

∀ε > 0, ∃δ(ε) > 0, ∀y, |F̂(θ, y, x)− F̂(θ, tθ(α), x)| ≤ δ(ε) ⇒ |y− tθ(α)| ≤ ε.

This leads directly to

∀ε > 0, ∃δ(ε) > 0,
(
|t̂θ(α)− tθ(α)| > ε

)
≤

(
|F̂(θ, t̂θ(α), x)− F̂(θ, tθ(α), x)| ≥ δ(ε)

)
=

(
|F(θ, tθ(α), x)− F̂(θ, tθ(α), x)| ≥ δ(ε)

)
.

Finally, It suffices to use the result of Theorem 4.3 to get the claimed result.
2
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