Malaya J. Mat. 3(1)(2015) 45-50

Malaya e
1 of MIM ‘ , ) _ ’ ) SN0,
Journal o an international journal of mathematical sciences with NS
Matematik computer applications... 7 i

Mate:

——
www.malayajournal.org

Some curvature properties of (x, ;1) contact space forms

Ali Akbar™* and Avijit Sarkar’

b Department of Mathematics, University of Kalyani , Kalyani- 741235, West Bengal, India.

Abstract

The object of the present paper is to find Ricci tensor of (k, i) space forms. In particular we prove that a
three dimensional (k, i) space forms is #7—Einstein for 4 = 5. We also study three dimensional (k, y) space
forms with #— parallel and cyclic parallel Ricci tensor for y % We also prove that every (k, ) space forms
is locally ¢p— symmetric.

|| ~oi—

Keywords:  (k, u) contact space forms, n—Einstein, 7— parallel and cyclic parallel Ricci tensor, locally ¢—
symmetric.

2010 MSC: 53C25, 53D15. (©2012 MJM. All rights reserved.

1 Introduction

Now a days, a good number of contact geometers have worked on (k, #) contact metric manifold. The

notion of (k, i) contact metric manifold was introduced by D. E. Blair, T. Koufogiorgos and B. J. Papantoniou
[2]. The notion of (k, u) space forms was introduced by T. Koufogiorgos [8]. The Ricci curvature and the
Riemannian curvature are two key objects regarding symmetry of a manifolds. The notion of local symmetry
has been weakened by several authors in several ways. As a weaker version of local symmetry T. Takahashi
[10] introduced the notion of local ¢— symmetry in Sasakian manifolds. The notion of 77— parallel and cyclic
parallel Ricci tensor was introduced in the paper [7] and [9]. In this regard we mention that #— parallel and
cyclic parallel Ricci tensor have been studied by the present authors in the paper[1]. Again 17— parallel and
cyclic parallel Ricci tensor was studied by the authors in the paper [5]. The present paper is organized by the
following way:
After introduction in Section 1 we give some preliminaries in Section 2. In Section 3 we study Ricci tensor of
(k, u) space forms. -parallel, cyclic parallel Ricci tensors and Ricci operator of (k, 1) space forms of dimension
three have been studied in Section 4. In Section 5 we have proved that every (2n+1) dimensional (k, j) space
forms is locally ¢- symmetric.

2 Preliminaries

A differentiable manifold M?"*! is said to be a contact manifold if it admits a global differentiable 1-form
1 such that 5 A (dn)"# 0, everywhere on M?"+1,
Given a contact form #, one has a unique vectoe field, satisfying

77(5) =1, d17(§, X) =0, 2.1

for any vector field X.
It is well-known that, there exists a Riemannian metric g and a (1,1) tensor field ¢ such that

n(X)=g(X,§), dn(X,Y)=g(X,9Y), ¢*X=-X+n(X)§ 22)
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where X and Y are vector fields on M.
From (2.2) it follows that

p§=0, nop=0, g(¢X,¢Y)=g(X,Y)—n(X)n(Y). (2.3)

A differentiable manifold M?"*! equipped with the structure tensors (¢, &, 17, g) satisfying is said to be a
contact metric manifold.

On a contact metric manifold M(¢, §,#,g), we define a (1,1) tensor field h by h = ngrp, where L denotes Lie
differentiation. Then we may observe that / is symmetric and satisfies

hE=0, hp=—¢h, Vx&=—¢X—phX (2.4)

where V is levi-Civita connection[2].

For a contact metric manifold M one may define naturally an almost complex structure on the product M x R.
If this almost complex structure is integrable, the contact metric manifold is said to be Sasakian. A Sasakian
manifold is characterized by the condition

(Vx¢)Y = g(X,V)§ —n(Y)X, (2.5)

for all vector fields X and Y on the manifold [4]. Equivalently, a contact metric manifold is said to be Sasakian
if and only if
R(X,Y)§ =n(Y)X —y(X)Y

holds for all X,Y on M [4].
For a contact manifold we have [3]

(Vxh)(Y) = {(1 = K)g(X, 9Y) + (X, hpY) }§ + 1 (Y){h($pX + phX) }. (2.6)
The (k, pt) —nullity distribution of a contact metric manifold M(¢, §, 7, g) is a distribution [§]

N(k,u) : p— Np(k,p)
= {ZeT,(M):R(X,Y)Z 2.7)
= k(@g(Y,2)X -g(X,2)Y) +u(g(Y,Z)hX — (X, Z)hY)},

forany X,Y € TyM and x,u € R. If k = 1, then h = 0 and M is a Sasakian manifold [8]. Also one has trh = 0,
trhgp = 0 and h? = (k — 1)¢?. So if the characteristic vector field  belongs to the (k, ) —nullity distribution,

then we have
R(X,Y)§ = k[n(Y)X = n(X)Y] + u[n(Y)hX — n(X)hY]. (2.8)

Moreover, if M has constant ¢—sectional curvature c then it is called a (k, ) space forms and is denoted by
M(c).
The curvature tensor of M(c) is given by/[8]:

AR(X,Y)Z = (c+3){g(Y,2)X-3g(X,Z)Y}
+ (c+3—=4k){n(X)n(Z2)Y —n(Y)n(Z)X

+ 8(X, Z)n(Y)§—g(Y, Z)n(X)8}

+ (= D{g(X, ¢Z)pY — g(Y, ¢pZ)pX + 2¢(X, ¢pY)PZ}
— 2{g(hX,Z)hY — g(hY,Z)hX + g(X, Z)hY

— 29(Y,Z2)hX - 25(X)n(Z)hY + 25 (Y)n(Z)hX

+ 2¢(hX,Z)Y —2g(hY,Z)X +2¢(hY,Z)n(X)§

= 28(hX, Z)n(Y)§ — g(phX, Z)phY + g(PphY, Z)phX}
+ Ap{n(Y)n(Z)hX = n(X)n(Z)hY

+ gy, Z)n(X)§ — g(hX, Z)n(Y)§,

for any vector fields X, Y, Z on M.

Ifk#1,theny =x+1andc= -2k —1.

2.9)

Definition 2.1. If an almost contact Riemannian manifold M satisfies the condition S = ag + by ® 1, for some
functions a, b in C*°(M) and S is the Ricci tensor, then M is said to be an y-Einstein manifold. If, in particular,
a=0 then this manifold will be called a special type of y-Einstein manifold.
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3 Ricdi tensor of (x, ) space forms

47

In this section we study Ricci tensor of (k, ) space forms. Taking inner product on both side of with

W we obtain

4¢(R(X,Y)Z, W)
= (c+3){g(Y,2)g(X, W) —g(X, Z)g(Y, W)}
+ (c+3—4k){n(X)n(2)g(Y, W) —n(Y)n(Z)g(X, W)
+ g(X, Z)n(YV)n(§, W) —g(Y, Z)n(X)g(3, W)}
+ (e =1D{8(X,9Z)g(pY, W) —g(Y,pZ)g(pX, W) +28(X, ¢pY)g(¢Z, W)}
— 2{g(hX, Z)g(hY,W) — g(hY, Z)g(hX, W) + g(X, Z)g(hY, W)
= 28(Y,Z)g(hX, W) = 2n(X)n(Z)g(hY, W) + 2n(Y)y(Z)g(hX, W)
+ 28(hX,Z)g(Y, W) —2¢(hY, Z)g(X, W) + 2g(hY, Z)n(X)g(§, W)
= 2¢(hX, Z)n(Y)g(§, W) — g(¢phX, Z)g(phY, W) + g(phY, Z)g(phX, W)}
+  Au{n(Y)n(Z2)g(hX, W) —n(X)n(Z)g(hY, W)
+  g(hY, Z)n(X)g(§, W) — g(hX, Z)n(Y)g (5, W).

(3.1)

Putting X = W = ¢;, where {¢;} is an orthonormal basis of the tangent space at each point of the manifold,

and taking summation over,i =1,2,....,2n + 1, we get from (3.1)

45(X, W)

(c+3){(@2n+1)g(X, W) —g(X, W)}
(c+3—4k){¥in(X )77( e;)g(e;, W) — Yin(e)n(e)g(X, W)
Yig(X,en(e)n(§,W) — L gle, 61) (X)g(&, W)}

(c = D{X g(X, ¢pei)g(pei, W) — 3 g(ei, pei) g (
2y {g(hX, e;)g(he;, W) — ¥ g(he;, e;)g(hX, W
2y g(ei,e)g(hX, W) — 23 n(X)n(e;)g(he;,
2y 8(

2y 8(hX, ei)n(ei)g(E, W) — L g(phX, e;)g(
Ap{Yin(ei)n(e)g(hX, W) — i (X)n(ei)g(he;, W)
Yig(hei,e)n(X)g(§, W) — Yi g(hX, ei)n(e;)g(8, W).

I+ + +

4+

or,

45(X, W)

2n(c+3)g(X, W)

(c 43— 4k) {7(X)y (W) — (21 + 1)g(X, W)
n(X)n(W) = (2n + 1)n(X)n(W)}

(c = 1){g(¢X,pW) + 28 (X, pW)}
2{g(hX,hW) + g(X, hW) — 2(2n + 1)g(hX, W)
— g(X)p(hW) +2(2n + 1)g(hX, W) + 2g(hX, W)
n(hX)g(8, W) + g(¢hX, hgW)}

|+ o+ 4

+ 4p{2n +1)g(hX, W) — n(X)n(hW) — n(hX)g(§, W).

Since h§ = 0, therefore (hX) = g(hX, §) = g(X, h§) = g(X,0) = 0.
Using above result we obtain from

45(X, W)

2n(c+3)g(X, W)

(c+3—4b){(1-2n)y(X)n(W) — (2n+1)g(X, W)
3(c —1){g(¢X, ¢W)}

2{g(h®X, W) +3¢(X,hW) + g(phX, h¢W)}
4u{(2n +1)g(hX, W).

+ o+

¢X, W) +23 (X, pei)g (i, W
)+ i g(X, e)g(he;, W

W) + 23 1(ei)n(ei)g(hX, W)
hX,e)g(ei, W) —2Y; g(he;, e))g(X, W) + 2 g(he;, e;)11(X)g(§, W)
Phe;, W) + Y g(phe;, e;)g(phX, W)}

(3.2)

(3.3)

(3.4)
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Using h¢p = —¢h, p?(X) = —X + 5(X)E, in relation (3.4) we get

45(X, W)
= 2n(c+3)g(X, W)
+ (c+3—4b){(1-2n)n(X)p(W)—-2n+1)g(X, W) (3.5)
+ 3(e=D{g(X, W) —n(X)n(W)}
— 2{g(h*X, W) +3g(X,hW) — g(h®X,hW)}
+ 4u2n+1)g(hX, W).
or,
45(X, W)
= (8nk+4k+2c—3)g(X, W)+ (8nk + 4k — 2nc — 6n — 2c + 6)n(X)n(W) (3.6)
+ {4u(2n+1)—-6}g(hX,W).
If we take y = % and n = 1, then becomes
4S(X, W) = (12k + 2c — 3)g(X, W) + (12k — 4¢c)5(X)n(W) (3.7)
ie.
3
S(X, W) = (3k+ 5 = D)g(X, W) + (3k — c)n(X)n(W) (3:8)
Thus we are in a position to state the following result:
Theorem 3.1. A (k, ) space forms of dimension three is yj -Einstein for y = %
Again we know that S(X, W) = g(QX, W), where Q is the Ricci operator. Thus using this in we get
3
QX = (3k + % ~ DX+ 3k = (X3, (3.9)
where Q is the Ricci operator of (k, p) space forms of dimension three for y = %. Again we have from that
3 c 3
r= Z S(e;,e;)) =3(6k— 5~ 1), (3.10)

Il
_

where r is the scalar curvature of (k, u) space forms of dimension three for y = %

4 p-parallel, cyclic parallel Ricci tensors and Ricci operator of (k, u) space forms of
dimension three

Definition 4.1. The Ricci tensor S of (k, j) space forms of dimension three will be called y-parallel if it satisfies,

(VxS)(¢Y,¢Z) =0, (4.1)
for any vector fields X, Y, Z.
From (3.8) we get
(VwS)(X,Y) = Bk = ){{Vwn) (X)n(Y) + (Vwi) (Y)1(X) }. (42)
From above it is clear that
(VxS)(@Y,$Z) = 0. 43)

Now we are in a position to state the following:
Theorem 4.1. The Ricci tensor of a (k, y) space forms of dimension three is y-parallel for y = % .

Definition 4.2. The Ricci tensor of (k, y) space forms of dimension three will be called cyclic parallel if

(VxS)(Y,Z) + (VyS)(Z,X) + (V2S)(X,Y) = 0. (4.4)
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From (B.8) we get
(VxS)(Y, Z) + (VyS)(Z,X) + (VzS5)(X,Y)
= k=) {(Vxm)(Y)n(Z) + (Vxn)(Z)n(Y) @.5)
+ (VYU)(Z)U( )+ (Vyn)(X)n(Z) '
+  (Vz)(X)n(Y) + (Vzn)(Y)n(X)}

If we take X, Y, Z orthogonal to §, then we obtain from above,
(VxS)(Y,Z)+ (VyS)(Z,X) + (VzS)(X,Y) =0. (4.6)
Now we are in a position to state the following:
Theorem 4.2. The Ricci tensor of (k, 1) space forms of dimension three is cyclic parallel for y = l
Definition 4.3. A (k, u) space forms of dimension three is called locally ¢-Ricci symmetric if,
P (VwQ)X =0 (47)

, where the vector fields X and W are orthogonal to §. The notion of locally ¢-Ricci symmetry was introduced by U. C.
De and A. Sarkar [6]].

Again from we obtain
(VwQ)X = Bk — ) {(Vwn)(X)§ +1(X)ViwE} (4.8)
Taking X orthogonal to § and applying ¢* on both side of above we get
P*(VwQ)X = 0. (4.9)

Now we are in a position to state the following:

NI—

Theorem 4.3. A (k, ) space forms of dimension three is locally ¢-Ricci symmetric for y =
5 Locally ¢- symmetric (k, #) space forms

Definition 5.1. A (2n+1)-dimensional (k, u) space forms will be called locally ¢-symmetric if $*(VyR)(X,Y)Z = 0,
for any vector fields X, Y, Z and W orthogonal to §.

In this connection it should be mentioned that the notion of locally ¢- symmetric manifolds was introduced
by T. Takahashi [10] in the context of Sasakian geometry.
First, we suppose that X, Y, Z and W orthogonal to §. Then relation reduces to

4R(X,Y)Z (c+3){g(Y,2)X — g(X,Z)Y}

(c = D{(X, 9pZ)¢pY — g(Y, pZ)pX +28(X, pY)pZ}

— 2{g(hX, Z)hY — g(hY, Z)hX + g(X, Z)hY (5.1)
— 2¢(Y, Z)hX +2g(hX, Z)Y

2¢(hY,Z)X — g(phX, Z)phY + g(phY, Z)phX}.

+ |l

Differentiating (5.1) covariantly with respect to a horizontal vector field W we get,

AVWRIX,Y)Z = (c = D{8(X, (Vwd)Z)PY + g(X, ¢Z) (V)Y
= 8V, (Vw)Z)pX —g(Y,9Z) (V)X
+ 28(X, (Vw)Y)9Z +8(X, pY)(Vwe)Z}
— 2{g((Vwh)X, Z)hY + g(hX, Z)(Vwh)Y
— g((Vwh)Y, Z)hX — g(hY, Z)(Vwh)X (5.2)
8(X, Z)(Vwh)Y = 2¢(Y, Z)(Vwh)X
28((Vwh)X, Z)Y — 28((Vwh)Y, Z)X
= 8((Vw)hX, Z)hY — g(phX, Z)(Vwe)hY
+ 8((Vw)hY, Z)phX + g(phY, Z)(Vw¢)hX}.

Again, as X, Y are orthogonal to §, so (2.5) and (2.6)) reduces to

(Vx9)Y =g(X,Y)§, (5.3)
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(Vxh)(Y) = {1 =K)g(X, ¢Y) + (X, hpY)}§. (54)
After using and in and then applying ¢? on both side we obtain
P*(VwR)(X,Y)Z = 0. (5.5)

Thus we are in a position to state the following result:

Theorem 5.1. Every (2n+1) dimensional (k, u) space forms is locally ¢- symmetric.
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