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Some curvature properties of (κ, µ) contact space forms
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Abstract

The object of the present paper is to find Ricci tensor of (k, µ) space forms. In particular we prove that a
three dimensional (k, µ) space forms is η−Einstein for µ = 1

2 . We also study three dimensional (k, µ) space
forms with η− parallel and cyclic parallel Ricci tensor for µ = 1

2 . We also prove that every (k, µ) space forms
is locally φ− symmetric.
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1 Introduction

Now a days, a good number of contact geometers have worked on (k, µ) contact metric manifold. The
notion of (k, µ) contact metric manifold was introduced by D. E. Blair, T. Koufogiorgos and B. J. Papantoniou
[2]. The notion of (k, µ) space forms was introduced by T. Koufogiorgos [8]. The Ricci curvature and the
Riemannian curvature are two key objects regarding symmetry of a manifolds. The notion of local symmetry
has been weakened by several authors in several ways. As a weaker version of local symmetry T. Takahashi
[10] introduced the notion of local φ− symmetry in Sasakian manifolds. The notion of η− parallel and cyclic
parallel Ricci tensor was introduced in the paper [7] and [9]. In this regard we mention that η− parallel and
cyclic parallel Ricci tensor have been studied by the present authors in the paper[1]. Again η− parallel and
cyclic parallel Ricci tensor was studied by the authors in the paper [5]. The present paper is organized by the
following way:
After introduction in Section 1 we give some preliminaries in Section 2. In Section 3 we study Ricci tensor of
(k, µ) space forms. η-parallel, cyclic parallel Ricci tensors and Ricci operator of (k, µ) space forms of dimension
three have been studied in Section 4. In Section 5 we have proved that every (2n+1) dimensional (k, µ) space
forms is locally φ- symmetric.

2 Preliminaries

A differentiable manifold M2n+1 is said to be a contact manifold if it admits a global differentiable 1-form
η such that η ∧ (dη)n 6= 0, everywhere on M2n+1.
Given a contact form η, one has a unique vectoe field, satisfying

η(ξ) = 1, dη(ξ, X) = 0, (2.1)

for any vector field X.
It is well-known that, there exists a Riemannian metric g and a (1,1) tensor field φ such that

η(X) = g(X, ξ), dη(X, Y) = g(X, φY), φ2X = −X + η(X)ξ, (2.2)
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where X and Y are vector fields on M.
From (2.2) it follows that

φξ = 0, η ◦ φ = 0, g(φX, φY) = g(X, Y)− η(X)η(Y). (2.3)

A differentiable manifold M2n+1 equipped with the structure tensors (φ, ξ, η, g) satisfying (2.3) is said to be a
contact metric manifold.
On a contact metric manifold M(φ, ξ, η, g), we define a (1, 1) tensor field h by h = 1

2 Lξφ, where L denotes Lie
differentiation. Then we may observe that h is symmetric and satisfies

hξ = 0, hφ = −φh, ∇Xξ = −φX − φhX (2.4)

where ∇ is levi-Civita connection[2].
For a contact metric manifold M one may define naturally an almost complex structure on the product M×R.
If this almost complex structure is integrable, the contact metric manifold is said to be Sasakian. A Sasakian
manifold is characterized by the condition

(∇Xφ)Y = g(X, Y)ξ − η(Y)X, (2.5)

for all vector fields X and Y on the manifold [4]. Equivalently, a contact metric manifold is said to be Sasakian
if and only if

R(X, Y)ξ = η(Y)X − η(X)Y

holds for all X, Y on M [4].
For a contact manifold we have [3]

(∇Xh)(Y) = {(1− k)g(X, φY) + g(X, hφY)}ξ + η(Y){h(φX + φhX)}. (2.6)

The (k, µ)−nullity distribution of a contact metric manifold M(φ, ξ, η, g) is a distribution [8]

N(k, µ) : p → Np(k, µ)
= {Z ∈ Tp(M) : R(X, Y)Z
= k(g(Y, Z)X − g(X, Z)Y) + µ(g(Y, Z)hX − g(X, Z)hY)},

(2.7)

for any X, Y ∈ Tp M and κ, µ ∈ R. If k = 1, then h = 0 and M is a Sasakian manifold [8]. Also one has trh = 0,
trhφ = 0 and h2 = (k − 1)φ2. So if the characteristic vector field ξ belongs to the (k, µ)−nullity distribution,
then we have

R(X, Y)ξ = k[η(Y)X − η(X)Y] + µ[η(Y)hX − η(X)hY]. (2.8)

Moreover, if M has constant φ−sectional curvature c then it is called a (k, µ) space forms and is denoted by
M(c).
The curvature tensor of M(c) is given by[8]:

4R(X, Y)Z = (c + 3){g(Y, Z)X − g(X, Z)Y}
+ (c + 3− 4k){η(X)η(Z)Y − η(Y)η(Z)X
+ g(X, Z)η(Y)ξ − g(Y, Z)η(X)ξ}
+ (c− 1){g(X, φZ)φY − g(Y, φZ)φX + 2g(X, φY)φZ}
− 2{g(hX, Z)hY − g(hY, Z)hX + g(X, Z)hY
− 2g(Y, Z)hX − 2η(X)η(Z)hY + 2η(Y)η(Z)hX
+ 2g(hX, Z)Y − 2g(hY, Z)X + 2g(hY, Z)η(X)ξ

− 2g(hX, Z)η(Y)ξ − g(φhX, Z)φhY + g(φhY, Z)φhX}
+ 4µ{η(Y)η(Z)hX − η(X)η(Z)hY
+ g(hY, Z)η(X)ξ − g(hX, Z)η(Y)ξ,

(2.9)

for any vector fields X, Y, Z on M.
If k 6= 1, then µ = κ + 1 and c = −2k− 1.

Definition 2.1. If an almost contact Riemannian manifold M satisfies the condition S = ag + bη ⊗ η, for some
functions a, b in C∞(M) and S is the Ricci tensor, then M is said to be an η-Einstein manifold. If, in particular,
a=0 then this manifold will be called a special type of η-Einstein manifold.
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3 Ricci tensor of (κ, µ) space forms

In this section we study Ricci tensor of (k, µ) space forms. Taking inner product on both side of (2.9) with
W we obtain

4g(R(X, Y)Z, W)
= (c + 3){g(Y, Z)g(X, W)− g(X, Z)g(Y, W)}
+ (c + 3− 4k){η(X)η(Z)g(Y, W)− η(Y)η(Z)g(X, W)
+ g(X, Z)η(Y)η(ξ, W)− g(Y, Z)η(X)g(ξ, W)}
+ (c− 1){g(X, φZ)g(φY, W)− g(Y, φZ)g(φX, W) + 2g(X, φY)g(φZ, W)}
− 2{g(hX, Z)g(hY, W)− g(hY, Z)g(hX, W) + g(X, Z)g(hY, W)
− 2g(Y, Z)g(hX, W)− 2η(X)η(Z)g(hY, W) + 2η(Y)η(Z)g(hX, W)
+ 2g(hX, Z)g(Y, W)− 2g(hY, Z)g(X, W) + 2g(hY, Z)η(X)g(ξ, W)
− 2g(hX, Z)η(Y)g(ξ, W)− g(φhX, Z)g(φhY, W) + g(φhY, Z)g(φhX, W)}
+ 4µ{η(Y)η(Z)g(hX, W)− η(X)η(Z)g(hY, W)
+ g(hY, Z)η(X)g(ξ, W)− g(hX, Z)η(Y)g(ξ, W).

(3.1)

Putting X = W = ei, where {ei} is an orthonormal basis of the tangent space at each point of the manifold,
and taking summation over i, i = 1, 2, ...., 2n + 1, we get from (3.1)

4S(X, W)
= (c + 3){(2n + 1)g(X, W)− g(X, W)}
+ (c + 3− 4k){∑i η(X)η(ei)g(ei, W)−∑i η(ei)η(ei)g(X, W)
+ ∑i g(X, ei)η(ei)η(ξ, W)−∑i g(ei, ei)η(X)g(ξ, W)}
+ (c− 1){∑i g(X, φei)g(φei, W)−∑i g(ei, φei)g(φX, W) + 2 ∑i g(X, φei)g(φi, W)}
− 2 ∑i{g(hX, ei)g(hei, W)−∑i g(hei, ei)g(hX, W) + ∑i g(X, ei)g(hei, W)
− 2 ∑i g(ei, ei)g(hX, W)− 2 ∑i η(X)η(ei)g(hei, W) + 2 ∑i η(ei)η(ei)g(hX, W)
+ 2 ∑i g(hX, ei)g(ei, W)− 2 ∑i g(hei, ei)g(X, W) + 2 ∑i g(hei, ei)η(X)g(ξ, W)
− 2 ∑i g(hX, ei)η(ei)g(ξ, W)−∑i g(φhX, ei)g(φhei, W) + ∑i g(φhei, ei)g(φhX, W)}
+ 4µ{∑i η(ei)η(ei)g(hX, W)−∑i η(X)η(ei)g(hei, W)
+ ∑i g(hei, ei)η(X)g(ξ, W)−∑i g(hX, ei)η(ei)g(ξ, W).

(3.2)

or,

4S(X, W)
= 2n(c + 3)g(X, W)
+ (c + 3− 4k){η(X)η(W)− (2n + 1)g(X, W)
+ η(X)η(W)− (2n + 1)η(X)η(W)}
+ (c− 1){g(φX, φW) + 2g(φX, φW)}
− 2{g(hX, hW) + g(X, hW)− 2(2n + 1)g(hX, W)
− η(X)η(hW) + 2(2n + 1)g(hX, W) + 2g(hX, W)
− η(hX)g(ξ, W) + g(φhX, hφW)}
+ 4µ{(2n + 1)g(hX, W)− η(X)η(hW)− η(hX)g(ξ, W).

(3.3)

Since hξ = 0, therefore η(hX) = g(hX, ξ) = g(X, hξ) = g(X, 0) = 0.
Using above result we obtain from (3.3)

4S(X, W)
= 2n(c + 3)g(X, W)
+ (c + 3− 4k){(1− 2n)η(X)η(W)− (2n + 1)g(X, W)
+ 3(c− 1){g(φX, φW)}
− 2{g(h2X, W) + 3g(X, hW) + g(φhX, hφW)}
+ 4µ{(2n + 1)g(hX, W).

(3.4)
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Using hφ = −φh, φ2(X) = −X + η(X)ξ, in relation (3.4) we get

4S(X, W)
= 2n(c + 3)g(X, W)
+ (c + 3− 4k){(1− 2n)η(X)η(W)− (2n + 1)g(X, W)
+ 3(c− 1){g(X, W)− η(X)η(W)}
− 2{g(h2X, W) + 3g(X, hW)− g(h2X, hW)}
+ 4µ(2n + 1)g(hX, W).

(3.5)

or,
4S(X, W)

= (8nk + 4k + 2c− 3)g(X, W) + (8nk + 4k− 2nc− 6n− 2c + 6)η(X)η(W)
+ {4µ(2n + 1)− 6}g(hX, W).

(3.6)

If we take µ = 1
2 and n = 1, then (3.6) becomes

4S(X, W) = (12k + 2c− 3)g(X, W) + (12k− 4c)η(X)η(W) (3.7)

i.e.

S(X, W) = (3k +
c
2
− 3

4
)g(X, W) + (3k− c)η(X)η(W) (3.8)

Thus we are in a position to state the following result:

Theorem 3.1. A (k, µ) space forms of dimension three is η -Einstein for µ = 1
2 .

Again we know that S(X, W) = g(QX, W), where Q is the Ricci operator. Thus using this in (3.8) we get

QX = (3k +
c
2
− 3

4
)X + (3k− c)η(X)ξ, (3.9)

where Q is the Ricci operator of (k, µ) space forms of dimension three for µ = 1
2 . Again we have from (3.8) that

r =
3

∑
i=1

S(ei, ei) = 3(6k− c
2
− 3

4
), (3.10)

where r is the scalar curvature of (k, µ) space forms of dimension three for µ = 1
2 .

4 η-parallel, cyclic parallel Ricci tensors and Ricci operator of (k, µ) space forms of
dimension three

Definition 4.1. The Ricci tensor S of (k, µ) space forms of dimension three will be called η-parallel if it satisfies,

(∇XS)(φY, φZ) = 0, (4.1)

for any vector fields X, Y, Z.
From (3.8) we get

(∇WS)(X, Y) = (3k− c){∇Wη)(X)η(Y) + (∇Wη)(Y)η(X)}. (4.2)

From above it is clear that
(∇XS)(φY, φZ) = 0. (4.3)

Now we are in a position to state the following:

Theorem 4.1. The Ricci tensor of a (k, µ) space forms of dimension three is η-parallel for µ = 1
2 .

Definition 4.2. The Ricci tensor of (k, µ) space forms of dimension three will be called cyclic parallel if

(∇XS)(Y, Z) + (∇YS)(Z, X) + (∇ZS)(X, Y) = 0. (4.4)
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From (3.8) we get
(∇XS)(Y, Z) + (∇YS)(Z, X) + (∇ZS)(X, Y)

= (3k− c){(∇Xη)(Y)η(Z) + (∇Xη)(Z)η(Y)
+ (∇Yη)(Z)η(X) + (∇Yη)(X)η(Z)
+ (∇Zη)(X)η(Y) + (∇Zη)(Y)η(X)}.

(4.5)

If we take X, Y, Z orthogonal to ξ, then we obtain from above,

(∇XS)(Y, Z) + (∇YS)(Z, X) + (∇ZS)(X, Y) = 0. (4.6)

Now we are in a position to state the following:

Theorem 4.2. The Ricci tensor of (k, µ) space forms of dimension three is cyclic parallel for µ = 1
2 .

Definition 4.3. A (k, µ) space forms of dimension three is called locally φ-Ricci symmetric if,

φ2(∇W Q)X = 0 (4.7)

, where the vector fields X and W are orthogonal to ξ. The notion of locally φ-Ricci symmetry was introduced by U. C.
De and A. Sarkar [6].
Again from (3.8) we obtain

(∇W Q)X = (3k− c){(∇Wη)(X)ξ + η(X)∇Wξ} (4.8)

Taking X orthogonal to ξ and applying φ2 on both side of above we get

φ2(∇W Q)X = 0. (4.9)

Now we are in a position to state the following:

Theorem 4.3. A (k, µ) space forms of dimension three is locally φ-Ricci symmetric for µ = 1
2 .

5 Locally φ- symmetric (k, µ) space forms

Definition 5.1. A (2n+1)-dimensional (k, µ) space forms will be called locally φ-symmetric if φ2(∇W R)(X, Y)Z = 0,
for any vector fields X, Y, Z and W orthogonal to ξ.

In this connection it should be mentioned that the notion of locally φ- symmetric manifolds was introduced
by T. Takahashi [10] in the context of Sasakian geometry.
First, we suppose that X, Y, Z and W orthogonal to ξ. Then relation (2.9) reduces to

4R(X, Y)Z = (c + 3){g(Y, Z)X − g(X, Z)Y}
+ (c− 1){g(X, φZ)φY − g(Y, φZ)φX + 2g(X, φY)φZ}
− 2{g(hX, Z)hY − g(hY, Z)hX + g(X, Z)hY
− 2g(Y, Z)hX + 2g(hX, Z)Y
− 2g(hY, Z)X − g(φhX, Z)φhY + g(φhY, Z)φhX}.

(5.1)

Differentiating (5.1) covariantly with respect to a horizontal vector field W we get,

4(∇W R)(X, Y)Z = (c− 1){g(X, (∇Wφ)Z)φY + g(X, φZ)(∇Wφ)Y
− g(Y, (∇Wφ)Z)φX − g(Y, φZ)(∇Wφ)X
+ 2g(X, (∇Wφ)Y)φZ + g(X, φY)(∇Wφ)Z}
− 2{g((∇W h)X, Z)hY + g(hX, Z)(∇W h)Y
− g((∇W h)Y, Z)hX − g(hY, Z)(∇W h)X
+ g(X, Z)(∇W h)Y − 2g(Y, Z)(∇W h)X
+ 2g((∇W h)X, Z)Y − 2g((∇W h)Y, Z)X
− g((∇Wφ)hX, Z)φhY − g(φhX, Z)(∇Wφ)hY
+ g((∇Wφ)hY, Z)φhX + g(φhY, Z)(∇Wφ)hX}.

(5.2)

Again, as X, Y are orthogonal to ξ, so (2.5) and (2.6) reduces to

(∇Xφ)Y = g(X, Y)ξ, (5.3)



50 Ali Akbar et al. / Some curvature properties...

(∇Xh)(Y) = {(1− k)g(X, φY) + g(X, hφY)}ξ. (5.4)

After using (5.3) and (5.4) in (5.2) and then applying φ2 on both side we obtain

φ2(∇W R)(X, Y)Z = 0. (5.5)

Thus we are in a position to state the following result:

Theorem 5.1. Every (2n+1) dimensional (k, µ) space forms is locally φ- symmetric.
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