Malaya
Journal ofMJM
an international journal of mathematical sciences with
computer applications...

www.malayajournal.org

Some curvature properties of (κ , μ) contact space forms

Ali Akbar^{*a*,*} and Avijit Sarkar^{*b*}

^{a,b}Department of Mathematics, University of Kalyani , Kalyani- 741235, West Bengal, India.

Abstract

The object of the present paper is to find Ricci tensor of (k, μ) space forms. In particular we prove that a three dimensional (k, μ) space forms is η -Einstein for $\mu = \frac{1}{2}$. We also study three dimensional (k, μ) space forms with η - parallel and cyclic parallel Ricci tensor for $\mu = \frac{1}{2}$. We also prove that every (k, μ) space forms is locally ϕ - symmetric.

Keywords: (k, μ) contact space forms, η -Einstein, η - parallel and cyclic parallel Ricci tensor, locally ϕ -symmetric.

2010 MSC: 53C25, 53D15.

©2012 MJM. All rights reserved.

1 Introduction

Now a days, a good number of contact geometers have worked on (k, μ) contact metric manifold. The notion of (k, μ) contact metric manifold was introduced by D. E. Blair, T. Koufogiorgos and B. J. Papantoniou [2]. The notion of (k, μ) space forms was introduced by T. Koufogiorgos [8]. The Ricci curvature and the Riemannian curvature are two key objects regarding symmetry of a manifolds. The notion of local symmetry has been weakened by several authors in several ways. As a weaker version of local symmetry T. Takahashi [10] introduced the notion of local ϕ - symmetry in Sasakian manifolds. The notion of η - parallel and cyclic parallel Ricci tensor was introduced in the paper [7] and [9]. In this regard we mention that η - parallel and cyclic parallel Ricci tensor have been studied by the present authors in the paper [1]. Again η - parallel and cyclic parallel Ricci tensor was studied by the authors in the paper [5]. The present paper is organized by the following way:

After introduction in Section 1 we give some preliminaries in Section 2. In Section 3 we study Ricci tensor of (k, μ) space forms. η -parallel, cyclic parallel Ricci tensors and Ricci operator of (k, μ) space forms of dimension three have been studied in Section 4. In Section 5 we have proved that every (2n+1) dimensional (k, μ) space forms is locally ϕ - symmetric.

2 Preliminaries

A differentiable manifold M^{2n+1} is said to be a contact manifold if it admits a global differentiable 1-form η such that $\eta \wedge (d\eta)^n \neq 0$, everywhere on M^{2n+1} .

Given a contact form η , one has a unique vectoe field, satisfying

$$\eta(\xi) = 1, \quad d\eta(\xi, X) = 0,$$
 (2.1)

for any vector field *X*.

It is well-known that, there exists a Riemannian metric g and a (1,1) tensor field ϕ such that

$$\eta(X) = g(X,\xi), \quad d\eta(X,Y) = g(X,\phi Y), \quad \phi^2 X = -X + \eta(X)\xi,$$
(2.2)

*Corresponding author.

E-mail address: aliakbar.akbar@rediffmail.com (Ali Akbar), avjaj@yahoo.co.in(Avijit Sarkar).

where *X* and *Y* are vector fields on *M*. From (2.2) it follows that

$$\phi\xi = 0, \quad \eta \circ \phi = 0, \quad g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y). \tag{2.3}$$

A differentiable manifold M^{2n+1} equipped with the structure tensors (ϕ , ξ , η , g) satisfying (2.3) is said to be a contact metric manifold.

On a contact metric manifold $M(\phi, \xi, \eta, g)$, we define a (1, 1) tensor field h by $h = \frac{1}{2}L_{\xi}\phi$, where L denotes Lie differentiation. Then we may observe that h is symmetric and satisfies

$$h\xi = 0, \quad h\phi = -\phi h, \quad \nabla_X \xi = -\phi X - \phi h X$$
 (2.4)

where ∇ is levi-Civita connection[2].

For a contact metric manifold *M* one may define naturally an almost complex structure on the product $M \times \mathbb{R}$. If this almost complex structure is integrable, the contact metric manifold is said to be Sasakian. A Sasakian manifold is characterized by the condition

$$(\nabla_X \phi) Y = g(X, Y)\xi - \eta(Y)X, \tag{2.5}$$

for all vector fields X and Y on the manifold [4]. Equivalently, a contact metric manifold is said to be Sasakian if and only if

$$R(X,Y)\xi = \eta(Y)X - \eta(X)Y$$

holds for all *X*, *Y* on *M* [4]. For a contact manifold we have [3]

$$(\nabla_X h)(Y) = \{(1-k)g(X,\phi Y) + g(X,h\phi Y)\}\xi + \eta(Y)\{h(\phi X + \phi hX)\}.$$
(2.6)

The (k, μ) -nullity distribution of a contact metric manifold $M(\phi, \xi, \eta, g)$ is a distribution [8]

$$N(k,\mu) : p \to N_p(k,\mu) = \{Z \in T_p(M) : R(X,Y)Z = k(g(Y,Z)X - g(X,Z)Y) + \mu(g(Y,Z)hX - g(X,Z)hY)\},$$
(2.7)

for any $X, Y \in T_p M$ and $\kappa, \mu \in R$. If k = 1, then h = 0 and M is a Sasakian manifold [8]. Also one has trh = 0, $trh\phi = 0$ and $h^2 = (k - 1)\phi^2$. So if the characteristic vector field ξ belongs to the (k, μ) -nullity distribution, then we have

$$R(X,Y)\xi = k[\eta(Y)X - \eta(X)Y] + \mu[\eta(Y)hX - \eta(X)hY].$$
(2.8)

Moreover, if *M* has constant ϕ -sectional curvature *c* then it is called a (*k*, μ) space forms and is denoted by M(c).

The curvature tensor of M(c) is given by[8]:

$$\begin{aligned}
4R(X,Y)Z &= (c+3)\{g(Y,Z)X - g(X,Z)Y\} \\
&+ (c+3-4k)\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X \\
&+ g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\} \\
&+ (c-1)\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\} \\
&- 2\{g(hX,Z)hY - g(hY,Z)hX + g(X,Z)hY \\
&- 2g(Y,Z)hX - 2\eta(X)\eta(Z)hY + 2\eta(Y)\eta(Z)hX \\
&+ 2g(hX,Z)Y - 2g(hY,Z)X + 2g(hY,Z)\eta(X)\xi \\
&- 2g(hX,Z)\eta(Y)\xi - g(\phi hX,Z)\phi hY + g(\phi hY,Z)\phi hX\} \\
&+ 4\mu\{\eta(Y)\eta(Z)hX - \eta(X)\eta(Z)hY \\
&+ g(hY,Z)\eta(X)\xi - g(hX,Z)\eta(Y)\xi,
\end{aligned}$$
(2.9)

for any vector fields *X*, *Y*, *Z* on *M*. If $k \neq 1$, then $\mu = \kappa + 1$ and c = -2k - 1.

Definition 2.1. If an almost contact Riemannian manifold M satisfies the condition $S = ag + b\eta \otimes \eta$, for some functions a, b in $C^{\infty}(M)$ and S is the Ricci tensor, then M is said to be an η -Einstein manifold. If, in particular, a=0 then this manifold will be called a special type of η -Einstein manifold.

3 Ricci tensor of (κ, μ) space forms

In this section we study Ricci tensor of (k, μ) space forms. Taking inner product on both side of (2.9) with *W* we obtain

$$\begin{aligned} &4g(R(X,Y)Z,W) \\ = & (c+3)\{g(Y,Z)g(X,W) - g(X,Z)g(Y,W)\} \\ &+ & (c+3-4k)\{\eta(X)\eta(Z)g(Y,W) - \eta(Y)\eta(Z)g(X,W) \\ &+ & g(X,Z)\eta(Y)\eta(\xi,W) - g(Y,Z)\eta(X)g(\xi,W)\} \\ &+ & (c-1)\{g(X,\phi Z)g(\phi Y,W) - g(Y,\phi Z)g(\phi X,W) + 2g(X,\phi Y)g(\phi Z,W)\} \\ &- & 2\{g(hX,Z)g(hY,W) - g(hY,Z)g(hX,W) + g(X,Z)g(hY,W) \\ &- & 2g(Y,Z)g(hX,W) - 2\eta(X)\eta(Z)g(hY,W) + 2\eta(Y)\eta(Z)g(hX,W) \\ &+ & 2g(hX,Z)g(Y,W) - 2g(hY,Z)g(X,W) + 2g(hY,Z)\eta(X)g(\xi,W) \\ &- & 2g(hX,Z)\eta(Y)g(\xi,W) - g(\phi hX,Z)g(\phi hY,W) + g(\phi hY,Z)g(\phi hX,W)\} \\ &+ & 4\mu\{\eta(Y)\eta(Z)g(hX,W) - \eta(X)\eta(Z)g(hY,W) \end{aligned}$$
(3.1)

+ $g(hY,Z)\eta(X)g(\xi,W) - g(hX,Z)\eta(Y)g(\xi,W).$

Putting $X = W = e_i$, where $\{e_i\}$ is an orthonormal basis of the tangent space at each point of the manifold, and taking summation over *i*, *i* = 1, 2, ..., 2*n* + 1, we get from (3.1)

$$\begin{split} &4S(X,W) \\ = & (c+3)\{(2n+1)g(X,W) - g(X,W)\} \\ &+ & (c+3-4k)\{\sum_{i}\eta(X)\eta(e_{i})g(e_{i},W) - \sum_{i}\eta(e_{i})\eta(e_{i})g(X,W) \\ &+ & \sum_{i}g(X,e_{i})\eta(e_{i})\eta(\xi,W) - \sum_{i}g(e_{i},e_{i})\eta(X)g(\xi,W)\} \\ &+ & (c-1)\{\sum_{i}g(X,\phi e_{i})g(\phi e_{i},W) - \sum_{i}g(e_{i},\phi e_{i})g(\phi X,W) + 2\sum_{i}g(X,\phi e_{i})g(\phi_{i},W)\} \\ &- & 2\sum_{i}\{g(hX,e_{i})g(he_{i},W) - \sum_{i}g(he_{i},e_{i})g(hX,W) + \sum_{i}g(X,e_{i})g(he_{i},W) \\ &- & 2\sum_{i}g(e_{i},e_{i})g(hX,W) - 2\sum_{i}\eta(X)\eta(e_{i})g(he_{i},W) + 2\sum_{i}\eta(e_{i})\eta(e_{i})g(hX,W) \\ &+ & 2\sum_{i}g(hX,e_{i})g(e_{i},W) - 2\sum_{i}g(he_{i},e_{i})g(X,W) + 2\sum_{i}g(he_{i},e_{i})\eta(X)g(\xi,W) \\ &- & 2\sum_{i}g(hX,e_{i})\eta(e_{i})g(\xi,W) - \sum_{i}g(\phi hX,e_{i})g(\phi he_{i},W) + \sum_{i}g(\phi he_{i},e_{i})g(\phi hX,W)\} \\ &+ & 4\mu\{\sum_{i}\eta(e_{i})\eta(e_{i})g(hX,W) - \sum_{i}\eta(X)\eta(e_{i})g(he_{i},W) \\ &+ & \sum_{i}g(he_{i},e_{i})\eta(X)g(\xi,W) - \sum_{i}g(hX,e_{i})\eta(e_{i})g(\xi,W). \end{split}$$

or,

$$\begin{split} & 4S(X,W) \\ = & 2n(c+3)g(X,W) \\ &+ & (c+3-4k)\{\eta(X)\eta(W) - (2n+1)g(X,W) \\ &+ & \eta(X)\eta(W) - (2n+1)\eta(X)\eta(W)\} \\ &+ & (c-1)\{g(\phi X,\phi W) + 2g(\phi X,\phi W)\} \\ &- & 2\{g(hX,hW) + g(X,hW) - 2(2n+1)g(hX,W) \\ &- & \eta(X)\eta(hW) + 2(2n+1)g(hX,W) + 2g(hX,W) \\ &- & \eta(hX)g(\xi,W) + g(\phi hX,h\phi W)\} \\ &+ & 4\mu\{(2n+1)g(hX,W) - \eta(X)\eta(hW) - \eta(hX)g(\xi,W). \end{split}$$
(3.3)

Since $h\xi = 0$, therefore $\eta(hX) = g(hX, \xi) = g(X, h\xi) = g(X, 0) = 0$. Using above result we obtain from (3.3)

$$4S(X,W) = 2n(c+3)g(X,W) + (c+3-4k)\{(1-2n)\eta(X)\eta(W) - (2n+1)g(X,W) + 3(c-1)\{g(\phi X,\phi W)\} - 2\{g(h^2X,W) + 3g(X,hW) + g(\phi hX,h\phi W)\} + 4\mu\{(2n+1)g(hX,W).$$
(3.4)

Using $h\phi = -\phi h$, $\phi^2(X) = -X + \eta(X)\xi$, in relation (3.4) we get

.....

$$4S(X,W) = 2n(c+3)g(X,W) + (c+3-4k)\{(1-2n)\eta(X)\eta(W) - (2n+1)g(X,W) + 3(c-1)\{g(X,W) - \eta(X)\eta(W)\} - 2\{g(h^{2}X,W) + 3g(X,hW) - g(h^{2}X,hW)\} + 4\mu(2n+1)g(hX,W).$$
(3.5)

or,

$$4S(X,W) = (8nk + 4k + 2c - 3)g(X,W) + (8nk + 4k - 2nc - 6n - 2c + 6)\eta(X)\eta(W)$$

$$+ \{4\mu(2n+1) - 6\}g(hX,W).$$
(3.6)

If we take $\mu = \frac{1}{2}$ and n = 1, then (3.6) becomes

$$4S(X,W) = (12k + 2c - 3)g(X,W) + (12k - 4c)\eta(X)\eta(W)$$
(3.7)

i.e.

$$S(X,W) = (3k + \frac{c}{2} - \frac{3}{4})g(X,W) + (3k - c)\eta(X)\eta(W)$$
(3.8)

Thus we are in a position to state the following result:

Theorem 3.1. A (k, μ) space forms of dimension three is η -Einstein for $\mu = \frac{1}{2}$. Again we know that S(X, W) = g(QX, W), where Q is the Ricci operator. Thus using this in (3.8) we get

$$QX = (3k + \frac{c}{2} - \frac{3}{4})X + (3k - c)\eta(X)\xi,$$
(3.9)

where Q is the Ricci operator of (k, μ) space forms of dimension three for $\mu = \frac{1}{2}$. Again we have from (3.8) that

$$r = \sum_{i=1}^{3} S(e_i, e_i) = 3(6k - \frac{c}{2} - \frac{3}{4}),$$
(3.10)

where *r* is the scalar curvature of (k, μ) space forms of dimension three for $\mu = \frac{1}{2}$.

4 η -parallel, cyclic parallel Ricci tensors and Ricci operator of (*k*, μ) space forms of dimension three

Definition 4.1. The Ricci tensor S of (k, μ) space forms of dimension three will be called η -parallel if it satisfies,

$$(\nabla_X S)(\phi Y, \phi Z) = 0, \tag{4.1}$$

for any vector fields X, Y, Z. From (3.8) we get

$$\nabla_W S)(X,Y) = (3k-c)\{\nabla_W \eta)(X)\eta(Y) + (\nabla_W \eta)(Y)\eta(X)\}.$$
(4.2)

From above it is clear that

$$(\nabla_X S)(\phi Y, \phi Z) = 0. \tag{4.3}$$

Now we are in a position to state the following:

(

Theorem 4.1. The Ricci tensor of a (k, μ) space forms of dimension three is η -parallel for $\mu = \frac{1}{2}$.

Definition 4.2. The Ricci tensor of (k, μ) space forms of dimension three will be called cyclic parallel if

$$(\nabla_X S)(Y, Z) + (\nabla_Y S)(Z, X) + (\nabla_Z S)(X, Y) = 0.$$
(4.4)

From (3.8) we get

$$\begin{aligned} & (\nabla_X S)(Y,Z) + (\nabla_Y S)(Z,X) + (\nabla_Z S)(X,Y) \\ &= (3k-c)\{(\nabla_X \eta)(Y)\eta(Z) + (\nabla_X \eta)(Z)\eta(Y) \\ &+ (\nabla_Y \eta)(Z)\eta(X) + (\nabla_Y \eta)(X)\eta(Z) \\ &+ (\nabla_Z \eta)(X)\eta(Y) + (\nabla_Z \eta)(Y)\eta(X)\}. \end{aligned}$$

$$(4.5)$$

If we take X, Y, Z orthogonal to ξ , then we obtain from above,

$$(\nabla_X S)(Y, Z) + (\nabla_Y S)(Z, X) + (\nabla_Z S)(X, Y) = 0.$$
(4.6)

Now we are in a position to state the following:

Theorem 4.2. The Ricci tensor of (k, μ) space forms of dimension three is cyclic parallel for $\mu = \frac{1}{2}$.

Definition 4.3. A (k, μ) space forms of dimension three is called locally ϕ -Ricci symmetric if,

$$\phi^2(\nabla_W Q)X = 0 \tag{4.7}$$

, where the vector fields X and W are orthogonal to ξ . The notion of locally ϕ -Ricci symmetry was introduced by U. C. De and A. Sarkar [6].

Again from (3.8) we obtain

$$(\nabla_W Q)X = (3k - c)\{(\nabla_W \eta)(X)\xi + \eta(X)\nabla_W \xi\}$$
(4.8)

Taking X orthogonal to ξ and applying ϕ^2 on both side of above we get

$$\phi^2(\nabla_W Q)X = 0. \tag{4.9}$$

Now we are in a position to state the following:

Theorem 4.3. A (k, μ) space forms of dimension three is locally ϕ -Ricci symmetric for $\mu = \frac{1}{2}$.

5 Locally ϕ - symmetric (k, μ) space forms

Definition 5.1. A (2*n*+1)-dimensional (k, μ) space forms will be called locally ϕ -symmetric if $\phi^2(\nabla_W R)(X, Y)Z = 0$, for any vector fields X, Y, Z and W orthogonal to ξ .

In this connection it should be mentioned that the notion of locally ϕ - symmetric manifolds was introduced by T. Takahashi [10] in the context of Sasakian geometry.

First, we suppose that X, Y, Z and W orthogonal to ξ . Then relation (2.9) reduces to

$$4R(X,Y)Z = (c+3)\{g(Y,Z)X - g(X,Z)Y\} + (c-1)\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\} - 2\{g(hX,Z)hY - g(hY,Z)hX + g(X,Z)hY - 2g(Y,Z)hX + 2g(hX,Z)Y - 2g(hY,Z)X - g(\phi hX,Z)\phi hY + g(\phi hY,Z)\phi hX\}.$$
(5.1)

Differentiating (5.1) covariantly with respect to a horizontal vector field W we get,

$$\begin{aligned} 4(\nabla_W R)(X,Y)Z &= (c-1)\{g(X,(\nabla_W \phi)Z)\phi Y + g(X,\phi Z)(\nabla_W \phi)Y \\ &- g(Y,(\nabla_W \phi)Z)\phi X - g(Y,\phi Z)(\nabla_W \phi)X \\ &+ 2g(X,(\nabla_W \phi)Y)\phi Z + g(X,\phi Y)(\nabla_W \phi)Z\} \\ &- 2\{g((\nabla_W h)X,Z)hY + g(hX,Z)(\nabla_W h)Y \\ &- g((\nabla_W h)Y,Z)hX - g(hY,Z)(\nabla_W h)X \\ &+ g(X,Z)(\nabla_W h)Y - 2g(Y,Z)(\nabla_W h)X \\ &+ 2g((\nabla_W h)X,Z)Y - 2g((\nabla_W h)Y,Z)X \\ &- g((\nabla_W \phi)hX,Z)\phi hY - g(\phi hX,Z)(\nabla_W \phi)hY \\ &+ g((\nabla_W \phi)hY,Z)\phi hX + g(\phi hY,Z)(\nabla_W \phi)hX\}. \end{aligned}$$
(5.2)

Again, as *X*, *Y* are orthogonal to ξ , so (2.5) and (2.6) reduces to

$$(\nabla_X \phi) Y = g(X, Y)\xi, \tag{5.3}$$

$$(\nabla_X h)(Y) = \{(1-k)g(X,\phi Y) + g(X,h\phi Y)\}\xi.$$
(5.4)

After using (5.3) and (5.4) in (5.2) and then applying ϕ^2 on both side we obtain

$$\phi^2(\nabla_W R)(X, Y)Z = 0.$$
(5.5)

Thus we are in a position to state the following result:

Theorem 5.1. *Every* (2*n*+1) *dimensional* (k, μ) *space forms is locally* ϕ *- symmetric.*

References

- Ali Akbar and Avijit Sarkar, Some curvature properties of Trans-Sasakian Manifolds, Lobachevskii Journal of Mathematics, 35(2)(2014), 56-66.
- [2] Blair, D. E., Koufogiorgos, T. and Papantoniou, B. J., Contact metric manifolds satisfying a nullity condition, *Isreal J. of Math.*, 19(1995), 189-214.
- [3] D. E. Blair, J. S. Kim and M. M. Tripathi, On the concircular curvature tensor of a contact metric manifold, *Journal of the Korean Mathematical Society*, 42(5)(2005), 883-892.
- [4] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math., No. 509, Springer 1976.
- [5] De, U. C. and Sarkar, A., On three-dimensional trans-Sasakian manifold, *Extracta Mathematicae*, 23(3)(2008), 265-270.
- [6] De, U.C. and Sarkar, A., On φ-Ricci symmetric Sasakian manifolds, Proceedings of the Jangjeon Mathematical Soc., 11(1)(2008), 47-52.
- [7] Kon, M, Invariat submanifolds in Sasakian manifolds, Math. Ann., 219(1976), 277-290.
- [8] T. Koufogiorgos, Contact Riemannian manifolds with constant ϕ sectional curvature, *Geometry and Topology of submanifolds*, 8(1995), 195-197.
- [9] Ki, U-H and Nakagawa, H.A.: A characterization of the Cartan hypersurfaces in a sphere, *Tohoku Math J.*, 39(1987), 27-40.
- [10] Takahashi. T., Sasakian φ-symmetric spaces, *Tohoku Math. J.*, 29(1977), 91-113.

Received: May 14, 2014; Accepted: October 15, 2014

UNIVERSITY PRESS

Website: http://www.malayajournal.org/