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Abstract

The aim of the present paper is to study some basic qualitative properties of solutions of certain nonlinear
partial dynamic equations on time scales. The tools employed are application of Banach fixed point theorem
and a variant of certain fundamental integral inequality with explicit estimates on time scales.
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1 Introduction

During the past few years many authors have obtained the time scale analogue of well known partial dynamic
equations see [1, 6, 10, 11]. Recently in [2, 3, 9] authors have obtained inequalities on two independent variables
on time scales. In the present paper we establish some basic qualitative properties of solutions of certain partial
dynamic equation on time scales. We use certain fundamental integral inequalities with explicit estimates to
establish our results. We assume understanding of time scales and its notation. Excellent information about
introduction to time scales can be found in [4, 5].

In what follows R denotes the set of real numbers, Z the set of integers and T denotes arbitrary time scales.
Let Crd be the set of all rd continuous functions. We assume T1 and T2 are two time scales and Ω = T1 × T2.
The delta partial derivative of a function z(x, y) for (x, y) ∈ Ω with respect to x, y and xy are denoted by
z∆1 (x, y), z∆2 (x, y) and z∆1∆2 (x, y) = z∆2∆1 (x, y) with the given boundary conditions.

u∆2∆1 (x, y) = f
(
x, y, u(x, y), u∆1(x, y)

)
(1.1)

with the given initial boundary conditions

u (x, y0) = α(x), u (x0, y) = β (y) , u (x0, y0) = 0, (1.2)

for (x, y) ∈ Ω, where f ∈ Crd (Ω×Rn ×Rn, R+), α, β ∈ (R+, R
n).

In this paper we study the existence, uniqueness and other properties of the solutions of (1.1)-(1.2) under
some suitable conditions on the functions involved in (1.1)-(1.2). The main tool employed is based on application
of Banach fixed point theorem [8] coupled with Bielecki-type norm [7] and suitable integral inequality with
explicit estimate.

2 Preliminaries and Basic Inequality

For a function u(x, y) and its delta derivative u∆1 (x, y) in Crd (Ω, Rn) we denote by |u(x, y)|W = |u (x, y)|+∣∣u∆1 (x, y)
∣∣. For (t, s) ∈ Ω the notation a(t, s) = O(b(t, s)) then there exists a constant q > 0 such that
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∣∣∣a(t,s)
b(t,s)

∣∣∣ ≤ q right-hand neighborhood. Let G be the space whose functions
(
φ (x, y) , φ∆ (x, y)

)
∈ W which are

rd-continuous for (x, y) ∈ Ω and satisfy the condition

|φ (x, y)|W = O (eλ (x, y)) , (2.1)

for (x, y) ∈ Ω, where λ > 0 is a constant. In space G we define the norm

|φ|G = sup
(x,y)∈Ω

[|φ (x, y)|W e	λ (x, y)] . (2.2)

It is easy to see that G with norm defined in (2.2) is a Banach space. The condition (2.1) implies that there is
a constant N ≥ 0 such that

|φ (x, y)|W ≤ Neλ (x, y) . (2.3)

Using the fact that in (2.2) we observe that

|φ (x, y)|W ≤ N. (2.4)

By a solution of (1.1)−(1.2) we means a function u(x, y) ∈ Crd (Ω, Rn) which satisfies the equation (1.1)−(1.2).
It is easy to see that solution u(x, y) of (1.1)− (1.2) satisfies the following equation

u∆1 (x, y) = α∆ (x) +

y∫
y0

f
(
x, t, u(x, t), u∆1(x, t)

)
∆t, (2.5)

and

u (x, y) = α (x) + β (y) +

x∫
x0

y∫
y0

f
(
s, t, u(s, t), u∆1(s, t)

)
∆t∆s, (2.6)

for (x, y) ∈ Ω.
We require the following integral inequality.

Lemma 2.1. Let u, a, b ∈ Crd (Ω, Rn)

u (x, y) ≤ c+

y∫
y0

a(x, t)u(x, t)∆t+

x∫
x0

y∫
y

b (s, t)u (s, t) ∆t∆s, (2.7)

for (x, y) ∈ Ω, then
u (x, y) ≤ cH (x, y) e y∫

y0

b(s,t)H(s,t)∆t
(x, x0) , (2.8)

for (x, y) ∈ Ω, where
H(x, y) = ea (y, y0) , (2.9)

for (x, y) ∈ Ω.

Proof. Define a function n(x, y) by

n(x, y) = c+

x∫
x0

y∫
y0

b (s, t)u (s, t) ∆t∆s, (2.10)

then (2.7) can be restated as

u (x, y) ≤ n(x, y) +

y∫
y0

a(x, t)u(x, t)∆t. (2.11)

Clearly n(x, y) is nonnegative for (x, y) ∈ Ω and nondecreasing for x. Treating (2.11) as a one-dimensional
integral inequality and a suitable application of inequality given in Theorem 3.1 [12] yields

u (x, y) ≤ n(x, y)H(x, y), (2.12)
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where H(x, y) is given by (2.9). From (2.10) and (2.12) we have

n(x, y) ≤ c+

x∫
x0

y∫
y0

b (s, t)H(s, t)n (s, t) ∆t∆s. (2.13)

Now a suitable application of Theorem 2.1 [9] to (2.13) yields

n(x, y) ≤ ce y∫
y0

b(s,t)H(s,t)∆t
(x, x0) . (2.14)

Using (2.14) into (2.12) we get the required inequality in (2.8).

3 Main results

Our main results are given in the following theorems.

Theorem 3.1. Suppose that
(i) the function f in (1.1) satisfies the condition

|f (x, y, u, v)− f (x, y, u, v)| ≤ p (x, y) [|u− u|+ |v − v|] , (3.1)

where p ∈ Crd (Ω, Rn),
(ii) for λ as in (2.1)
(a) there exists a nonnegative constant γ such that γ < 1 and

y∫
y0

p(x, t)eλ (x, t) ∆t+

x∫
x0

y∫
y0

p (s, t)eλ (s, t) ∆t∆s ≤ γeλ (x, y) , (3.2)

(b) there exists a nonnegative constant η such that

|α (x)|+ |β (y)|+
∣∣α∆ (x)

∣∣ +

y∫
y0

|f (x, t, 0, 0)|∆t

+

x∫
x0

y∫
y0

|f (s, t, 0, 0)|∆t∆s ≤ ηeλ (x, y) , (3.3)

for (x, y) ∈ Ω where α, β are the functions given in (1.2). Then (1.1)− (1.2) has a unique solution in G.

Proof. Let u(x, y) ∈ G and define operator S by

(Su) (x, y) = |α (x)|+ |β (y)|+
x∫

x0

y∫
y0

f
(
s, t, u (s, t) , u∆1 (s, t)

)
∆t∆s. (3.4)

Delta differentiating both sides of (3.4) with respect to x we get

(Su)∆1 (x, y) =
∣∣α∆ (x)

∣∣ +

y∫
y0

f
(
x, t, u (x, t) , u∆1 (x, t)

)
∆t. (3.5)

First we show that Su maps G into itself. Evidently (Su) is rd-continuous . We verify that (2.1) is fulfilled.
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From (3.4) and (3.5) using the hypotheses and (2.3) we have

|(Su) (x, y)|+
∣∣∣(Su)∆1 (x, y)

∣∣∣
≤ |α (x)|+ |β (y)|+

∣∣α∆ (x)
∣∣ +

x∫
x0

y∫
y0

∣∣f (s, t, u(s, t) , u∆1 (s, t))− f (s, t, 0, 0)
∣∣∆t∆s

+

x∫
x0

y∫
y0

|f (s, t, 0, 0)|∆t∆s+

y∫
y0

∣∣f (x, t, u(s, t) , u∆1 (x, t))− f (x, t, 0, 0)
∣∣∆t

+

y∫
y0

|f (x, t, 0, 0)|∆t

≤ ηeλ (x, y) +

y∫
y0

p (x, t) eλ (x, t) |u(x, t)|G e	λ (x, t) ∆t

+

x∫
x0

y∫
y0

p (s, t)eλ (s, t) |u (s, t)|G e	λ (s, t)∆t∆s

≤ ηeλ (x, y) + |u|s

 y∫
y0

p (x, t) eλ (x, t) ∆t+

x∫
x0

y∫
y0

p (s, t)eλ (s, t) ∆t∆s


≤ [η +Nγ] eλ (x, y) . (3.6)

From (3.6) it follows that Su ∈ G. This proves S maps G into itself.
Now we verify S is a contraction map. Let u(x, y), v(x, y) ∈ G. From (3.4) and (3.5) and using hypotheses

we have

|(Su) (x, y)− (Sv) (x, y)|+
∣∣∣(Su)∆1 (x, y)− (Sv)∆1 (x, y)

∣∣∣
≤

x∫
x0

y∫
y0

∣∣f (
s, t, u (s, t) , u∆1 (s, t)

)
− f

(
s, t, v (s, t) , v∆1 (s, t)

)∣∣∆t∆s
+

y∫
y0

∣∣f (
x, t, u (x, t) , u∆1 (x, t)

)
− f

(
x, t, v (x, t) , v∆1 (x, t)

)∣∣∆t
≤

y∫
y0

p (x, t) eλ (x, t) |u (x, t)− v (x, t)|G e	λ (x, t)∆t

+

x∫
x0

y∫
y0

p (s, t)eλ (s, t) |u (s, t)− v (s, t)|G e	λ (s, t) ∆t∆s

≤ |u− v|G γeλ (x, y) . (3.7)

Consequently from (3.7) we have

|Su− Sv|G ≤ γ |u− v|G .

Since γ < 1, it follows from Banach fixed point theorem that S has a unique fixed point in G. The fixed point
of S is however solution of (1.1)− (1.2). The proof is complete.

Now we give theorem concerning the uniqueness of solutions of (1.1)− (1.2) without existence.

Theorem 3.2. Assume that the function f in (1.1) satisfies the condition (3.1). Then (1.1) − (1.2) has at
most one solution on Ω.
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Proof. Let u1(x, y) and u2(x, y) be two solutions of (1.1)− (1.2). Then by hypotheses we have

|u1 (x, y)− u2 (x, y)|+
∣∣u∆1

1
(x, y)− u∆1

2
(x, y)

∣∣
≤

x∫
x0

y∫
y0

∣∣f (
s, t, u1 (s, t) , u∆1

1
(s, t)

)
− f

(
s, t, u2 (s, t) , u∆1

2
(s, t)

)∣∣∆t∆s
+

y∫
y0

∣∣f (
x, t, u1 (x, t) , u∆1

1
(x, t)

)
− f

(
x, t, u2 (x, t) , u∆1

2
(x, t)

)∣∣∆t
≤

y∫
y0

p (x, t)
[
|u1 (x, t)− u2 (x, t)|+

∣∣u∆1
1

(x, t)− u∆1
2

(x, t)
∣∣]∆t

+

x∫
x0

y∫
y0

p (s, t)
[
|u1 (s, t)− u2 (s, t)|+

∣∣u∆1
1

(s, t)− u∆1
2

(s, t)
∣∣]∆t∆s. (3.8)

Now an application of Lemma 2.1 (with a(x, y) = b(x, y) = p(x, y) and c = 0) to (3.8) yields.

|u1 (x, y)− u2 (x, y)|+
∣∣u∆1

1
(x, y)− u∆1

2
(x, y)

∣∣ ≤ 0, (3.9)

which implies u1(x, y) = u2(x, y) for (x, y) ∈ Ω. Thus there is at most one solution of (1.1)− (1.2) on Ω.

4 Boundedness and continuous dependence

In this section we study the boundedness of solution of (1.1) − (1.2) and the continuous dependence of
solutions of equation (1.1) on the given initial boundary values, the function f involved therein and also the
continuous dependence of solutions of equations of the (1.1) on parameters.

The following theorem concerning the estimate on the solution (1.1)− (1.2) holds.

Theorem 4.1. Assume that
|α (x)|+ |β (y)|+

∣∣α∆ (x)
∣∣ ≤ k, (4.1)

|f (x, y, u, v)| ≤ r (x, y) [|u|+ |v|] , (4.2)

where k ≥ 0 is a constant r ∈ Crd (Ω, Rn). If u(x, y), (x, y) ∈ Ω is any solution of (1.1)− (1.2) then

|u (x, y)|+
∣∣u∆1 (x, y)

∣∣ ≤ kq (x, y) e y∫
y0

r(s,t)q(s,t)∆t
(x, x0) , (4.3)

for (x, y) ∈ Ω, where
q (x, y) = er (y, y0) , (4.4)

for (x, y) ∈ Ω.

Proof. Using the fact that u(x, y) is a solution of (1.1)− (1.2) and conditions (4.1)− (4.2) we have

|u (x, y)|+
∣∣u∆1 (x, y)

∣∣
≤ |α (x)|+ |β (y)|+

∣∣α∆ (x)
∣∣

+

x∫
x0

y∫
y0

f
(
s, t, u (s, t) , u∆1 (s, t)

)
∆t∆s+

y∫
y0

f
(
x, t, u (x, t) , u∆1 (x, t)

)
∆t

≤ k +

y∫
y0

r (x, t)
[
|u (x, t)|+

∣∣u∆1 (x, t)
∣∣]∆t

+

x∫
x0

y∫
y0

r (s, t)
[
|u (s, t)|+

∣∣u∆1 (s, t)
∣∣]∆t∆s. (4.5)

Now a suitable application of Lemma 2.1 to (4.5) yields (4.3).
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Remark 4.1. The estimates obtained in (4.3) yields not only the bound on the solution u(x, y) of (1.1)− (1.2)
but also the bound on u∆1 (x, y). If the estimate on the right side in (4.3) is bounded then the solution of u(x, y)
of (1.1)− (1.2) and also u∆1 (x, y) are bounded on Ω.

Our next result deals with the continuous dependence of solutions of equation (1.1) and given initial bound-
ary conditions.

Theorem 4.2. Let u1(x, y) and u2(x, y) be the solution of equation (1.1) and given initial boundary conditions

u1(x, y0) = α1 (x) , u1(x0, y) = β1 (y) , u1(x0, y0) = 0, (4.6)

u2(x, y0) = α2 (x) , u2(x0, y) = β2 (y) , u2(x0, y0) = 0, (4.7)

respectively where α1, α2, β1, β2 ∈ (R+, R
n). Suppose that the function f in equation (1.1) satisfies the condition

(3.1) and

|α1 (x) + β1 (y)− α2 (x)− β2 (y)|+
∣∣α∆

1
(x)− α∆

2
(x)

∣∣ ≤ d, (4.8)

for (x, y) ∈ Ω, where d ≥ 0 is a constant. Then

|u1 (x, y)− u2(x, y)|+
∣∣u∆1

1
(x, y)− u∆2

2
(x, y)

∣∣ ≤ dq (x, y) e y∫
y0

p(s,t)q(s,t)∆t∆s
(x, x0) , (4.9)

for (x, y) ∈ Ω, where q(x, y) is defined by the right hand side of (4.4) replacing r(x, y) by p(x, y) for (x, y) ∈ Ω.

Proof. From the hypotheses it is easy to observe that

|u1 (x, y)− u2(x, y)|+
∣∣u∆1

1
(x, y)− u∆2

2
(x, y)

∣∣
≤ |α1 (x) + β1 (y)− α2 (x)− β2 (y)|+

∣∣α∆
1

(x)− α∆
2

(x)
∣∣

+

x∫
x0

y∫
y0

∣∣∣f (
s, t, u1 (s, t) , u∆1

1
(s, t)

)
− f

(
s, t, u2 (s, t) , u∆1

2 (s, t)
)∣∣∣∆t∆s

+

y∫
y0

∣∣∣f (
x, t, u1 (x, t) , u∆1

1
(x, t)

)
− f

(
x, t, u2 (x, t) , u∆1

2 (x, t)
)∣∣∣∆t

≤ d+

y∫
y0

p (x, t)
[
|u1 (x, t)− u2(x, t)| −

∣∣∣u∆1
1

(x, t)− u∆1
2 (x, t)

∣∣∣]∆t
+

x∫
x0

y∫
y0

p (s, t)
[
|u1 (s, t)− u2 (s, t)|+

∣∣∣u∆1
1

(s, t)− u∆1
2 (s, t)

∣∣∣]∆t∆s. (4.10)

Now a suitable application of Lemma 2.1 to (4.10) yields the bound in (4.9), which shows dependency on
solution of equation (1.1) on given initial boundary values.

Consider the initial boundary value problem (1.1)-(1.2) and the corresponding initial boundary value prob-
lem

v∆2∆1 (x, y) = F
(
x, y, v (x, y) , v∆1 (x, y)

)
, (4.11)

v (x, y0) = α (x) , v (x0, y) = β (y) , v (x0, y0) = 0, (4.12)

for (x, y) ∈ Ω where v ∈ Crd (Ω, R+) , α, β ∈ (R+, R
n) and F ∈ Crd (Ω×Rn ×Rn, Rn).

The next theorem deals with continuous dependence solutions of initial boundary value problem (1.1)-(1.2)
on the functions involved therein.
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Theorem 4.3. Assume that the function f in equation (1.1) satisfies the condition (3.1). Let v(x, y) for
(x, y) ∈ Ω be a solution of initial boundary value problem (4.11)− (4.12) and∣∣α (x) + β (y)− α (x)− β (y)

∣∣ +
∣∣α∆ (x)− α∆ (x)

∣∣
+

y∫
y0

∣∣f (
x, t, v (x, t) , v∆1 (x, t)

)
− F

(
x, t, v (x, t) , v∆1 (x, t)

)∣∣∆t
+

x∫
x0

y∫
y0

∣∣f (
s, t, v (s, t) , v∆1 (s, t)

)
− F

(
s, t, v (s, t) , v∆1 (s, t)

)∣∣∆t∆s ≤ ε, (4.13)

for (x, y) ∈ Ω where α, β, F are functions involved in initial boundary value problem (1.1) − (1.2) and initial
boundary value problem (4.11)− (4.12) and ε ≥ 0 is a constant. Then the solution u(x, y) on initial boundary
value problem (1.1)− (1.2) depends continuously on the functions involved therein.

Proof. Since u(x, y) and v(x, y) are solutions of initial boundary value problem (1.1)-(1.2) and initial boundary
value problem (4.11)− (4.12) and the conditions (3.1), (4.13) we get

|u (x, y)− v(x, y)|+
∣∣u∆1 (x, y)− v∆1(x, y)

∣∣
≤

∣∣α (x) + β (y)− α (x)− β (y)
∣∣ +

∣∣α (x)− α∆ (x)
∣∣

+

x∫
x0

y∫
y0

∣∣f (
s, t, u (s, t) , u∆1 (s, t)

)
− f

(
s, t, v (s, t) , v∆1 (s, t)

)∣∣ ∆t∆s

+

x∫
x0

y∫
y0

∣∣f (
s, t, v (s, t) , v∆1 (s, t)

)
− F

(
s, t, v (s, t) , v∆1 (s, t)

)∣∣ ∆t∆s

+

y∫
y0

∣∣f (
x, t, u (x, t) , u∆1 (x, t)

)
− f

(
x, t, v (x, t) , v∆1 (x, t)

)∣∣ ∆t

+

y∫
y0

∣∣f (
x, t, v (x, t) , v∆1 (x, t)

)
− F

(
x, t, v (x, t) , v∆1 (x, t)

)∣∣ ∆t

≤ ε+

y∫
y0

p (x, t)
[
|u (x, t)− v (x, t)|+

∣∣u∆1 (x, t)− v∆1 (x, t)
∣∣]∆t

+

x∫
x0

y∫
y0

p (x, t)
[
|u (s, t)− v (x, t)|+

∣∣u∆1 (s, t)− v∆1 (s, t)
∣∣]∆t∆s. (4.14)

Now a suitable application of Lemma 2.1 to (4.14) yields

|u (x, y)− v(x, y)|+
∣∣u∆1 (x, y)− v∆1(x, y)

∣∣ ≤ εq (x, y) e y∫
y0

p(s,t)q(s,t)
(x, x0) . (4.15)

Now we consider following equation

z∆2∆1 (x, y) = f
(
x, t, z (x, t) , z∆1 (x, t) , µ

)
, (4.16)

z∆2∆1 (x, y) = f
(
x, t, z (x, t) , z∆1 (x, t) , µ0

)
, (4.17)

with the given initial boundary conditions

z (x, y0) = τ (x) , z (x0, y) = ψ (y) , z (x0, y0) = 0, (4.18)

where z ∈ Crd (Ω, R+) , τ, ψ ∈ (R+, R
n) , f ∈ Crd (Ω×Rn ×Rn ×R,Rn) and µ, µ0 are real parameters.

Finally, we present following theorem which deals with continuous dependency of solutions of initial bound-
ary value problem (4.16)− (4.18) and initial boundary value problem (4.17)− (4.18) on parameters.
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Theorem 4.4. Assume that the function f in (4.16) and (4.17) satisfy the conditions

|f (x, y, u, v, µ)− f (x, y, u, v, µ)| ≤ h (x, y) [|u− u|+ |v − v|] , (4.19)

|f (x, y, u, v, µ)− f (x, y, u, v, µ0)| ≤ m (x, y) |µ− µ0| , (4.20)

for (x, y) ∈ Ω where n,m ∈ Crd(Ω, R+) and

y∫
y0

m (x, y)∆t+

x∫
x0

y∫
y0

m (s, t) ∆t∆s ≤ δ, (4.21)

where δ ≥ 0 is a constant. Let z1(x, y) and z2(x, y) be the solutions of initial boundary value problem (4.16)−
(4.18) and initial boundary value problem (4.17)− (4.18) respectively. Then

|z1 (x, y)− z2 (x, y)|+
∣∣z∆1

1
(x, y)− z∆1

2
(x, y)

∣∣
≤ |µ− µ0| δQ (x, y) e y∫

y0

h(s,t)Q(s,t)∆t
(x, x0) , (4.22)

for x, y ∈ Ω, where

Q (x, y) =

y∫
y0

h (x, t)∆t, (4.23)

for x, y ∈ Ω.

Proof. Since z1(x, y) and z2(x, y) be the solutions of initial boundary value problem (4.16) − (4.18) and and
initial boundary value problem (4.17)− (4.18) and conditions (4.19)− (4.21) we have

|z1 (x, y)− z2 (x, y)|+
∣∣z∆1

1
(x, y)− z∆1

2
(x, y)

∣∣
≤

x∫
x0

y∫
y0

∣∣f (
s, t, z1 (s, t) , z∆1

1
(s, t) , µ

)
− f

(
s, t, z2 (s, t) , z∆1

2
(s, t) , µ

)∣∣∆t∆s
+

x∫
x0

y∫
y0

∣∣f (
s, t, z2 (s, t) , z∆1

2
(s, t) , µ

)
− f

(
s, t, z2 (s, t) , z∆1

2
(s, t) , µ0

)∣∣∆t∆s
+

y∫
y0

∣∣∣f (
x, t, z1 (x, t) , z∆1

1 (x, t) , µ
)
− f

(
s, t, z2 (x, t) , z∆1

2
(x, t) , µ

)∣∣∣∆t
+

y∫
y0

∣∣∣f (
x, t, z1 (x, t) , z∆1

1 (x, t) , µ
)
− f

(
s, t, z2 (x, t) , z∆1

2
(x, t) , µ0

)∣∣∣∆t
≤

x∫
x0

y∫
y0

h (s, t)
[
|z1 (s, t)− z2 (s, t)|+

∣∣z∆1
1

(s, t)− z∆1
2

(s, t)
∣∣]∆t∆s

+

x∫
x0

y∫
y0

m (s, t) [|µ− µ0|]∆t∆s

+

y∫
y0

h (x, t)
[
|z1 (x, t)− z2 (x, t)|+

∣∣z∆1
1

(x, t)− z∆1
2

(x, t)
∣∣]

+

y∫
y0

m (x, t) [|µ− µ0|]∆t

≤ |µ− µ0| δ +

y∫
y0

h (x, t)
[
|z1 (x, t)− z2 (x, t)|+

∣∣z∆1
1

(x, t)− z∆1
2

(x, t)
∣∣]∆t
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+

x∫
x0

y∫
y0

h (s, t)
[
|z1 (s, t)− z2 (s, t)|+

∣∣z∆1
1

(s, t)− z∆1
2

(s, t)
∣∣]∆t∆s. (4.24)

Now a suitable application of Lemma to (4.24) yields (4.22) which shows the dependency of solutions of initial
boundary value problem (4.16)− (4.17) and initial boundary value problem (4.17)− (4.18) on parameters.

Remark 4.2. The results obtained above can be very easily extended to the following partial dynamic equation
on time scales

u∆2∆1 (x, y) = f
(
x, y, u(x, y), u∆2(x, y)

)
(1.1)

with the initial boundary conditions in (1.2) by modifying suitably the inequality given in Lemma 2.1
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