

https://doi.org/10.26637/MJM0504/0013

α -Stable necks of fuzzy automata

N. Mohanarao¹ and V. Karthikeyan^{2*}

Abstract

In this paper we introduce α -stable necks, α -stable directable, α -stable trap-directable fuzzy automata. Further we show that α -stable necks of fuzzy automaton exists then it is α -stable subautomaton, α -stable kernel and discuss some of their properties. Finally we prove a fuzzy automaton is α -stable directable if and only if it is an extension of a α -stable strongly directable fuzzy automaton by a α -stable trap-directable fuzzy automaton.

Keywords

 α -stable necks, α -stable directable, α -stable trap-directable.

AMS Subject Classification

03D05, 20M35, 18B20, 68Q45, 68Q70, 94A45.

¹ Department of Mathematics, Government College of Engineering, Bodinayakkanur, Tamilnadu, India.

²Department of Mathematics, Government College of Engineering, Dharmapuri, Tamilnadu, India.

*Corresponding author: 1 mohanaraonavuluri@gmail.com; 2 vkarthikau@gmail.com

Article History: Received 04 September 2017; Accepted 05 December 2017

©2017 MJM.

Contents

1	Introduction694
2	Preliminaries
3	α -Stable Necks of Fuzzy Automata695
4	Properties of α -Stable Necks of Fuzzy Automata 695
5	Conclusion 696
	References

1. Introduction

Lofti A. Zadeh invented fuzzy set theory in 1965 [8], which is a generalization of classical set theory. The fuzzy set is a simple mathematical tool for representing the inevitability of vagueness, uncertainty, and imprecision in everyday life. W.G. Wee extended the fuzzy idea to automata in 1967 [7]. Later, numerous academics adapted the fuzzy notion to a wide range of domains, and it has a wide range of applications. J.N. Mordeson and D. S. Malik gave a detailed account of fuzzy automata and languages in their book [6].

T. Petkovic et al. [1] discussed directable automata, monogenically directable, generalized directable using necks. T. Petkovic et al.[3] introduce and studied trapdirectable, trapped automata and other related automata. Also, we refer the survey paper Directable automata and their generalizations were investigated by S. Bogdanovic et al [2]. Further the necks of fuzzy automata were studied and discussed in [4]. In this paper we introduce α -stable necks, α -stable directable, α -stable trap-directable fuzzy automata. Further we show that α -stable necks of fuzzy automata exists then it is α -stable subautomaton, α -stable kernel and discuss some of their properties. Consequently, we prove α -stable directable fuzzy automaton is an extension of a α -stable strongly directable fuzzy automaton by a α -stable trap-directable fuzzy automaton.

2. Preliminaries

Definition 2.1. [6] A fuzzy automaton $S = (D, I, \psi)$, where,

D - set of states $\{d_0, d_1, d_2, ..., d_n\}$, *I* - alphabets (or) input symbols, Ψ - function from $D \times I \times D \rightarrow [0, 1]$,

The set of all words of I is denoted by I^* . The empty word is denoted by λ , and the length of each $t \in I^*$ is denoted by |t|.

Definition 2.2. [6] Let $S = (D, I, \psi)$ be a fuzzy automaton. The extended transition function is defined by $\psi^* : D \times I^* \times D \rightarrow [0,1]$ and is given by

$$\psi^*(d_i, \ \lambda, \ d_j) = egin{cases} 1 & \textit{if} \ d_i = d_j \ 0 & \textit{if} \ d_i
eq d_j \end{cases}$$

$$\Psi^*(d_i, tt', d_j) = \bigvee_{q_r \in D} \{ \Psi^*(d_i, t, d_r) \land \Psi(d_r, t', d_j) \}, t \in I^*, t' \in I.$$

Definition 2.3. [4] Let $S = (D, I, \psi)$ be a fuzzy automaton. Let $D' \subseteq D$. Let ψ' is the restriction of ψ and let $S' = (D', I, \psi')$. The fuzzy automaton S' is called a subautomaton of S if

(i) $\psi': D' \times I \times D' \rightarrow [0,1]$ and

(ii) For any $d_i \in D'$ and $\psi'(d_i, t, d_j) > 0$ for some $t \in I^*$, then $d_j \in D'$.

Definition 2.4. [6] Let $S = (D, I, \psi)$ be a fuzzy automaton. S is said to be strongly connected if for every $d_i, d_j \in D$, there exists $t \in I^*$ such that $\psi^*(d_i, t, d_j) > 0$. Equivalently, S is strongly connected if it has no proper sub-automaton.

Definition 2.5. [5] A relation R on a set D is said to be equivalence relation if it is reflexive, symmetric and transitive.

Definition 2.6. [5] Let $S = (D, I, \Psi)$ be a fuzzy automaton. An equivalence relation R on D in S is called congruence relation if $\forall d_i, d_j \in D$ and $t \in I, d_iRd_j$ implies that, then there exists $d_l, d_k \in D$ such that $\Psi(d_i, t, d_l) > 0, \Psi(d_j, t, d_k) > 0$ and d_lRd_k .

Definition 2.7. [4] Let $S = (D, I, \psi)$ be a fuzzy automaton. Let $S' = (D', I, \psi')$ be a subautomaton of S. A relation $R_{S'}$ on S is defined as follows. For any $d_i, d_j \in D$, we say that $(d_i, d_j) \in R_{S'}$ if and only if either $d_i = d_j$ or $d_i, d_j \in D'$.

This relation is clearly an equivalence relation and it is also congruence. This relation is called Rees congruence relation on D in S determined by S'. A fuzzy automaton S/S' is called Rees factor fuzzy automaton determined by the relation $R_{S'}$ and it is defined as $S/S' = (\overline{D}, I, \psi_{s/S'})$, where $\overline{D} = \{ [d_i] / d_i \in D \}$ and $\psi_{S/S'} : \overline{D} \times I \times \overline{D} \to [0, 1]$.

Definition 2.8. [4] Let $S = (D, I, \psi)$ be a fuzzy automaton. A state $d_j \in D$ is called a neck of S if there exists $t \in I^*$ such that $\psi^*(d_i, t, d_j) > 0$ for every $d_i \in D$.

In that case d_j is also called t-neck of S and the word t is called a directing word of S.

If S has a directing word, then we say that S is a directable fuzzy automaton.

Remark 2.9. *In this paper we consider only determinstic fuzzy automaton.*

3. α -Stable Necks of Fuzzy Automata

Definition 3.1. Let $S = (D, I, \psi)$ be a fuzzy automaton. If S is said to be α -stable fuzzy automaton then $\psi(d_i, t', d_j) \ge \alpha > 0, \forall t' \in I, \alpha = Fixed value in [0,1].$

Definition 3.2. Let $S = (D, I, \psi)$ be a fuzzy automaton and let $d_i \in D$. The α -stable subautomaton of S generated by d_i is denoted by $\langle d_i \rangle$. It is given by

 $\langle d_i \rangle = \{ d_j \mid \psi^*(d_i, t, d_j) \ge \alpha, t \in I^*, \alpha = Fixed value in[0, 1] \}.$ If it exists, then it is called the α -stable least subautomaton of S containing d_i .

Definition 3.3. Let $S = (D, I, \psi)$ be a fuzzy automaton. For any non-empty $D' \subseteq D$, the α -stable subautomaton of S generated by D' is denoted by $\langle D' \rangle$ and is given by

 $\langle D' \rangle = \{ d_j \mid \psi^*(d_i, t, d_j) \ge \alpha, d_i \in D', t \in I^* \}$. It is called the α -stable least subautomaton of S containing D'. The α stable least subautomaton of a fuzzy automaton S if it exists is called the α -stable kernel of S.

Definition 3.4. Let $S = (D, I, \psi)$ be a fuzzy automaton. A state $d_j \in D$ is called a α -stable neck of S if there exists $t \in I^*$ such that $\psi^*(d_i, t, d_j) \geq \alpha, \alpha \in [0, 1]$ for every $d_i \in D$.

In that case d_j is also called t- α -stable neck of S and the word t is called a α -stable directing word of S.

If S has a α -stable directing word, then we say that S is a α -stable directable fuzzy automaton.

Remark 3.5. 1) The set of all α -stable necks of a fuzzy automaton S is denoted by $\alpha SN(S)$.

2) The set of all α -stable directing words of a fuzzy automaton *S* is denoted by α SDW(*S*).

3) A fuzzy automaton S is called α -stable strongly directable if $D = \alpha SN(S)$.

Definition 3.6. Let $S = (D, I, \psi)$ be a fuzzy automaton. A state $d_j \in D$ is called a α -stable trap of S if $\psi^*(d_j, t, d_j) \ge \alpha, \forall t \in I^*$.

If S has exactly one α -stable trap, then S is called one α -stable trap fuzzy automaton. The set of all α -stable traps of a fuzzy automaton S is denoted by $\alpha STR(S)$.

A fuzzy automaton S is called a α -stable trapped fuzzy automaton, for each $d_i \in D$, if there exists a word $t \in I^*$ such that $\psi^*(d_i, t, d_i) \geq \alpha$, $d_i \in \alpha STR(S)$.

Definition 3.7. Let $S = (D, I, \psi)$ be a fuzzy automaton. If *S* has a single α -stable neck, then *S* is called a α -stable trapdirectable fuzzy automaton.

Definition 3.8. Let $S = (D, I, \psi)$ be a fuzzy automaton. A state $d_i \in D$ is called α -stable reversible if for every word $t' \in I^*$, there exists a word $t \in I^*$ such that

 $\psi^*(d_i, t't, d_i) \ge \alpha$ and the set of all alpha-stable reversible states of *S* is called the alpha- stable reversible part of *S*. It is denoted by $\alpha SR(S)$. If it is non-empty, $\alpha SR(S)$ is a α -stable subautomaton of *S*.

Definition 3.9. Let $S = (D, I, \psi)$ be a fuzzy automaton. A fuzzy automaton is called a direct sum of its α -stable subautomata $S_{\beta}, \beta \in Y$, if $S = \bigcup_{\beta \in Y} S_{\beta}$ and $S_{\beta} \cap S_{\gamma} = \phi$, for every $\beta, \gamma \in Y$ such that $\beta \neq \gamma$.

Definition 3.10. Let $S = (D, I, \psi)$ be a fuzzy automaton. If $d_i, d_j \in D$ are said to be α -stable mergeable if there exists a word $t \in I^*$ and $d_k \in D$ such that $\psi^*(d_i, t, d_k) \ge \alpha \Leftrightarrow \psi^*(d_i, t, d_k) \ge \alpha$.

4. Properties of α-Stable Necks of Fuzzy Automata

Theorem 4.1. Let $S = (D, I, \psi)$ be a fuzzy automaton. If $\alpha SN(S) \neq \phi$, then $\alpha SN(S)$ is a α -stable subautomaton of S.

Proof. Let $S = (D, I, \psi)$ be a fuzzy automaton. Let $d_j \in \alpha SN(S)$ and $t' \in I^*$. Assume that d_j is a *t*- α -stable neck of *S*, for some $t \in I^*$. Then for each $d_i \in D$ we have $\psi^*(d_i, tt', d_k) = \wedge_{d_j \in D} \{\psi^*(d_i, t, d_j), \psi^*(d_j, t', d_k)\} \ge \alpha$, it means that d_k is a *tt'*- α -stable neck of *S* and hence, $d_k \in$

It means that a_k is a n- α -stable neck of S and hence, $a_k \in \alpha SN(S)$. Therefore, $\alpha SN(S)$ is a α -subautomaton of S.

Theorem 4.2. Let $S = (D, I, \psi)$ be α -stable directable fuzzy automaton. Then $\alpha SN(M)$ is the α -stable kernel of S and $\alpha SN(S) = \alpha SR(S)$.

Proof. Let $S = (D, I, \psi)$ be a α -stable directable fuzzy automaton. Let $d_j \in \alpha SN(S)$ and $d_i \in D$. Then $\psi^*(d_i, t, d_j) \geq \alpha$, for every $t \in \alpha SDW(S)$ and hence $d_j \in \langle d_i \rangle$. Therefore, $\alpha SN(S) \subseteq \langle d_i \rangle$ for every $d_i \in D$. This means that $\alpha SN(S)$ is a α -stable subautomaton contained in every other α -stable subautomaton of *S*. Thus, $\alpha SN(S)$ is the α -stable kernel of *S*. On the other hand, $d_j \in \alpha SR(S)$. Then for every $t' \in I^*$, there exists $t \in I^*$ such that $\psi^*(d_j, t't, d_j) \geq \alpha$. Consider *t* as a α -stable directing word.

$$\begin{split} & \psi^*(d_j, t't, d_j) \ge \alpha = \wedge_{d_i \in D} \left\{ \psi^*(d_j, t', d_i), \psi^*(d_i, t, q_j) \right\} \ge \alpha \\ & \Longrightarrow \psi^*(d_i, t, d_j) \ge \alpha, \text{ for every } d_i \in D. \\ & \Longrightarrow d_j \in \alpha SN(S) \\ & \Longrightarrow \alpha SR(S) \subseteq \alpha SN(S). \end{split}$$

Let $d_j \in \alpha SN(S)$ and let $t' \in I^*$. Then $\psi^*(d_i, t, d_j) \ge \alpha$, for every $d_i \in D$.

Now, $\psi^*(d_j, t', d_k) \ge \alpha$ for some $d_k \in D$ and $\psi(d_k, t, d_j) \ge \alpha$ $\implies \psi(d_j, t't, d_j) \ge \alpha$ $\implies d_j \in \alpha SR(S)$ $\implies \alpha SN(S) \subseteq \alpha SR(S)$. Therefore, $\alpha SN(S) = \alpha SR(S)$. \Box

Theorem 4.3. A fuzzy automaton $S = (D, I, \psi)$ is α -stable strongly directable fuzzy automaton if and only if it is strongly connected and α -stable directable.

Proof. Let $S = (D, I, \psi)$ be a α -stable strongly directable fuzzy automaton. It is clearly α -stable directable. Now we will prove it is strongly connected. It is enough to show that for any $d_i, d_j \in D$, there exists $t \in I^*$ such that $\psi^*(d_i, t, d_j) \ge \alpha > 0$. Since $d_j \in \alpha SN(S)$ [$\alpha SN(S) = D$], $\psi^*(d_k, t, d_j) \ge \alpha > 0$, for every $d_k \in S$.

Therefore, $\psi^*(d_i, t, d_j) \ge \alpha > 0$. Thus, *S* is strongly connected.

Conversely, let *S* be strongly connected and α -stable directable. Then $\alpha SN(S) \neq \phi$ and by Theorem 4.1, $\alpha SN(S)$ is α -stable subautomaton of *S*. Since *S* is strongly connected, there is no proper subautomaton. Hence, $D = \alpha SN(S)$. Thus, *S* is strongly α -stable directable fuzzy automaton.

Theorem 4.4. A fuzzy automaton $S = (D, I, \psi)$ is α -stable directable if and only if it is an extension of a strongly α -stable directable fuzzy automaton S' by a α -stable trap-directable fuzzy automaton S''.

(*i*) $\alpha SDW(S'') . \alpha SDW(S') \subseteq \alpha SDW(S) \subseteq \alpha SDW(S'') \cap \alpha SDW(S');$ (*ii*) $\alpha SN(S) = S'.$

Proof. Let *S* be α -stable directable fuzzy automaton. Then $\alpha SN(S)$ is non-empty and by Theorem 4.1, $\alpha SN(S)$ is a α -stable subautomaton of *S*.

The Rees factor fuzzy automaton $S/\alpha SN(S)$ is also α -stable directable.

Further, by Rees factor, $S/\alpha SN(S)$ is a α -stable trap-directable fuzzy automaton and hence, *S* is an extension of a strongly α -stable directable fuzzy automaton $\alpha SN(S)$ by a α -stable trap-directable fuzzy automaton $S/\alpha SN(S)$.

Conversely, let *S* be an extension of strongly α -stable directable fuzzy automaton *S'* by a α -stable trap-directable fuzzy automaton *S''*. Let $t \in \alpha SDW(S'')$ and $t' \in \alpha SDW(S')$. Then for all d_i , $d_j \in D$ we have that $\psi^*(d_i, t, d_k) \ge \alpha$, $\psi^*(d_i, t, d_k) \ge \alpha$, where $d_k \in S'$.

Hence, $\Psi^*(d_i, tt', d_m) = \wedge \{\Psi^*(d_i, t, d_k), \Psi^*(d_k, t', d_m)\} \geq \alpha$

Thus, $tt' \in \alpha SDW(S)$ and hence, *S* is a α -stable directable fuzzy automaton.

If $t \in \alpha SDW(S'')$ and $t' \in \alpha SDW(S')$, then $tt' \in \alpha SDW(S)$. Therefore, $\alpha SDW(S'') \cdot \alpha SDW(S') \subseteq \alpha SDW(S)$.

Let $t \in \alpha SDW(S)$. Since *S* is an extension of a strongly α -stable directable fuzzy automaton *S'* by a α -stable trapdirectable fuzzy automaton *S''*.

Therefore, *t* is a α -stable directing word of *S'* and *S''*.

Hence, $\alpha SDW(S) \subseteq \alpha SDW(S') \cap \alpha SDW(S'')$.

Thus, (i) holds.

By Theorem 4.2, $\alpha SN(S)$ is the α -stable kernel of S, so $\alpha SN(S) \subseteq S'$.

Conversely, assume that $d_j \in S'$. Since S' is strongly α -stable directable, we conclude that there exists $t' \in \alpha SDW(S')$ such that $\psi^*(d_i, t', d_j) \ge \alpha$, for every $d_i \in S'$. Hence, for every $d_i \in D$ and $t \in \alpha SDW(S'')$, $\psi^*(d_i, t, d_l) \ge \alpha$, where $d_l \in S'$. Now, $\psi^*(d_i, tt', d_j) = \wedge_{d_l \in S'} \{\psi^*(d_i, t, q_l), \psi^*(d_l, t', d_j)\} \ge \alpha$. Therefore, $d_j \in \alpha SN(S)$ and hence, $\alpha SN(S) = S'$.

5. Conclusion

We introduce α -stable necks, α -stable directable, α -stable trap-directable fuzzy automata. We show that α stable necks of fuzzy automaton exists then it is α -stable subautomaton, α -stable kernel. Finally we prove a fuzzy automaton is α -stable directable if and only if it is an extension of a strongly α -stable directable fuzzy automaton by a α stable trap-directable fuzzy automaton.

References

- [1] M. Bogdanovic, S. Bogdanovic, M. Ciric, and T. Petkovic, Necks of automata, *Novi Sad J. Math.* 34 (2) (2004), 5-15.
- ^[2] M. Bogdanovic, B. Imreh, M. Ciric, and T. Petkovic, Directable automata and their generalization (A survey), *Novi Sad J. Math.*, 29 (2) (1999), 31-74.
- S. Bogdanovic, M. Ciric, and T. Petkovic, Directable
 automata and transition semigroups, *Acta Cybernetica*(*Szeged*), 13 (1998), 385-403.

- [4] V. Karthikeyan, and M. Rajasekar, Necks of fuzzy automata, Proceedings of International Conference on Mathematical Modeling and Applied Soft Computing, Shanga Verlag, July 11-13, (2012), 15-20.
- [5] V. Karthikeyan, and M. Rajasekar, γ-Synchronized fuzzy automata and their applications, *Annals of Fuzzy Mathematics and Informatics*, 10 (2) (2015), 331-342.
- ^[6] J. N. Mordeson, and D. S. Malik, Fuzzy automata and languages-theory and applications, *Chapman & Hall/ CRC Press*, (2002).
- ^[7] W. G. Wee, On generalizations of adaptive algorithms and application of the fuzzy sets concepts to pattern classification Ph.D. Thesis, Purdue University, (1967).
- [8] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (3) (1965), 338-353.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********

