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Abstract

Eigenvalue of a graph is the eigenvalue of its adjacency matrix. A graph G is reciprocal if the reciprocal
of each of its eigenvalue is also an eigenvalue of G. The Wiener index W(G) of a graph G is defined by

W(G) = % Y. d where D is the distance matrix of G. In this paper some new classes of reciprocal graphs
deD
and an upperbound for their energy are discussed. Pairs of equienergetic reciprocal graphs on every n =

0 mod (12) and n = 0 mod (16) are constructed. The Wiener indices of some classes of reciprocal graphs are
also obtained.
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1 Introduction

Let G be a graph of order n and size m with the vertex set V(G) labelled as {v1,v2,...,04}. The set of
eigenvalues {A1,Ay,..., A} of an adjacency matrix A of G is called its spectrum and is denoted by spec(G).
Non-isomorphic graphs with the same spectrum are called cospectral. Studies on graphs with a specific
pattern in their spectrum have been of interest. Gutman and Cvetkovic studied the spectral structure of
graphs having a maximal eigenvalue not greater than 2 in [5] and Balinska et.al have studied graphs with
integral spectra in [2]. In [12] some new constructions of integral graphs are provided. Dias in [6] has
identified graphs with complementary pairs of eigenvalues( eigenvalues A1 and A, with A; + A = —1). A
graph G is reciprocal [20] if the reciprocal of each of its eigenvalue is also an eigenvalue of G. The first
reference of a reciprocal graph appeared in the work of J.R. Dias in [6, [7] and the chemical molecules of
Dendralene and Radialene have been discussed there in. In [20] some classes of reciprocal graphs have been
identified. In [3] reciprocal graphs are also referred to as graphs with property R.

The energy of a graph G [1], denoted by E(G) is the sum of the absolute values of its eigenvalues.
Non-cospectral graphs with the same energy are called equienergetic. In [8, 9] [15] some bounds on energy are
described. In [1] and [22} 23] a pair of equienergetic graphs are constructed for every n = 0 (mod 4) and
n = 0(mod 5) and in [10] we have extended it for n = 6, 14, 18 and n > 20. In [17] a pair of equienergetic
graphs within the family of iterated line graphs of regular graphs and in [11] a pair of equienergetic graphs
obtained from the cross product of graphs are described. In [13] a pair of equienergetic self-complementary
graphs on n vertices is constructed for every n = 4k and n = 24t + 1,k > 2, t > 3. A plethora of papers have
been appeared dealing with this parameter in recent years.

The distance matrix of a connected graph G, denoted by D(G) is defined as
D(G) = [d(v;,vj)] where d(v;,v;) is the distance between v; and v;. The Wiener index W(G) is defined by
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W(G) = % de d. The chemical applications of this index are well established in [16), [18].
€

In this paper, we construct some new classes of reciprocal graphs and an upperbound for their energy
is obtained. Pairs of equienergetic reciprocal graphs on n = 0 mod (12) and n = 0 mod (16) are constructed.
The Wiener indices of some classes of reciprocal graphs are also obtained. These results are not found so far
in literature.

2 Some new classes of reciprocal graphs

If A and B are two matrices then A ® B denote the tensor product of A and B. We use the following properties
of block matrices[4].

M N _
P 0 ].Then|5:|M\Q—PM INJ.

Moreover if M and P commutes then |S| = |MQ — PN| where the symbol |.| denotes the determinant.

Lemma 2.1. Let M, N, P and Q be matrices with M invertible. Let S = {

We consider the following operations on G.

Operation 1. Attach a pendant vertex to each vertex of G. The resultant graph is called the pendant join graph of
G.[Also referred to as G corona Ky in [3].]

Operation 2. [19] Introduce n isolated vertices u;, i = 1 to n and join u; to the neighbors of v;. The resultant graph is
called the splitting graph of G.

Operation 3. In addition to G introduce two sets of n isolated vertices U = {u;} and W = {w;} corresponding to
V = {v;}, i = 1 to n. Join u; and w; to the neighbors of v; and then w; to the vertices in U corresponding to the
neighbors of v; in G for each i = 1 to n. The resultant graph is called the double splitting graph of G.

Operation 4. In addition to G introduce two more copies of G on U = {u;} and W = {w;} corresponding to
V = {v;}, i = 1ton. Join u; to the neighbors of v; and then w; to u; for each i = 1 to n. The resultant graph is called
the composition graph of G.

Operation 5. [n addition to G introduce two more copies of G on U = {u;} and W = {w; } corresponding to V = {v;},
i = 1to n. Join w; to the neighbors of v; and vertices in U corresponding to the neighbors of v; in G for each i =1 to n.

Lemma 2.2. Let G be a graph on n vertices with spec(G) = {A1,...,An} and H; be the graph obtained from
Operation i, i = 1to 5. Then

|
spec(Hy) = {
{
{

n
spec(Hy) = { A; A; £ /A2 + 1}
n

spec(Hs) = {Ai, (1 + \6) Ai}

i=1

Proof. The proof follows from Table 1 which gives the adjacency matrix of H;s fori = 1 to 5 and its spectrum,
obtained using Lemma 2.1|and the spectrum of tensor product of matrices.

Table 1
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Graph Adjacency matrix Spectrum
H, {A I} {/\i:i: A$+4}”
[ 0 ’ i=1
A A 11 n
H2 {A 0}_‘4@[1 0} {<&T\@)Ai}i:l
A A A 111 )
Hy [A 0 A|=A®|1 0 1] {7 (12v2) A}
A A O 110
A A 0 .
H, A AT (Ao diz 2241}
01 A
A0 A 101 .
Hs [0 A A|l=A®|0 1 1] {Ai,(liﬁ))\i}i_l
A A A 111

Note: H3 = Hs when G is bipartite.
Theorem 2.1. The pendant join graph of a graph G is reciprocal if and only if G is bipartite.

Proof. Let G be a bipartite graph and H, its pendant join graph. Then, corresponding to a non-zero eigenvalue
A of G, —A is also an eigenvalue of G [4].

By Lemma spec(H) = {A£VATH VZ)‘2+4, A€ spec(G)}. Letw = AvATHE V2A2+4 be an eigenvalue of H. Then

1 2
« Atv/AZid
z(;\—m)
(A+vAT+4) (A - VAT +3)
Z(A—\/m)

is an eigenvalue of H as —A is an eigenvalue of G. Similarly for a = A’fm also. The eigenvalues of H
corresponding to the zero eigenvalues of G if any, are 1 and —1 which are self reciprocal. Therefore H is a
reciprocal graph.

The converse can be proved by retracing the argument. O

Note 1. This theorem enlarges the classes of reciprocal graphs mentioned in [20]. The claim in [20] that the pendant join
graph of C, is reciprocal for every n is not correct as Cy, is not bipartite for odd n.

Definition 2.1. A graph G is partially reciprocal if 5 € spec(G) for every A € spec(G).
Examples:-

e Pendant join graph of any graph.

e Splitting graph of any reciprocal graph.
Theorem 2.2. The splitting graph of G is reciprocal if and only if G is partially reciprocal.

Proof. Let G be partially reciprocal and H be its splitting graph. Let « € spec(H). Then by Lemma 3, & =
(%) A, A € spec(G). Without loss of generality, take & = (%) A.Then 1 = (%@) . Thus 1 €
spec(H) as G is partially reciprocal and hence H is reciprocal.

Conversely assume that H is reciprocal. Then by the structure of spec(H) as given by Lemma[2.2} G is partially
reciprocal. O
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Theorem 2.3. Let G be a reciprocal graph. Then the double splitting graph and the composition graph of G are reciprocal
if and only if G is bipartite.

Proof. Let G be a bipartite reciprocal graph. Then A € spec(G) = —A, 1,51 € spec(G). Let H and H’
respectively denote the double splitting graph and composition graph of G. Then using Lemma 2.2]and Table
2 it follows that H and H' are reciprocal.

Table 2
Spec(H) W Spec(H'") W
{-n (1=v2)a} | {-4 (1£v2) 2} | {Ar e vaZ51) {},—Ai (—/\)Z—H}
Converse also follows. O

Illustration: The following graphs are reciprocal when G = Py.

[l

).

11

H,

3 An upperbound for the energy of reciprocal graphs

The following bounds on the energy of a graph are known.

1. [151y/2m + n(n — 1) |det A|* E(G)v/Zmn

2 BIEG)2 +/(n—1) (2m— 425

3. [0] E(G)%m + \/(n —2) (Zm - 8%3) if G is bipartite.

In this section we derive a better upperbound for the energy of a reciprocal graph and prove that the bound
is best possible. A graph of order n and size m is referred to as an (n, m) graph.

Theorem 3.4. Let G be an (n, m) reciprocal graph. Then E(G) < W and the bound is best possible for G = tKj

and tPy.

Proof. Let Gbe an (n
n

Therefore ) |A;| =
i=1 i

m) reciprocal graph with spec(G) = {A1,...,An}.

n n
=Eand ) A? = z%:zm.
i=1 i=1""1

~

1
[Ai]

It
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Now we have [21]the following inequality for real sequences a;, b; and ¢;, 1 <i <n

n e AN EIANCY
Y aici ) bic; <5 Q) abi+ () a; )b ) ¢
=1 i=1

=1 i i=1 i=1 i=1

Taking a; = |Ai], by = I)%\ and¢;=1Vi=1,2,...,n,

we have [E(G)]? < 1 [n+2m]nand hence E(G) < \/@
When G = tKy, n = 2t,m = t, E(G) = 2t and when G = tPy, n = 4t, m = 3t,
E(G) = 2t/5. -

4 Equienergetic reciprocal graphs

In this section we prove the existence of a pair of equienergetic reciprocal graphs on every n = 12p and
n=16p, p > 3.

Theorem 4.5. Let G be Ky, and F; be the graph obtained by applying Operations 3, 1 and 2 on G and F, the graph
obtained by applying Operations 5, 1 and 2 on G successively. Then F; and F, are reciprocal and equienergetic on 12p
vertices.

. _(p—-1 -1
Proof. Let G = K,. We have spec(Ky) = < 1 p-1 > .
Let G3 be the graph obtained by applying Operation 3 on G. Then by Lemma

spec(Gz) = ( —(r=1 1 (1 = ﬁ) (p=1) B <1 = ﬁ) ) .

1 p—1 each once each p —1 times
Now, let G3; be the graph obtained by applying Operation 1 on G3. Then by Lemma [2.2|spec(Gs1 )
p—1%4/(p—1)2+4 1445 (1+\/§>(p71)i\/{(1+\/§)(p71)}2+4
2 2 2
each once each p —1 times each once

(1-v2) (p-D)E/{(1—v2) (p-1) ' +4  (1+v2)£y/{ (1+v2) } +4 (1-v2) £/ {(1-v2) } +4
2 2 2
each once each p —1 times each p —1 times

Then

E(Gs1) :\/(p1)2+4+\/§(p1)+\/{(1+\f2) (p—l)}2+4

+\/{(1—\fz) (p—l)}2—|—4+(p—1) \/(1+xf2)2+4+\/(1—\/§)2+4

:\/er\/g(p—lH(P—l) 14+2v41
+\/6(p—1)2+8+2\/(p—1)4—|—24(p—1)2+16

Now, let F; be the graph obtained by applying Operation 2 on Gs;. Then by Lemma

E(F;) = V/5E(Gs1). Let Gs; be the graph obtained by applying Operations 5 and 1 on G successively and F,
be that obtained by applying Operation 2 on Gs;. Then we have

E(F) = V/5E(Gs;) = V/5E(G31) = E(F;). Also by Theorem 2, F; and F, are reciprocal. Thus the theorem
follows. O

Lemma 4.3. Let G be a non-bipartite graph on p vertices with spec(G) = {A1,...,Ap} and an adjacency matrix A.
Then the spectra of graphs whose adjacency matrices are
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and H' =

A
A
A are
0

> x O o
N N S S
ST N S N

A
0
r_
F= A
A

{/\i,—)\i,< 13))\1}, and {—)\l

Theorem 4.6. Let G be K. Let Ty and T, be the graphs obtained by applying Operations 1 and 2 successively on graphs
associated with F' and H' respectively. Then Ty and T, are reciprocal and equienergetic on 16p vertices.

N S
HD>OD>D>

0
A
A
A
A

s —Ai (%) )\,}f:l respectively .

Proof. Let the graph associated with F’ be also denoted by F’ and F|, the graph obtained by applying
Operation 1 on F’. Then by a similar computation as in Theorem 5,

E(E) =2 (p—1)2+4+2\/§(p—1)+\l (”*;"/ﬁ> (p—1)2+4

+J (11 ;\/ﬁ> (p—1)7+4+(p—1) N <1l+23\/ﬁ) +4+J (11 23\/@> +4]

and E(Ty) = V/5E(F]) = +/5E(H}) = E(T»), by Lemma Also by Theorem 2, T and T, are reciprocal.
Hence the theorem. O

5 Wiener index of some reciprocal graphs

In this section we derive the Wiener indices of some classes of reciprocal graphs described in the earlier
section. We shall denote by D(G) = D, the distance matrix of G and d;, the sum of entries in the i*" row of D.
The following theorem generalizes the results in [14].

Theorem 5.7. Let G be a graph with Wiener index W(G). Let H be the pendant join graph of G. Then W(H) =
AW(G) +n(2n —1).

Proof. We have, W(G) = 1 Z d;.

Let V(G) = {vq, v, .. Un} and let U = {uy, uy, ..., uy} be the corresponding vertices used in the pendant
join of G. Then the distance matrix of H is as follows.

[ 0 d(vy,v2) ..  d(vy,on) 1 1+d(vy,02) .. 1+4d(vy,0,) |
d(vy,v1) 0 1+ d (v, v1) 1
1 1+d(vy,02) ... 1+d(vy,0n) 0 2+d(v1,v2) ... 24d(vy,0,)
L 1 +d(Un,Ul) 2+d(vn,01) 0 ]

since d(v;,uj) =1; ifi=j
=1+4d(v;,v));i # jand
d(uj,uj) = d(u;,v;) +d(v;, v;) +d(vj, u;)
=2+d(v;,v;)
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2di+n
. . 2d, +n
The row sum matrix of H is 2y + 31 —2
| 2d, +3n—2 |
1 [ n n
Then W(H) = 5 l; (2d; +n) + i}; (2d; +3n —2)

= 4W(G) + n(2n — 1). Hence the theorem.

The proof techniques of the following theorems are on similar lines.

Theorem 5.8. Let G be a triangle free (n, m) graph and H, its splitting graph. Then
W(H) =4W(G) +2(m + n).

Corollory 5.1. Let G be a triangle free (n,m) graph and F, the splitting graph of the pendant join graph of G. Then
W(F) = 2[8W(G) +4n® + (m +n)].

Theorem 5.9. Let G be a triangle free (n, m) graph and H, its double splitting graph. Then W(H) = 9W(G) + 4m +
6n.

Theorem 5.10. Let G be a triangle free (n, m) graph and H, its composition graph. Then
W(H) = 9W(G) + 2n? + 4n.
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