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Abstract

Eigenvalue of a graph is the eigenvalue of its adjacency matrix. A graph G is reciprocal if the reciprocal
of each of its eigenvalue is also an eigenvalue of G. The Wiener index W(G) of a graph G is defined by
W(G) = 1

2 ∑
d∈D

d where D is the distance matrix of G. In this paper some new classes of reciprocal graphs

and an upperbound for their energy are discussed. Pairs of equienergetic reciprocal graphs on every n ≡
0 mod (12) and n ≡ 0 mod (16) are constructed. The Wiener indices of some classes of reciprocal graphs are
also obtained.

Keywords: Eigenvalue, Energy, Reciprocal graphs, splitting graph, Wiener index.

2010 MSC: 39B55, 39B52, 39B82. c©2012 MJM. All rights reserved.

1 Introduction

Let G be a graph of order n and size m with the vertex set V(G) labelled as {v1, v2, . . . , vn}. The set of
eigenvalues {λ1, λ2, . . . , λn} of an adjacency matrix A of G is called its spectrum and is denoted by spec(G).
Non-isomorphic graphs with the same spectrum are called cospectral. Studies on graphs with a specific
pattern in their spectrum have been of interest. Gutman and Cvetkovic studied the spectral structure of
graphs having a maximal eigenvalue not greater than 2 in [5] and Balinska et.al have studied graphs with
integral spectra in [2]. In [12] some new constructions of integral graphs are provided. Dias in [6] has
identified graphs with complementary pairs of eigenvalues( eigenvalues λ1 and λ2 with λ1 + λ2 = −1). A
graph G is reciprocal [20] if the reciprocal of each of its eigenvalue is also an eigenvalue of G. The first
reference of a reciprocal graph appeared in the work of J.R. Dias in [6, 7] and the chemical molecules of
Dendralene and Radialene have been discussed there in. In [20] some classes of reciprocal graphs have been
identified. In [3] reciprocal graphs are also referred to as graphs with property R.

The energy of a graph G [1], denoted by E(G) is the sum of the absolute values of its eigenvalues.
Non-cospectral graphs with the same energy are called equienergetic. In [8, 9, 15] some bounds on energy are
described. In [1] and [22, 23] a pair of equienergetic graphs are constructed for every n ≡ 0 (mod 4) and
n ≡ 0 (mod 5) and in [10] we have extended it for n = 6, 14, 18 and n ≥ 20. In [17] a pair of equienergetic
graphs within the family of iterated line graphs of regular graphs and in [11] a pair of equienergetic graphs
obtained from the cross product of graphs are described. In [13] a pair of equienergetic self-complementary
graphs on n vertices is constructed for every n = 4k and n = 24t + 1, k ≥ 2, t ≥ 3. A plethora of papers have
been appeared dealing with this parameter in recent years.

The distance matrix of a connected graph G, denoted by D(G) is defined as
D(G) =

[
d(vi, vj)

]
where d(vi, vj) is the distance between vi and vj. The Wiener index W(G) is defined by
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W(G) = 1
2 ∑

d∈D
d. The chemical applications of this index are well established in [16, 18].

In this paper, we construct some new classes of reciprocal graphs and an upperbound for their energy
is obtained. Pairs of equienergetic reciprocal graphs on n ≡ 0 mod (12) and n ≡ 0 mod (16) are constructed.
The Wiener indices of some classes of reciprocal graphs are also obtained. These results are not found so far
in literature.

2 Some new classes of reciprocal graphs

If A and B are two matrices then A⊗ B denote the tensor product of A and B. We use the following properties
of block matrices[4].

Lemma 2.1. Let M, N, P and Q be matrices with M invertible. Let S =

[
M N
P Q

]
. Then |S| = |M|

∣∣Q− PM−1N
∣∣.

Moreover if M and P commutes then |S| = |MQ− PN| where the symbol |.| denotes the determinant.

We consider the following operations on G.

Operation 1. Attach a pendant vertex to each vertex of G. The resultant graph is called the pendant join graph of
G.[Also referred to as G corona K1 in [3].]

Operation 2. [19] Introduce n isolated vertices ui, i = 1 to n and join ui to the neighbors of vi. The resultant graph is
called the splitting graph of G.

Operation 3. In addition to G introduce two sets of n isolated vertices U = {ui} and W = {wi} corresponding to
V = {vi}, i = 1 to n. Join ui and wi to the neighbors of vi and then wi to the vertices in U corresponding to the
neighbors of vi in G for each i = 1 to n. The resultant graph is called the double splitting graph of G.

Operation 4. In addition to G introduce two more copies of G on U = {ui} and W = {wi} corresponding to
V = {vi}, i = 1 to n. Join ui to the neighbors of vi and then wi to ui for each i = 1 to n. The resultant graph is called
the composition graph of G.

Operation 5. In addition to G introduce two more copies of G on U = {ui} and W = {wi} corresponding to V = {vi},
i = 1 to n. Join wi to the neighbors of vi and vertices in U corresponding to the neighbors of vi in G for each i = 1 to n.

Lemma 2.2. Let G be a graph on n vertices with spec(G) = {λ1, . . . , λn} and Hi be the graph obtained from
Operation i, i = 1 to 5. Then

spec(H1) =

λi ±
√

λ2
i + 4

2


n

i=1

spec(H2) =

{(
1±
√

5
2

)
λi

}n

i=1

spec(H3) =
{
−λi,

(
1±
√

2
)

λi

}n

i=1

spec(H4) =

{
λi, λi ±

√
λ2

i + 1
}n

i=1

spec(H5) =
{

λi,
(

1±
√

2
)

λi

}n

i=1

Proof. The proof follows from Table 1 which gives the adjacency matrix of His for i = 1 to 5 and its spectrum,
obtained using Lemma 2.1 and the spectrum of tensor product of matrices.

Table 1
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Graph Adjacency matrix Spectrum

H1

[
A I
I 0

] {
λi±
√

λ2
i +4

2

}n

i=1

H2

[
A A
A 0

]
= A⊗

[
1 1
1 0

] {(
1±
√

5
2

)
λi

}n

i=1

H3

 A A A
A 0 A
A A 0

 = A⊗

 1 1 1
1 0 1
1 1 0

 {
−λi,

(
1±
√

2
)

λi

}n

i=1

H4

 A A 0
A A I
0 I A

 {
λi, λi ±

√
λ2

i + 1
}n

i=1

H5

 A 0 A
0 A A
A A A

 = A⊗

 1 0 1
0 1 1
1 1 1

 {
λi,
(

1±
√

2
)

λi

}n

i=1

Note: H3 = H5 when G is bipartite.

Theorem 2.1. The pendant join graph of a graph G is reciprocal if and only if G is bipartite.

Proof. Let G be a bipartite graph and H, its pendant join graph. Then, corresponding to a non-zero eigenvalue
λ of G, −λ is also an eigenvalue of G [4].
By Lemma 2.2, spec(H) = { λ±

√
λ2+4
2 , λ ∈ spec(G)}. Let α = λ+

√
λ2+4
2 be an eigenvalue of H. Then

1
α
=

2

λ +
√

λ2 + 4

=
2
(

λ−
√

λ2 + 4
)

(
λ +
√

λ2 + 4
) (

λ−
√

λ2 + 4
)

=
2
(

λ−
√

λ2 + 4
)

−4

=
(−λ) +

√
(−λ)2 + 4

2

is an eigenvalue of H as −λ is an eigenvalue of G. Similarly for α = λ−
√

λ2+4
2 also. The eigenvalues of H

corresponding to the zero eigenvalues of G if any, are 1 and −1 which are self reciprocal. Therefore H is a
reciprocal graph.
The converse can be proved by retracing the argument.

Note 1. This theorem enlarges the classes of reciprocal graphs mentioned in [20]. The claim in [20] that the pendant join
graph of Cn is reciprocal for every n is not correct as Cn is not bipartite for odd n.

Definition 2.1. A graph G is partially reciprocal if −1
λ ∈ spec(G) for every λ ∈ spec(G).

Examples:-

• Pendant join graph of any graph.

• Splitting graph of any reciprocal graph.

Theorem 2.2. The splitting graph of G is reciprocal if and only if G is partially reciprocal.

Proof. Let G be partially reciprocal and H be its splitting graph. Let α ∈ spec(H). Then by Lemma 3, α =(
1±
√

5
2

)
λ, λ ∈ spec(G). Without loss of generality, take α =

(
1+
√

5
2

)
λ. Then 1

α =
(

1−
√

5
2

)
−1
λ . Thus 1

α ∈
spec(H) as G is partially reciprocal and hence H is reciprocal.
Conversely assume that H is reciprocal. Then by the structure of spec(H) as given by Lemma 2.2, G is partially
reciprocal.
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Theorem 2.3. Let G be a reciprocal graph. Then the double splitting graph and the composition graph of G are reciprocal
if and only if G is bipartite.

Proof. Let G be a bipartite reciprocal graph. Then λ ∈ spec(G) ⇒ −λ, 1
λ , −1

λ ∈ spec(G). Let H and H′

respectively denote the double splitting graph and composition graph of G. Then using Lemma 2.2 and Table
2 it follows that H and H′ are reciprocal.

Table 2

Spec(H) 1
spec(H)

Spec(H′) 1
spec(H′){

−λ,
(

1±
√

2
)

λ
} {

− 1
λ ,
(

1±
√

2
)
−1
λ

} {
λ, λ±

√
λ2 + 1

} {
1
λ ,−λ±

√
(−λ)2 + 1

}
Converse also follows.

Illustration: The following graphs are reciprocal when G = P4.

3 An upperbound for the energy of reciprocal graphs

The following bounds on the energy of a graph are known.

1. [15]
√

2m + n(n− 1) |det A|
2
n E(G)

√
2mn

2. [8] E(G) 2m
n +

√
(n− 1)

(
2m− 4 m2

n2

)
3. [9] E(G) 4m

n +

√
(n− 2)

(
2m− 8 m2

n2

)
, if G is bipartite.

In this section we derive a better upperbound for the energy of a reciprocal graph and prove that the bound
is best possible. A graph of order n and size m is referred to as an (n, m) graph.

Theorem 3.4. Let G be an (n, m) reciprocal graph. Then E(G) ≤
√

n(2m+n)
2 and the bound is best possible for G = tK2

and tP4.

Proof. Let G be an (n, m) reciprocal graph with spec(G) = {λ1, . . . , λn}.
Therefore

n
∑

i=1
|λi| =

n
∑

i=1

1
|λi |

= E and
n
∑

i=1
λ2

i =
n
∑

i=1

1
λ2

i
= 2m.
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Now we have [21]the following inequality for real sequences ai, bi and ci, 1 ≤ i ≤ n

n

∑
i=1

aici

n

∑
i=1

bici ≤
1
2


n

∑
i=1

aibi +

(
n

∑
i=1

a2
i

)1/2( n

∑
i=1

b2
i

)1/2


n

∑
i=1

c2
i

Taking ai = |λi| , bi =
1
|λi |

and ci = 1 ∀i = 1, 2, . . . , n,

we have [E(G)]2 ≤ 1
2 [n + 2m] n and hence E(G) ≤

√
n(2m+n)

2 .
When G = tK2, n = 2t, m = t, E(G) = 2t and when G = tP4, n = 4t, m = 3t,
E(G) = 2t

√
5.

4 Equienergetic reciprocal graphs

In this section we prove the existence of a pair of equienergetic reciprocal graphs on every n = 12p and
n = 16p, p ≥ 3.

Theorem 4.5. Let G be Kp and F1 be the graph obtained by applying Operations 3, 1 and 2 on G and F2, the graph
obtained by applying Operations 5, 1 and 2 on G successively. Then F1 and F2 are reciprocal and equienergetic on 12p
vertices.

Proof. Let G = Kp. We have spec(Kp) =

(
p− 1 −1

1 p− 1

)
.

Let G3 be the graph obtained by applying Operation 3 on G. Then by Lemma 2.2,

spec(G3) =

(
−(p− 1) 1

(
1±
√

2
)
(p− 1) −

(
1±
√

2
)

1 p− 1 each once each p− 1 times

)
.

Now, let G31 be the graph obtained by applying Operation 1 on G3. Then by Lemma 2.2 spec(G31)

=



p−1±
√
(p−1)2+4
2

−1±
√

5
2

(1+
√

2)(p−1)±
√
{(1+

√
2)(p−1)}2

+4
2

each once each p− 1 times each once

(1−
√

2)(p−1)±
√
{(1−

√
2)(p−1)}2

+4
2

(1+
√

2)±
√
{(1+

√
2)}2

+4
2

(1−
√

2)±
√
{(1−

√
2)}2

+4
2

each once each p− 1 times each p− 1 times


Then

E(G31) =

√
(p− 1)2 + 4 +

√
5 (p− 1) +

√{(
1 +
√

2
)
(p− 1)

}2
+ 4

+

√{(
1−
√

2
)
(p− 1)

}2
+ 4 + (p− 1)

[√(
1 +
√

2
)2

+ 4 +

√(
1−
√

2
)2

+ 4

]

=

√
(p− 1)2 + 4 +

√
5 (p− 1) + (p− 1)

√
14 + 2

√
41

+

√
6 (p− 1)2 + 8 + 2

√
(p− 1)4 + 24 (p− 1)2 + 16

Now, let F1 be the graph obtained by applying Operation 2 on G31. Then by Lemma 2.2,
E(F1) =

√
5E(G31). Let G51 be the graph obtained by applying Operations 5 and 1 on G successively and F2

be that obtained by applying Operation 2 on G51. Then we have
E(F2) =

√
5E(G51) =

√
5E(G31) = E(F1). Also by Theorem 2, F1 and F2 are reciprocal. Thus the theorem

follows.

Lemma 4.3. Let G be a non-bipartite graph on p vertices with spec(G) = {λ1, . . . , λp} and an adjacency matrix A.
Then the spectra of graphs whose adjacency matrices are
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F′ =


A A A A
A A 0 A
A 0 A A
A A A 0

 and H′ =


0 A A A
A 0 A A
A A A A
A A A 0

 are

{
λi,−λi,

(
3±
√

13
2

)
λi

}p

i=1
and

{
−λi,−λi,

(
3±
√

13
2

)
λi

}p

i=1
respectively .

Theorem 4.6. Let G be Kp. Let T1 and T2 be the graphs obtained by applying Operations 1 and 2 successively on graphs
associated with F′ and H′ respectively. Then T1 and T2 are reciprocal and equienergetic on 16p vertices.

Proof. Let the graph associated with F′ be also denoted by F′ and F′1, the graph obtained by applying
Operation 1 on F′. Then by a similar computation as in Theorem 5,

E(F′1) = 2
√
(p− 1)2 + 4 + 2

√
5 (p− 1) +

√√√√(11 + 3
√

13
2

)
(p− 1)2 + 4

+

√√√√(11− 3
√

13
2

)
(p− 1)2 + 4 + (p− 1)


√√√√(11 + 3

√
13

2

)
+ 4 +

√√√√(11− 3
√

13
2

)
+ 4


and E(T1) =

√
5E(F′1) =

√
5E(H′1) = E(T2), by Lemma 2.2. Also by Theorem 2, T1 and T2 are reciprocal.

Hence the theorem.

5 Wiener index of some reciprocal graphs

In this section we derive the Wiener indices of some classes of reciprocal graphs described in the earlier
section. We shall denote by D(G) = D, the distance matrix of G and di, the sum of entries in the ith row of D.
The following theorem generalizes the results in [14].

Theorem 5.7. Let G be a graph with Wiener index W(G). Let H be the pendant join graph of G. Then W(H) =

4W(G) + n(2n− 1).

Proof. We have, W(G) = 1
2

n
∑

i=1
di.

Let V(G) = {v1, v2, . . . , vn} and let U = {u1, u2, . . . , un} be the corresponding vertices used in the pendant
join of G. Then the distance matrix of H is as follows.



0 d(v1, v2) ... d(v1, vn) 1 1 + d(v1, v2) ... 1 + d(v1, vn)

... ... ... ... ... ... ... ...
d(vn, v1) ... ... 0 1 + d(vn, v1) ... ... 1

1 1 + d(v1, v2) ... 1 + d(v1, vn) 0 2 + d(v1, v2) ... 2 + d(v1, vn)

... ... ... ... ... ... ... ...
1 + d(vn, v1) ... ... ... 2 + d(vn, v1) ... ... 0



since d(vi, uj) = 1; if i = j

= 1 + d(vi, vj); i 6= jand

d(ui, uj) = d(ui, vi) + d(vi, vj) + d(vj, uj)

= 2 + d(vi, vj)
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The row sum matrix of H is



2d1 + n
...

2dn + n
2d1 + 3n− 2

...
2dn + 3n− 2


.

Then W(H) =
1
2

[
n

∑
i=1

(2di + n) +
n

∑
i=1

(2di + 3n− 2)

]
= 4W(G) + n(2n− 1). Hence the theorem.

The proof techniques of the following theorems are on similar lines.

Theorem 5.8. Let G be a triangle free (n, m) graph and H, its splitting graph. Then
W(H) = 4W(G) + 2(m + n).

Corollory 5.1. Let G be a triangle free (n, m) graph and F, the splitting graph of the pendant join graph of G. Then
W(F) = 2[8W(G) + 4n2 + (m + n)].

Theorem 5.9. Let G be a triangle free (n, m) graph and H, its double splitting graph. Then W(H) = 9W(G) + 4m +

6n.

Theorem 5.10. Let G be a triangle free (n, m) graph and H, its composition graph. Then
W(H) = 9W(G) + 2n2 + 4n.
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