Malaya
Journal of
MatematikMJM
an international journal of mathematical sciences with
computer applications...

A Note on Global Bipartite Domination in Graphs

Latheesh Kumar A. R.^a and Anil Kumar V.^{b*}

^a Department of Mathematics, St. Mary's College, Sulthan bathery, Wayanad, Kerala, India 673 592.
^b Department of Mathematics, University of Calicut, Malappuram, Kerala, India 673 635.

Abstract

In this paper we introduce the concept of the *global bipartite domination number* $\gamma_{gb}(G)$ of a connected bipartite graph *G* and study some of its general properties. Moreover we determine the global bipartite domination number of certain classes of graphs.

Keywords: Domination, global bipartite domination, global bipartite domination number.

2010 MSC: 05C69

©2012 MJM. All rights reserved.

1 Introduction

In this paper we consider simple, connected and bipartite graphs. All notations and definitions not given here can be found in [1, 3]. A graph is an ordered pair G = (V(G), E(G)), where V(G) is a finite nonempty set and E(G) is a collection of 2- point subsets of V. The sets V(G) and E(G) are the vertex set and edge set of G respectively. The *degree* of a vertex v in G is the number of edges incident at v. The set of all neighbors of v is the *open neighborhood* of v, denoted by N(v). Let P_n , C_n , K_n and $K_{m,n}$ denote path, cycle, complete graph and complete bipartite graph respectively. The sudivision of the graph G is the graph S(G) obtained from G by subdividing each edge of G. The corona $G \circ K_1$ of G is the graph obtained from G by adding a pendant edge to each vertex of G. A set $A \subseteq V(G)$ of vertices in a graph G = (V, E) is called a *dominating set*, if every vertex $v \in V$ is either an element of A or adjacent to an element of A. The *domination number* $\gamma(G)$ of a graph G is the minimum cardinality of a dominating set in G.

2 Main results

We introduce a new concept, namely, **Global Bipartite Dominating Set** of a simple bipartite graph. Then we define the global bipartite domination number of *G*.

Definition 2.1. Let *G* be a connected bipartite graph with bipartition (X, Y), with |X| = m and |Y| = n. The relative complement of *G* in $K_{m,n}$ denoted by \hat{G} is the graph obtained by deleting all edges of *G* from $K_{m,n}$ (*i.e.*, $K_{m,n} \setminus G$). A global bipartite dominating set (GBDS) of *G* is a set *S* of vertices of *G* such that it dominates *G* and its relative complement \hat{G} . The global bipartite domination number, $\gamma_{gb}(G)$ is the minimum cardinality of a global bipartite dominating set of *G*.

Theorem 2.1. For any connected spanning subgraph G of $K_{m,n}$, $\gamma(G) \leq \gamma_{gb}(G) \leq m + n$.

Proof. A global bipartite dominating set of *G* is a dominating set of *G* and so $\gamma(G) \leq \gamma_{gb}(G)$. The set of all vertices of *G* is clearly a GBDS of *G* so, $\gamma_{gb}(G) \leq m + n$. Therefore $\gamma(G) \leq \gamma_{gb}(G) \leq m + n$. \Box

*Corresponding author

E-mail address: anil@uoc.ac.in (Anil Kumar V.), latheesby@gmail.com (Latheesh Kumar A. R.)

Remark 2.1. The bounds in Theorem 2.1 are sharp. For the complete bipartite graph $G = K_{m,n}$, $\gamma_{gb}(K_{m,n}) = m + n$. For P_4 , $\gamma(P_4) = \gamma_{gb}(P_4) = 2$. So $K_{m,n}$ has the largest possible GBD number. Also the bounds in Theorem 2.1 are strict. For the graph $K_{2,3} - e$, $\gamma(K_{2,3} - e) = 2$ and $\gamma_{gb}(K_{2,3} - e) = 4$.

Theorem 2.2. If G and \widehat{G} does not contain isolated vertices, then $\gamma_{gb}(G) \leq \min\{m,n\}$, where G is a spanning subgraph of $K_{m,n}$.

Proof. Let (X, Y) be the bipartition of *G* with $|X| = m \le |Y| = n$. Since *G* and \widehat{G} does not contain isolated vertices, *X* is a G.B.D.S. of *G*. Therefore $\gamma_{gb}(G) \leq m$.

Theorem 2.3. For any positive integers *m* and *n*, $\gamma_{gb}(K_{m,n}) = m + n$.

Proof. Let G be a complete bipartite graph with partitions X and Y. Then $uv \in E(G)$ for every $u \in X$ and $v \in Y$. Let \widehat{G} denotes the relative complement of G in $K_{m,n}$. Then \widehat{G} contains m + n isolated vertices. Hence every global bipartite dominating set of *G* must contain all vertices of \widehat{G} and so $\gamma_{gb}(G) \ge slantm + n$. Now V(G) is a global bipartite dominating set of *G*. Hence $\gamma_{gb}(G) = m + n$.

Theorem 2.4. For a spanning subgraph G of $K_{m,n}$, a vertex v is in every global bipartite dominating set of G if and only if v is an isolated vertex in \widehat{G} .

Proof. If $|V(G)| \leq 3$, the proof is trivial. So let |V(G)| > 3. If v is an isolated vertex in \hat{G} , then v is in every global bipartite dominating set of G. Conversely if v is not an isolated vertex in \hat{G} , then there exist atleast two vertices u and w such that u is adjacent to v in G and w is adjacent to v in \widehat{G} . So $V(G) \setminus \{v\}$ is a global bipartite dominating set of *G*.

Theorem 2.5. Let G be a connected bipartite graph with partite sets X and Y. Let $S = V_1 \cup V_2$ be a GBDS of G, where $V_1 \subseteq X$ and $V_2 \subseteq Y$. Then if $V_1 = \phi$, then $V_2 = Y$ and if $V_2 = \phi$, then $V_1 = X$.

Proof. Let $S = V_1 \cup V_2$, where $V_1 \subseteq X$ and $V_2 \subseteq Y$. If $V_1 = \phi$, then $S \subseteq Y$. Since *G* is bipartite, the vertices in *Y* are not adjacent and so $S \supseteq Y$. Therefore $S = V_2 = Y$. Similarly, we can prove that if $V_2 = \phi$ then $V_1 = X$.

Theorem 2.6. Let (X, Y) be the bipartition of a connected graph G. Then X is a GBDS of G if and only if |N(y)| < $|X|, \forall y \in Y.$

Proof. Let X be a GBDS of G. If possible assume that there exists a vertex $y \in Y$ such that |N(y)| = |X|. Then y is an isolated vertex in G, contradiction to the fact that X is a GBDS of G. Conversely, since G is connected, X is dominating set of G. So it is sufficient to show that X dominates \widehat{G} also. Let $y \in Y$, then N(y) is a proper subset of *X*. So *y* is adjacent to at least one vertex of *X* in *G*. This completes the proof.

Theorem 2.7. Let G be a connected sub graph of $K_{m,n}$. Then $\gamma_{gb}(G) = m + n - 1$ if and only if $G \cong K_{m,n} - e$.

Proof. Let $G \cong K_{m,n} - e$. where $e = uv \in E(K_{m,n})$. So $uv \notin E(G)$ and hence $uv \in E(\widehat{G})$. Since \widehat{G} contains m + n - 2 isolated vertices, every global bipartite dominating set of G contains all vertices of $V(G) - \{u, v\}$ and at least one of *u* and *v*. Thus

$$\gamma_{gb}(G) \ge m + n - 1 \tag{2.1}$$

Since $V(G) - \{u\}$ is a GBDS of *G*, it follows that

$$\gamma_{gb}(G) \le m + n - 1 \tag{2.2}$$

Thus by (1) and (2)we obtain $\gamma_{gb}(G) = m + n - 1$.

Conversely assume that $\gamma_{gb}(G) = m + n - 1$. To prove $G \cong K_{m,n} - e$. We observe that $\gamma_{gb}(K_{m,n}) = m + n$ and $\gamma_{eb}(K_{m,n}-e) = m + n - 1$. Let *G* be a proper subgraph of $K_{m,n} - e$ containing m + n vertices. Then \widehat{G} contains atmost m + n - 3 isolated vertices. In that case \widehat{G} contains a path *uvw*. Then $V(G) - \{u, w\}$ is a GBDS of *G*. So $\gamma_{gb}(G) \leq m + n - 2$. This completes the proof.

Theorem 2.8. Let G be a graph with bipartition (X, Y). If G has a γ -set $S = V_1 \cup V_2$, where $V_1 \subseteq X$ and $V_2 \subseteq Y$ then *S* is a γ_{gb} -set of *G* if and only if $\bigcap N(x) \subseteq V_2$ and $\bigcap N(y) \subseteq V_1$. $x \in V_1$

$$y \in$$

Proof. Let $\bigcap_{x \in V_1} N(x) \subseteq V_2$ and $\bigcap_{y \in V_2} N(y) \subseteq V_1$. Since *S* is a γ - set of *G*, it suffices to show that *S* dominates the

relative compliment of *G*. Let $u \in X$. If $u \in \bigcap_{y \in V_2} N(y)$, then $u \in V_1$. If $u \notin \bigcap_{y \in V_2} N(y)$ then *u* is adjacent to atleast

one vertex of V_2 in \widehat{G} . Similarly, we can prove that if $v \in Y$ then $v \in V_2$ or v is adjacent to atleast one vertex of V_1 in \widehat{G} . Conversely, let S dominates \widehat{G} . Let x be an arbitrary vertex in X. If $x \in \bigcap_{y \in V_2} N(y)$, then in \widehat{G} , x is

not adjacent to any vertex of V_2 . Since *S* dominates \widehat{G} , we can deduce that $x \in V_1$. If $x \notin \bigcap_{y \in V_2} N(y)$, then *x* is

adjacent to atleast one element of V_2 in \widehat{G} . Hence the proof.

Corollary 1. Let *G* be a connected bipartite graph with *n* vertices, $n \ge 4$. Then $\gamma_{gb}(G \circ K_1) = n$, where $G \circ K_1$ denotes the corona of the graphs *G* and K_1 .

Proof. If $G \cong K_{1,n}$, the proof is trivial. Otherwise, let (X, Y) be the bipartition of $G \circ K_1$. Let $S = V_1 \cup V_2$, where $V_1 \subseteq X$ and $V_2 \subseteq Y$, be the set of all pendant vertices of $G \circ K_1$. Clearly S is γ -set of $G \circ K_1$. Also $\bigcap N(x) = \phi$

and $\bigcap_{y \in V_2} N(y) = \phi$. Therefore the proof follows immediately from theorem 2.8.

Corollary 2. For $n \ge 10$, $\gamma_{gb}(P_n) = \gamma(P_n) = \lceil \frac{n}{3} \rceil$.

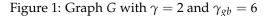
Proof. Let $V(P_n) = \{1, 2, 3, ..., n\}$. Then $X = \{x : x \text{ is even}, x \le n\}$, $Y = \{y : y \text{ is odd}, y \le n\}$ is the bipartition of P_n . Let $S_1 = \{i : i \equiv 1 \pmod{3}, i \le n\}$ and $S_2 = \{i : i + 1 \equiv 0 \pmod{3}, i \le n\}$. Then either S_1 or S_2 is a γ -set of P_n . Also for i = 1, 2, $\bigcap_{x \in S_i \cap X} N(x) = \phi$ and $\bigcap_{y \in S_i \cap Y} N(y) = \phi$. Thus the proof follows from theorem 2.8. \Box

Corollary 3. For an even integer $n \ge 10$, $\gamma_{gb}(C_n) = \gamma(C_n) = \lceil \frac{n}{3} \rceil$.

Proof. The proof is exactly similar to corollary 2.

Theorem 2.9. For any two positive integers a and b with a < b, there exists a graph G such that $\gamma(G) = a$ and $\gamma_{gb}(G) = b$.

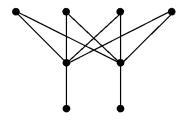
Proof. Consider the graph $K_{b-a,a}$, with partite sets $W = \{w_1, w_2, \dots, w_{b-a}\}$ and $U = \{u_1, u_2, \dots, u_a\}$. Let *G* be the graph obtained from $K_{b-a,a}$ by adding new vertices v_1, v_2, \dots, v_a and join v_i with u_i for $i = 1, 2, \dots, a$. Let *S* be a dominating set of *G*. Since for each *i*, v_i is adjacent to u_i only, $|S| \ge a$. Now *U* is a dominating set of *G*. So $|S| \le a$. Hence $\gamma(G) = a$. In \widehat{G} , the vertices w_1, w_2, \dots, w_{b-a} are isolated. So *W* is a subset of every γ_{gb} -set of *G*. Therefore the set $\{u_1, u_2, \dots, u_a, w_1, w_2, \dots, w_{b-a}\}$ is a γ_{gb} -set of *G*. Hence $\gamma_{gb}(G) = b$.



Lemma 2.1. If *G* is an *r*-regular connected bipartite graph with bipartition (X, Y) then |X| = |Y|.

Proof. Each edge in *G* contributes exactly one to the degree sums r|X| and r|Y|. Therefore $r|X| = r|Y| = |E| \Rightarrow |X| = |Y|$.

Theorem 2.10. If G is an n - 1-regular bipartite graph, then $\gamma_{gb}(G) = n$.



Proof. Since *G* is n - 1 regular, \hat{G} has *n* components and all of them are P_2 . So $\gamma(\hat{G}) = n$. Then by theorem 2.8, we can find a γ -set of \hat{G} such that it dominates *G* also. Therefore $\gamma_{gb}(G) = n$.

Theorem 2.11. Let G be a healthy spider with 2n + 1 vertices, then $\gamma_{gb}(G) = n + 1$.

Proof. Let *S* be a γ -set of *G*, then |S| = n and $u \notin S$ (see Figure 2). So *S* dominates all vertices except *u* in \widehat{G} . So $S \cup \{u\}$ is a γ_{gb} -set of *G*. This completes the proof.

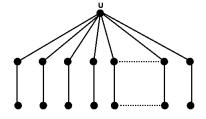


Figure 2: Healthy Spider

Theorem 2.12. If G is a wounded spider with n + k + 1 vertices, then $\gamma_{gb}(G) = k + 1$.

Proof. Observe that $\gamma(G) = k + 1$. Also the set $S = \{1, 2, 3, \dots, k, u\}$ is a γ_{gb} -set of G (see Figure 3).

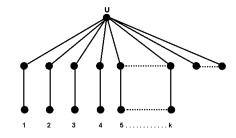


Figure 3: Wounded Spider

Theorem 2.13. $\gamma_{gb}(B_n) = 4$, where B_n is the book graph on 2n + 1 vertices.

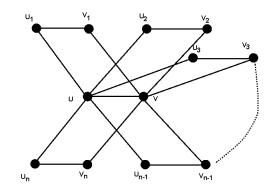


Figure 4: Book Graph

Then Proof. Let the vertices of B_n be labelled shown figure 4. as in $X = \{v, u_1, u_2, \dots, u_n\}, Y = \{u, v_1, v_2, \dots, v_n\}$ is the bipartition of B_n . Clearly the set $\{u, v\}$ is the γ -set of B_n . Also $\{u, v, u_1, v_1\}$ is a γ -set of B_n . Therefore $\gamma_{gh}(B_n) = 4$.

Theorem 2.14. $\gamma_{gb}(S(K_n)) = n$, where $S(K_n)$ is the subdivision of the complete graph K_n .

Proof. Let X be the set of all old vertices and Y be the set of all new vertices of $S(K_n)$. Then (X, Y) is a bipartition of $S(K_n)$. In $S(K_n)$, the degree of each vertex in X is n - 1 and the degree of each vertex in Y is 2. We construct a γ -set of $S(K_n)$ as follows: Let $S \subseteq X$ such that |S| = n - 2. Then S dominates all but one vertex u in Y. Also $N(u) = \{x, y\}$ and $X - S = \{x, y\}$. So $S \cup \{u\}$ is a γ -set of $S(K_n)$. Since $S \cup \{u\}$ does not dominate x and y in \widehat{G} , this set is not a γ_{gb} -set. So $S \cup \{u, v\}$, where $v \notin N(x) \cup N(y)$, is a γ_{gb} -set of $S(K_n)$. Therefore $\gamma_{gb}(S(K_n)) = n$.

References

- [1] R. Balakrishnan and K. Ranganathan, A Textbook of Graph theory, Springer, 2012.
- [2] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total Domination in Graphs, Networks 10:211-219, 1980.
- [3] F. Harary, Graph theory, Addison-Wesley, Reading, MA, 1972.
- [4] T.W. Haynes, S.T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [5] T.W. Haynes, S.T. Hedetniemi and P. J. Slater, *Domination in Graphs: Advanced Topics*, Marcel Dekker, New York, 1998.
- [6] Michael A. Henning and Anders Yeo, Total Domination in Graphs, Springer, New York, 2013.
- [7] V.R. Kuli and B.Janakiram, The total global domination number of a graph. *Indian Journal of Pure and Applied Mathematics* 27(1996):537-542.
- [8] E. Sampathkumar, The global domination number of a graph, J. Math. Phys. Sci, 23:377-385, (1989).

Received: November 24, 2015; Accepted: April 15, 2016

UNIVERSITY PRESS

Website: http://www.malayajournal.org/