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A Note on Global Bipartite Domination in Graphs
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Abstract

In this paper we introduce the concept of the global bipartite domination number γgb(G) of a connected
bipartite graph G and study some of its general properties. Moreover we determine the global bipartite
domination number of certain classes of graphs.
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1 Introduction

In this paper we consider simple, connected and bipartite graphs. All notations and definitions not given here
can be found in [1, 3]. A graph is an ordered pair G = (V(G), E(G)), where V(G) is a finite nonempty set
and E(G) is a collection of 2- point subsets of V. The sets V(G) and E(G) are the vertex set and edge set of G
respectively. The degree of a vertex v in G is the number of edges incident at v. The set of all neighbors of v is
the open neighborhood of v, denoted by N(v). Let Pn, Cn, Kn and Km,ndenote path, cycle, complete graph and
complete bipartite graph respectively. The sudivision of the graph G is the graph S(G) obtained from G by
subdividing each edge of G. The corona G ◦ K1 of G is the graph obtained from G by adding a pendant edge
to each vertex of G. A set A ⊆ V(G) of vertices in a graph G = (V, E) is called a dominating set, if every vertex
v ∈ V is either an element of A or adjacent to an element of A. The domination number γ(G) of a graph G is
the minimum cardinality of a dominating set in G.

2 Main results

We introduce a new concept, namely, Global Bipartite Dominating Set of a simple bipartite graph. Then we
define the global bipartite domination number of G.

Definition 2.1. Let G be a connected bipartite graph with bipartition (X, Y), with |X| = m and |Y| = n. The relative
complement of G in Km,n denoted by Ĝ is the graph obtained by deleting all edges of G from Km,n (i.e., Km,n \G). A global
bipartite dominating set (GBDS) of G is a set S of vertices of G such that it dominates G and its relative complement Ĝ.
The global bipartite domination number, γgb(G) is the minimum cardinality of a global bipartite dominating set of G.

Theorem 2.1. For any connected spanning subgraph G of Km,n, γ(G) ≤ γgb(G) ≤ m + n.

Proof. A global bipartite dominating set of G is a dominating set of G and so γ(G) ≤ γgb(G). The set of all
vertices of G is clearly a GBDS of G so, γgb(G) ≤ m + n. Therefore γ(G) ≤ γgb(G) ≤ m + n.
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Remark 2.1. The bounds in Theorem 2.1 are sharp. For the complete bipartite graph G = Km,n, γgb(Km,n) = m + n.
For P4, γ(P4) = γgb(P4) = 2. So Km,n has the largest possible GBD number. Also the bounds in Theorem 2.1 are strict.
For the graph K2,3 − e, γ(K2,3 − e) = 2 and γgb(K2,3 − e) = 4.

Theorem 2.2. If G and Ĝ does not contain isolated vertices, then γgb(G) ≤ min{m, n}, where G is a spanning
subgraph of Km,n.

Proof. Let (X, Y) be the bipartition of G with |X| = m ≤ |Y| = n. Since G and Ĝ does not contain isolated
vertices, X is a G.B.D.S. of G. Therefore γgb(G) ≤ m.

Theorem 2.3. For any positive integers m and n, γgb(Km,n) = m + n.

Proof. Let G be a complete bipartite graph with partitions X and Y. Then uv ∈ E(G) for every u ∈ X and
v ∈ Y. Let Ĝ denotes the relative complement of G in Km,n. Then Ĝ contains m + n isolated vertices. Hence
every global bipartite dominating set of G must contain all vertices of Ĝ and so γgb(G) ≥ slantm + n. Now
V(G) is a global bipartite dominating set of G. Hence γgb(G) = m + n.

Theorem 2.4. For a spanning subgraph G of Km,n, a vertex v is in every global bipartite dominating set of G if and
only if v is an isolated vertex in Ĝ.

Proof. If |V(G)| ≤ 3, the proof is trivial. So let |V(G)| > 3. If v is an isolated vertex in Ĝ, then v is in every
global bipartite dominating set of G. Conversely if v is not an isolated vertex in Ĝ, then there exist atleast two
vertices u and w such that u is adjacent to v in G and w is adjacent to v in Ĝ. So V(G) \ {v} is a global bipartite
dominating set of G.

Theorem 2.5. Let G be a connected bipartite graph with partite sets X and Y. Let S = V1 ∪V2 be a GBDS of G, where
V1 ⊆ X and V2 ⊆ Y. Then if V1 = φ, then V2 = Y and if V2 = φ, then V1 = X.

Proof. Let S = V1 ∪V2, where V1 ⊆ X and V2 ⊆ Y. If V1 = φ, then S ⊆ Y. Since G is bipartite, the vertices in Y
are not adjacent and so S ⊇ Y. Therefore S = V2 = Y. Similarly, we can prove that if V2 = φ then V1 = X.

Theorem 2.6. Let (X, Y) be the bipartition of a connected graph G. Then X is a GBDS of G if and only if |N(y)| <
|X|, ∀y ∈ Y.

Proof. Let X be a GBDS of G. If possible assume that there exists a vertex y ∈ Y such that |N(y)| = |X|. Then
y is an isolated vertex in Ĝ, contradiction to the fact that X is a GBDS of G. Conversely, since G is connected,
X is dominating set of G. So it is sufficient to show that X dominates Ĝ also. Let y ∈ Y, then N(y) is a proper
subset of X. So y is adjacent to at least one vertex of X in Ĝ. This completes the proof.

Theorem 2.7. Let G be a connected sub graph of Km,n. Then γgb(G) = m + n− 1 if and only if G ∼= Km,n − e.

Proof. Let G ∼= Km,n − e. where e = uv ∈ E(Km,n). So uv /∈ E(G) and hence uv ∈ E(Ĝ). Since Ĝ contains
m + n− 2 isolated vertices, every global bipartite dominating set of G contains all vertices of V(G)− {u, v}
and at least one of u and v. Thus

γgb(G) ≥ m + n− 1 (2.1)

Since V(G)− {u} is a GBDS of G, it follows that

γgb(G) ≤ m + n− 1 (2.2)

Thus by (1) and (2)we obtain γgb(G) = m + n− 1.
Conversely assume that γgb(G) = m + n− 1. To prove G ∼= Km,n − e. We observe that γgb(Km,n) = m + n and
γgb(Km,n − e) = m + n− 1. Let G be a proper subgraph of Km,n − e containing m + n vertices. Then Ĝ contains
atmost m + n− 3 isolated vertices. In that case Ĝ contains a path uvw. Then V(G)− {u, w} is a GBDS of G. So
γgb(G) ≤ m + n− 2. This completes the proof.

Theorem 2.8. Let G be a graph with bipartition (X, Y). If G has a γ-set S = V1 ∪V2, where V1 ⊆ X and V2 ⊆ Y then
S is a γgb-set of G if and only if

⋂
x∈V1

N(x) ⊆ V2 and
⋂

y∈V2

N(y) ⊆ V1.
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Proof. Let
⋂

x∈V1

N(x) ⊆ V2 and
⋂

y∈V2

N(y) ⊆ V1. Since S is a γ- set of G, it suffices to show that S dominates the

relative compliment of G. Let u ∈ X. If u ∈
⋂

y∈V2

N(y), then u ∈ V1. If u /∈
⋂

y∈V2

N(y) then u is adjacent to atleast

one vertex of V2 in Ĝ. Similarly, we can prove that if v ∈ Y then v ∈ V2 or v is adjacent to atleast one vertex
of V1 in Ĝ. Conversely, let S dominates Ĝ. Let x be an arbitrary vertex in X. If x ∈

⋂
y∈V2

N(y), then in Ĝ, x is

not adjacent to any vertex of V2. Since S dominates Ĝ, we can deduce that x ∈ V1. If x /∈
⋂

y∈V2

N(y), then x is

adjacent to atleast one element of V2 in Ĝ. Hence the proof.

Corollary 1. Let G be a connected bipartite graph with n vertices, n ≥ 4. Then γgb(G ◦K1) = n, where G ◦K1 denotes
the corona of the graphs G and K1.

Proof. If G ∼= K1,n, the proof is trivial. Otherwise, let (X, Y) be the bipartition of G ◦K1. Let S = V1 ∪V2, where
V1 ⊆ X and V2 ⊆ Y, be the set of all pendant vertices of G ◦K1. Clearly S is γ-set of G ◦K1. Also

⋂
x∈V1

N(x) = φ

and
⋂

y∈V2

N(y) = φ. Therefore the proof follows immediately from theorem 2.8.

Corollary 2. For n ≥ 10, γgb(Pn) = γ(Pn) = d n
3 e.

Proof. Let V(Pn) = {1, 2, 3, . . . , n}. Then X = {x : x is even, x ≤ n}, Y = {y : y is odd, y ≤ n} is the bipartition
of Pn. Let S1 = {i : i ≡ 1(mod 3), i ≤ n} and S2 = {i : i + 1 ≡ 0(mod 3), i ≤ n}. Then either S1 or S2 is a γ-set
of Pn. Also for i = 1, 2,

⋂
x∈Si∩X

N(x) = φ and
⋂

y∈Si∩Y
N(y) = φ. Thus the proof follows from theorem 2.8.

Corollary 3. For an even integer n ≥ 10, γgb(Cn) = γ(Cn) = d n
3 e.

Proof. The proof is exactly similar to corollary 2.

Theorem 2.9. For any two positive integers a and b with a < b, there exists a graph G such that γ(G) = a and
γgb(G) = b.

Proof. Consider the graph Kb−a,a, with partite sets W = {w1, w2, . . . , wb−a} and U = {u1, u2, . . . , ua}. Let G be
the graph obtained from Kb−a,a by adding new vertices v1, v2, . . . , vaand join vi with ui for i = 1, 2, . . . , a. Let
S be a dominating set of G. Since for each i, vi is adjacent to ui only, |S| ≥ a. Now U is a dominating set of G.
So |S| ≤ a. Hence γ(G) = a. In Ĝ, the vertices w1, w2, . . . , wb−a are isolated. So W is a subset of every γgb-set
of G. Therefore the set {u1, u2, . . . , ua, w1, w2, . . . , wb−a} is a γgb-set of G. Hence γgb(G) = b.

Figure 1: Graph G with γ = 2 and γgb = 6

Lemma 2.1. If G is an r-regular connected bipartite graph with bipartition (X, Y) then |X| = |Y|.

Proof. Each edge in G contributes exactly one to the degree sums r|X| and r|Y|. Therefore r|X| = r|Y| = |E| ⇒
|X| = |Y|.

Theorem 2.10. If G is an n− 1-regular bipartite graph, then γgb(G) = n.



Latheesh Kumar A. R.& Anil Kumar V. / A Note on Global Bipartite Domination in Graphs 441

Proof. Since G is n− 1 regular, Ĝ has n components and all of them are P2. So γ(Ĝ) = n. Then by theorem 2.8,
we can find a γ-set of Ĝ such that it dominates G also. Therefore γgb(G) = n.

Theorem 2.11. Let G be a healthy spider with 2n + 1 vertices, then γgb(G) = n + 1.

Proof. Let S be a γ-set of G, then |S| = n and u /∈ S (see Figure 2). So S dominates all vertices except u in Ĝ.
So S ∪ {u} is a γgb-set of G. This completes the proof.

Figure 2: Healthy Spider

Theorem 2.12. If G is a wounded spider with n + k + 1 vertices, then γgb(G) = k + 1.

Proof. Observe that γ(G) = k + 1. Also the set S = {1, 2, 3, . . . , k, u} is a γgb-set of G (see Figure 3).

Figure 3: Wounded Spider

Theorem 2.13. γgb(Bn) = 4, where Bn is the book graph on 2n + 1 vertices.

Figure 4: Book Graph
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Proof. Let the vertices of Bn be labelled as shown in figure 4. Then
X = {v, u1, u2, . . . , un}, Y = {u, v1, v2, . . . , vn} is the bipartition of Bn. Clearly the set {u, v} is the γ-set of Bn.
Also {u, v, u1, v1} is a γ-set of B̂n. Therefore γgb(Bn) = 4.

Theorem 2.14. γgb(S(Kn)) = n, where S(Kn) is the subdivision of the complete graph Kn.

Proof. Let X be the set of all old vertices and Y be the set of all new vertices of S(Kn). Then (X, Y) is a bipartition
of S(Kn). In S(Kn), the degree of each vertex in X is n− 1 and the degree of each vertex in Y is 2. We construct
a γ-set of S(Kn) as follows: Let S ⊆ X such that |S| = n − 2. Then S dominates all but one vertex u in Y.
Also N(u) = {x, y} and X − S = {x, y}. So S ∪ {u} is a γ-set of S(Kn). Since S ∪ {u} does not dominate x
and y in Ĝ, this set is not a γgb-set. So S ∪ {u, v}, where v /∈ N(x) ∪ N(y), is a γgb-set of S(Kn). Therefore
γgb(S(Kn)) = n.
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