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Abstract

Existence results are obtained for fractional differential equations with Cp continuity of functions.
Monotone method for nonlinear initial value problem is developed by introducing the notion of coupled
lower and upper solutions. As an application of the method existence and uniqueness results are obtained.
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1 Introduction

The advantages of fractional derivatives become apparent in modeling mechanical and electrical
properties of real materials, and in many other fields, like theory of fractals. Analytical as well as numerical
methods are available for studying fractional differential equations such as compositional method, transform
method, Adomain methods and power series method etc. ( see details in [4, 23] and references therein).
Monotone method [5] coupled with method of lower and upper solutions is an effective mechanism that
offers constructive procedure to obtain existence results in a closed set. Basic theory of fractional differential
equations with Riemann-Liouville fractional derivative is well developed in [2, 7, 9]. Lakshamikantham and
Vatsala [1, 6, 8] obtained the local and global existence of solution of Riemann-Liouville fractional differential
equation and uniqueness of solution. In the year 2009, McRae developed monotone method for
Riemann-Liouvile fractional differential equation with initial conditions and studied the qualitative
properties of solutions of initial value problem [10]. Nanware and Dhaigude [11, 13, 14, 16–22] developed
monotone method for system of fractional differential equations with various conditions and successfully
applied to study qualitative properties of solutions. Nanware obtained existence results for the solution of
fractional differential equations involving Caputo derivative with boundary conditions [12, 15]. In 2012,
Yaker and Koksal have studied initial value problem (1.1) − (1.2) for Riemann- Liouville fractional
differential equations. They have proved existence results by using concept of lower and upper solutions
and local existence results under the strong hypothesis that the functions are locally Holder continuous.
In this paper, we develop monotone method without such strong hypothesis for the following nonlinear
Riemann-Liouville fractional differential equation with initial condition

Dqu(t) = f (t, u(t)) + g(t, u(t)), t ∈ [t0, T] (1.1)
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u0 = u(t)(t− t0)
1−q}t=t0 (1.2)

where f , g ∈ C(J ×R, R), J = [t0, T], f (t, u) is nondecreasing in u , g(t, u) is nonincreasing in u for each t and
Dq denotes the Riemann-Liouville fractional derivative with respect to t of order q(0 < q < 1). This is called
initial value problem(IVP). We develop monotone method coupled with lower and upper solutions for the
IVP (1.1)− (1.2). The method is applied to obtain existence and uniqueness of solution of the IVP (1.1)− (1.2).

The paper is organized in the following manner : In section 2, we consider some definitions and lemmas
required in next section and obtained result for nonstrict inequalities. In section 3, we improve the existence
results due to Yaker and Koksal. In section 4, we develop monotone method and apply it to obtain existence
and uniqueness results for Riemann-Liouville fractional differential equation with initial condition when
nonlinear function on the right hand side is considered as sum of nondecreasing and nonincreasing functions.

2 Preliminaries

In this section, we discuss some basic definitions and results which are required for the development of
monotone method for fractional differential equation with initial condition involving Riemann-Liouville
derivative when nonlinear function on the right hand side is considered as sum of nondecreasing and
nonincreasing functions.

The Riemann-Liouville fractional derivative of order q(0 < q < 1) [23] is defined as

Dq
au(t) =

1
Γ(n− q)

(
d
dt

)n ∫ t

a
(t− τ)n−q−1u(τ)dτ, for a ≤ t ≤ b.

Lemma 2.1. [2] Let m ∈ Cp([t0, T], R) and for any t1 ∈ (t0, T] we have m(t1) = 0 and m(t) < 0 for t0 ≤ t ≤ t1.
Then it follows that Dqm(t1) ≥ 0.

Lemma 2.2. [6] Let {uε(t)} be a family of continuous functions on [t0, T], for each ε > 0 where Dquε(t) =

f (t, uε(t)), uε(t0) = uε(t)(t − t0)
1−q}t=t0 and | f (t, uε(t))| ≤ M for t0 ≤ t ≤ T. Then the family {uε(t)} is

equicontinuous on [t0, T].

Now, we introduce the notion of lower and upper solutions for the initial value problem (1.1)− (1.2).

Definition 2.1. A pair of functions v(t) and w(t) in Cp(J, R) are said to be lower and upper solutions of the IVP
(1.1)− (1.2) if

Dqv(t) ≤ f (t, v(t)) + g(t, v(t)), v0 ≤ u0

Dqw(t) ≥ f (t, w(t)) + g(t, w(t)), w0 ≥ u0.

Definition 2.2. A pair of functions v(t) and w(t) in Cp(J, R) are said to be lower and upper solutions of type I of IVP
(1.1)− (1.2) if

Dqv(t) ≤ f (t, v(t)) + g(t, w(t)), v0 ≤ u0

Dqw(t) ≥ f (t, w(t)) + g(t, v(t)), w0 ≥ u0.

Definition 2.3. A pair of functions v(t) and w(t) in Cp(J, R) are said to be lower and upper solutions of type II of IVP
(1.1)− (1.2) if

Dqv(t) ≤ f (t, w(t)) + g(t, v(t)), v0 ≤ u0

Dqw(t) ≥ f (t, v(t)) + g(t, w(t)), w0 ≥ u0.

Definition 2.4. A pair of functions v(t) and w(t) in Cp(J, R) are said to be lower and upper solutions of type III of
IVP (1.1)− (1.2) if

Dqv(t) ≤ f (t, w(t)) + g(t, w(t)), v0 ≤ u0

Dqw(t) ≥ f (t, v(t)) + g(t, v(t)), w0 ≥ u0.
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3 Existence Results

In this section, we improve the existence results due to Yaker and Koksal [24] for IVP (1.1)− (1.2). We now
state and prove the following existence results.

Theorem 3.1. Suppose that:

(i) v(t) and w(t) in Cp(J, R) are coupled lower and upper solutions of type I of IVP (1.1)-(1.2) with v(t) ≤ w(t) on J.

(ii) f (t, u), g(t, u) ∈ C[Ω, R] and g(t, u(t)) is nonincreasing in u for each t on J.

Then there exist a solution u(t) of IVP (1.1)-(1.2) satisfying v(t) ≤ u ≤ w(t) on J.

Proof. Let P : J ×R→ R be defined by

P(t, u) = min{w(t), max(u(t), v(t))}

Then f (t, P(t, u(t)) + g(t, P(t, u(t))) defines a continuous extension of f + g to J ×R which is bounded, since
f + g is uniformly bounded on Ω. By Lemma 2.2, it follows that the family Pε(t, u(t)) is equicontinuous on J.
By Ascoli-Arzela theorem the sequences {Pε(t, u(t))} has convergent subsequences {Pεn(t, u1)} which
converges uniformly to P(t, u). Since f + g is uniformly continuous, we obtain that
f (t, Pεn(t, u)) + g(t, Pεn(t, u)) tends uniformly to f (t, P(t, u)) + g(t, P(t, u)) as n → ∞. Hence P(t, u(t)) is the
solution of

Dqu(t) = f (t, P(t, u)) + g(t, P(t, u)), u(t) = u(t0)(t− t0)
1−q}t=t0 = u0. (3.3)

It follows that the equation (3.3) has a solution on the interval J.
We wish to prove that v(t) ≤ u(t) ≤ w(t) on J. For ε > 0, consider wε(t) = w(t) + εγ(t) and viε(t) =

vi(t)− εγ(t), where γ(t) = (t− t0)
q−1Eq,q((t− t0)

q) Then we have w0
ε = w0 + εγ0, v0

ε = v0 − εγ0, where
γ0 > 0. This shows that v0

ε < u0 < w0
ε. Next we show that u < wε, t0 ≤ t ≤ T. On the contrary, suppose

that vε ≥ u ≥ wε. Then there exists t1 ∈ (t0, T] such that u(t1) = wε(t1) and vε > u > wε, t0 ≤ t < t1. Thus
u(t1) > w(t1) and hence P(t1, u(t1)) = w(t1).
Set m(t) = u(t)− wε(t) we have m(t1) = 0 and m(t) ≤ 0, t0 ≤ t ≤ t1. By Lemma 2.1, we have Dqu(t1) ≥
Dqwε(t1) which gives a contradiction

f (t1, w(t1)) + g(t1, w(t1)) = f (t1, P(t1, u(t1)) + g(t1, P(t1, u(t1)))

= Dqu(t1)

≥ Dqwε(t1)

= Dqw(t1) + εγ(t1)

> Dqw(t1)

≥ f (t1, w(t1)) + g(t1, v(t1))

Similarly, we prove vε < u, t0 ≤ t ≤ T. For this, suppose there exists t1 ∈ (t0, T] such that vε(t1) = u(t1)

and vε(t) > u(t), t0 ≤ t < t1. Thus u(t1) < v(t1 ≤ w(t1) and hence P(t1, u(t1)) = v(t1).
Set m(t) = vε(t) − u(t) we have m(t1) = 0 and m(t) ≤ 0, t0 ≤ t ≤ t1. Applying Lemma 2.1, we have
Dqu(t1) ≥ Dqwε(t1). Since g(t, u) is nonincreasing in u for each t and γ(t) > 0, we get a contradiction

f (t1, v(t1)) + g(t1, v(t1)) = f (t1, P(t1, u(t1)) + g(t1, P(t1, u(t1)))

= Dqu(t1)

≤ Dqvε(t1)

= Dqv(t1)− εγ(t1)

< Dqv(t1)

≤ f (t1, v(t1)) + g(t1, w(t1))

Consequently, we get vε(t) < u(t) < wε(t) on J. In the limiting case ε → 0 we get v(t) ≤ u(t) ≤ w(t) on
J.
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Theorem 3.2. Suppose that:

(i) v(t) and w(t) in Cp(J, R) are coupled lower and upper solutions of type II of IVP (1.1)-(1.2) with v(t) ≤ w(t) on
J.

(ii) f (t, u), g(t, u) ∈ C[Ω, R] and f (t, u) is nonincreasing in u for each t on J.

Then there exists a solution u(t) of IVP (1.1)-(1.2) satisfying v(t) ≤ u ≤ w(t) on J.

Proof. Proof can be given on the same line as in Theorem 3.1.

Theorem 3.3. Suppose that:

(i) v(t) and w(t) in Cp(J, R) are coupled lower and upper solutions of type III of IVP (1.1)-(1.2) with v(t) ≤ w(t) on
J.

(ii) f (t, u(t)), g(t, u(t)) ∈ C[Ω, R] are both nonin creasing in u for each t on J.

Then there exists a solution u(t) of IVP (1.1)-(1.2) satisfying v(t) ≤ u ≤ w(t) on J.

Proof. Proof can be given on the same line as in Theorem 3.1.

4 Monotone Method

In this section we develop monotone method for Riemann-liouville fractional differential equations with
initial conditions for all types of coupled lower and upper solutions defined in section 2 and we apply the
method to obtain extremal solutions and uniqueness of solution of the IVP (1.1)-(1.2).

Theorem 4.4. Assume that:

(i) f (t, u(t)) and g(t, u(t)) in C[Ω, R2] and f (t, u(t)) nonincreasing in u for each t ∈ [t0, T],

(ii) v0(t) and w0(t) in C(J, R) are coupled lower and upper solutions of type I of IVP (1.1)-(1.2) such that v0(t0) ≤
w0(t0) on J.

(iii) f (t, u(t)), g(t, u(t)) satisfies one-sided Lipschitz condition,

f (t, u(t))− f (t, u(t)) ≥ −M(u− u), M > 0, u ≥ u,

g(t, u(t))− g(t, u(t)) ≥ −N(u− u), N > 0, u ≥ u

Then there exist monotone sequences {vn(t)} and {wn(t)} such that

{vn(t)} → v(t) and {wn(t)} → w(t)as n→ ∞

and v(t) and w(t)) are minimal and maximal solutions of the IVP (1.1)-(1.2).

Proof. For any η in C(J, R) such that for v0 ≤ η on J, we consider the following linear fractional differential
equation

Dqu(t) = f (t, η(t)) + g(t, η(t))−M(u− η)− N(u− η), u(t)(t− t0)
1−q}t=t0 = u0 (4.4)

Since the right hand side of equation (4.4) is known, it is clear that for every η there exists a unique solution
u(t) of IVP (4.4) on J.

For each η and µ in C(J, R) such that v0 ≤ η and w0 ≤ µ, define a mapping A by A[η, µ] = u(t) where
u(t) is the unique solution of IVP (4.4). This mapping defines the sequences {vn(t)} and {wn(t)}. Firstly, we
prove

(I) v0 ≤ A[v0, w0], , w0 ≥ A[w0, v0]
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(I I) A possesses the monotone property on the segment
[v0, w0] ∈ C(J, R2) : v0 ≤ u ≤ w0}

Set A[v0, w0] = v1(t), where v1(t) is the unique solution of IVP (4.4) with η(t) = v0(t) and v0 is lower solution
of IVP (1.1)-(1.2).
Consider p(t) = v0(t)− v1(t) so that, we have

Dq p(t) = Dqv0(t)− Dqv1(t)

≤ f (t, v0(t)) + g(t, v0(t))− f (t, v0))− g(t, v0) + M(v1 − v0)

≤ −Mp(t)

Thus we have Dq p(t) ≤ −Mp(t)

and p(t)(t− t0)
1−q}t=t0 ≤ 0

By Lemma 2.1, we have p(t) ≤ 0 on t0 ≤ t ≤ T.This implies v0(t) ≤ v1(t). Thus v0 ≤ A[v0, w0]. Similarly
we can prove w0 ≥ A[w0, v0].
Let η(t) and µ(t) in [v0, w0] be such that η(t) ≤ µ(t). Suppose that A[η, µ] = u(t) and A[η, µ] = v(t)
Consider p(t) = u(t)− v(t) we find by Lipschitz condition that

Dq p(t) = Dqu(t)− Dqv(t)

= f (t, η(t)) + g(t, η(t))− f (t, η(t))− g(t, η(t)) + M(u− η)

≤ −M(u− v)

≤ −Mp(t)

Thus we have Dq p(t) ≤ −Mp(t)

and p(t)(t− t0)
1−q}t=t0 ≤ 0

As before in (I),we have A[η, µ] ≤ A[η, µ]. This shows that operator A possesses monotone property on
[v0, w0]. Now in view of (I) and (I I), define the sequences

vn(t) = A[vn−1, wn−1], wn(t) = A[vn−1, wn−1] on the segment [v0, w0].

It follows that

v0(t) ≤ v1(t) ≤ v2(t) ≤ ...vn(t) ≤ wn(t) ≤ wn−1(t) ≤ ... ≤ w1(t) ≤ w0(t). (4.5)

Obviously the sequences {vn(t)} and {wn(t)} are monotonic and bounded hence they are uniformly
bounded on J. By Lemma 2.2 it follows that the sequences {vn(t)} and {wn(t)} are equicontinuous on J
and by Ascoli-Arzela Theorem, there exists subsequences {vnk (t)} and {wnk (t)} that converge uniformly on
J. By (4.5) it follows that the sequences {vnk (t)} and {wnk (t)} converge uniformly and monotonically to v(t)
and w(t) where

lim
n→∞

vn(t) = v(t) lim
n→∞

wn(t) = w(t) on [t0, T]

Using following fractional Volterra integral equations

vn+1(t) = v0
0 +

1
Γ(q)

∫ t

t0

(t− s)q−1{ f (s, vn) + g(s, vn)−M(vn − η)− N(vn − η)}ds

wn+1(t) = w0
0 +

1
Γ(q)

∫ t

t0

(t− s)q−1{ f (s, wn) + g(s, wn)−M(wn − µ)− N(wn − µ)}ds
(4.6)

it follows that v(t) and w(t) are solutions of IVP (1.1)-(1.2).
To prove that v(t) and w(t) are the minimal and maximal solutions of IVP (1.1)-(1.2), we need to prove that

if u(t) is any solution of IVP (1.1)-(1.2) such that v0 ≤ u ≤ w0 on [t0, T] then v0 ≤ v ≤ u ≤ w0 on J. Suppose
that for some n, vn(t) ≤ u(t) ≤ wn(t) on J. Firstly, we prove vn+1(t) ≤ u(t) on [t0, T]. Set p(t) = vn+1(t)− u(t)
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so that by Lipschitz condition we have

Dq p(t) = Dqvn+1(t)− Dqu(t)

= f (t, vn) + g(t, vn)−M(vn+1 − vn)− f (t, u)− g(t, u)

≤ −M(vn − u)−Mi(vn − u)−M(vn+1 − vn)

≤ −Mp(t)

Thus we have Dq p(t) ≤ −Mp(t)

and p(t)(t− t0)
1−q}t=t0 ≤ 0

By Lemma 2.1, it follows that p(t) ≤ 0. This implies vn+1(t) ≤ u(t) on J.
Secondly, we prove that u(t) ≤ wn+1(t). Consider p(t) = u(t)− wn+1(t). By Lipschitz condition we have

Dq p(t) = Dqu(t)− Dqwn+1(t)

= f (t, u) + g(t, u)−M(wn+1 − wn)− f (t, wn+1)− g(t, wn+1)

≤ −M(u− wn+1)

≤ −Mp(t)

Thus we have Dq p(t) ≤ −Mp(t)

and p(t)(t− t0)
1−q}t=t0 ≤ 0

Using Lemma 2.1,we get p(t) ≤ 0. It follows that u(t) ≤ wn+1(t). Since v0 ≤ u ≤ w0 on J, by induction we
have vn(t) ≤ u(t) ≤ wn(t) for all n. In limiting case as n→ ∞, it follows that v(t) ≤ u(t) ≤ w(t) on J.

Lastly,we prove the uniqueness of solution of IVP (1.1)-(1.2) in the following

Theorem 4.5. Assume that (i)-(ii) of Theorem 4.1 hold and if

| f (t, u(t))− f (t, u)| ≤ M|(u− u)|, v0 ≤ u ≤ u ≤ w0, M > 0

then v(t) = w(t) = u(t) is the unique solution of IVP (1.1)− (1.2).

Proof. We need to prove only v(t) ≥ w(t). Set p(t) = w(t)− v(t), we find by Lipschitz condition that

Dq p(t) = Dqw(t)− Dqv(t)

= f (t, w(t)) + g(t, w(t))− f (t, v(t))− g(t, v(t))

≤ Mp(t)

Thus we have Dq p(t) ≤ −Mp(t)

and p(t)(t− t0)
1−q}t=t0 ≤ 0

Hence by Lemma 2.1, we have v(t) ≥ w(t). This shows that v(t) = w(t) = u(t) is the unique solution of IVP
(1.1)-(1.2).

Theorem 4.6. Assume that:

(i) f (t, u(t)) and g(t, u(t)) in C[Ω, R2] and f (t, u(t)) nonincreasing in u for each t ∈ [t0, T],

(ii) v0(t) and w0(t) in C(J, R) are coupled lower and upper solutions of type II of IVP (1.1)-(1.2) such that v0(t0) ≤
w0(t0) on J

(iii) f (t, u(t)), g(t, u(t)) satisfies one-sided Lipschitz condition,

f (t, u(t))− f (t, u(t)) ≥ −M(u− u), M > 0, u ≥ u,

g(t, u(t))− g(t, u(t)) ≥ −N(u− u), N > 0, u ≥ u

Then there exist monotone sequences {vn(t)} and {wn(t)} such that

{vn(t)} → v(t) and {wn(t)} → w(t)as n→ ∞

and v(t) and w(t)) are minimal and maximal solutions of the IVP (1.1)− (1.2).
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Proof. Proof can be given on the same line as in Theorem 4.1

Theorem 4.7. Assume that (i)-(ii) of Theorem 4.3 hold and if

| f (t, u(t))− f (t, u)| ≤ M|(u− u)|, v0 ≤ u ≤ u ≤ w0, M > 0

then v(t) = w(t) = u(t) is the unique solution of IVP (1.1)− (1.2).

Proof. Proof can be given on the same line as in Theorem 4.2.

Theorem 4.8. Assume that:

(i) f (t, u(t)) and g(t, u(t)) in C[Ω, R2] and f (t, u(t)) nonincreasing in u for each t ∈ [t0, T],

(ii) v0(t) and w0(t) in C(J, R) are coupled lower and upper solutions of type III of IVP (1.1)-(1.2) such that v0(t0) ≤
w0(t0) on J

(iii) f (t, u(t)), g(t, u(t)) satisfies one-sided Lipschitz condition,

f (t, u(t))− f (t, u(t)) ≥ −M(u− u), M > 0, u ≥ u,

g(t, u(t))− g(t, u(t)) ≥ −N(u− u), N > 0, u ≥ u

Then there exist monotone sequences {vn(t)} and {wn(t)} such that

{vn(t)} → v(t) and {wn(t)} → w(t)as n→ ∞

and v(t) and w(t)) are minimal and maximal solutions of the IVP (1.1)-(1.2).

Proof. Proof can be given on the same line as in Theorem 4.1

Theorem 4.9. Assume that (i)-(ii) of Theorem 4.5 hold and if

| f (t, u(t))− f (t, u)| ≤ M|(u− u)|, v0 ≤ u ≤ u ≤ w0, M > 0

then v(t) = w(t) = u(t) is the unique solution of IVP (1.1)− (1.2).

Proof. Proof can be given on the same line as in Theorem 4.2

5 Conclusion

Existence results obtained by Yaker and Koksal are improved for the class of continuous functions.
Monotone method coupled with lower and upper solutions is developed for the initial value problem
(1.1)− (1.2) when the function on the right hand side is sum of nondecreasing and nonincreasing functions.
The method developed is successfully applied to obtain existence and uniqueness of solutions of the IVP
(1.1)− (1.2).
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