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Theorems on oscillatory and asymptotic behavior of
second order nonlinear neutral difference equations
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Abstract
In this paper, we discuss a class of second order neutral delay difference equation of the form

∆

[
r(n) |∆z(n)|α−1

∆z(n)
]
+q(n) f (x(n−σ)) = 0; n≥ n0 (*)

where z(n) = x(n)− p(n)x(n− τ). We determine sufficient conditions under which every solution of (∗) is either
oscillatory or tends to zero. Our results improve a number of related results reported in the literature.
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1. Introduction
The paper deals with the following second order nonlinear

neutral difference equation of the form

∆

[
r(n) |∆z(n)|α−1

∆z(n)
]

+q(n) f (x(n−σ)) = 0; n≥ n0 (1.1)

where z(n) = x(n)− p(n)x(n− τ), α > 0 is a ratio of odd
positive integers and ∆ is the forward difference operator
defined by ∆x(n) = x(n+1)− x(n).

Throughout the paper, we assume the following condi-
tions:

(H1) {p(n)}∞

n=n0
is a sequence of nonnegtive real numbers

and there exists a constant p such that 0≤ p(n)≤ p< 1;

(H2) {q(n)} is a sequence of nonnegative real numbers and
q(n) is not identically zero for large values of n;

(H3) {r(n)} is a sequence of positive real numbers;

(H4) τ and σ are positive integers;

(H5) f : R→ R is a continuous function with the property
that u f (u)> 0 for all u 6= 0 and there exists a constant
k > 0 such that

f (u)

|u|α−1 u
≥ u; f or u 6= 0.

Let n∗ = max{τ,σ}. For any real sequence {θ(n)} de-
fined in n0−n∗ ≤ n≤ n0−1, the equation (1.1) has solution
{x(n)} defined for n≥ n0 and satisfying the initial condition
x(n) = θ(n) for n0− n∗ ≤ n ≤ n0− 1. A solution {x(n)} of
equation (1.1) is said to be oscillatory if it is neither eventually
positive nor eventually negative and nonoscillatory otherwise.

Recently, there has been much interest in studying the
oscillatory and asymptotic behavior of second order functional
difference equations; see for example [3, 4, 6, 8, 9, 12–24].
For the general theory of difference equations, one can refer
to [1, 2, 7]. Prior to presenting our oscillation and asymptotic
criteria, we briefly comment results for (1.1) and its particular
cases which motivated the present study.
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Saker et al. [14] investigated the oscillatory behavior of
second order nonlinear difference equations of the form.

∆(r(n)(∆y(n))α)

+p(n)∆(y(n))α +q(n) f (y(n+1)) = 0 (1.2)

and obtained sufficient conditions for oscillation of all solu-
tions of (1.2).

Thandapani et al. [21] proved that every solution of the
equation

∆
2(y(n−1)− py(n−1−k))+q(n) f (y(n− l)) = 0 (1.3)

is oscillatory if and only if

∞

∑
n=1

f (n)q(n) = ∞. (1.4)

and also established that every solution of (1.3) is oscillatory
if

liminf
n→∞

n−1

∑
k=n−l

(k− l−1)q(s)>
1
M

(
l

l +1

)l+1

(1.5)

Sternal et al. [15] established that every nonoscillatory solu-
tion of the equation

∆(r(n)∆(y(n)+ p(n)y(n−τ))+q(n) f (y(n−σ)) = 0 (1.6)

tends to zero as n→ ∞ under the conditions
∞

∑
n=0

1
r(n)

= ∞ and
∞

∑
n=0

q(n) = ∞ (1.7)

Li et al. [11] investigated the second order neutral delay
difference equation of the form

∆[q(n−1)∆(y(n−1)+ p(n−1)y(n−1−σ)]

+q(n) f (y(n− τ)) = 0 (1.8)

and derived sufficient conditions for oscillatory of all solutions
of (1.8) under the condition Σ

1
a(n) = ∞.

Li et al. [12] consider the following second order nonlin-
ear difference equation of the form

∆(r(n)(∆y(n))α)+ p(n+1) f (y(n+1)) = 0 (1.9)

and established sufficient conditions for oscillation of every
solution of (1.9).

In [11], we studied a second order nonlinear neutral delay
difference equation of the form

∆ [r(n)∆(y(n)− p(n)y(n− τ))]

+q(n) f (y(n−σ)) = 0; (1.10)

under the assumptions 0 ≤ p(n) ≤ p < 1 and f (u)
u ≥ k > 0,

for all u 6= 0,

∞

∑
n=n0

1
r(n)

= ∞ (1.11)

and
∞

∑
n=n0

1
r(n)

< ∞. (1.12)

We proved that every solution of (1.10) is either oscillatory or
tends to zero if σ > τ , (1.11) holds and there exists a sequence
{η(n)}∞

n=n0
positive real numbers such that

limsup
n→∞

n−1

∑
s=n0

[
kη(s)Q(s)− (1+ p)r(s−σ)((∆η(s)+)2

4η(s)

]
=∞.

(1.13)

Also, we proved that every solution of (1.10) is either oscilla-
tory or tends to zero under the conditions σ > τ , (1.12) and if
there exists a positive real valued sequence {η(n)}∞

n=n0
such

that (1.13) holds and

limsup
s=n0

n−1

∑
s=n0

[
kQ(s)β (s+1)− 1+ p

4r(s)β (s+1)

]
= ∞; (1.14)

where

β (n) =
∞

∑
s=n

1
r(s)

.

Li et al. [10] studied the oscillatory behavior of a class of
second order nonlinear neutral delay differential equations of
the form

(r(t)
∣∣∣z′(r)∣∣∣α−1

z
′
(t))+q(t) f (x(σ(t))) = 0 (1.15)

and established sufficient conditions under every solution of
(1.15) is oscillatory.

In this paper, we derive sufficient conditions which ensures
that every solution of (1.1) is either oscillatory or tends to zero
under the condition (1.11). Our work is motivated by Li et
al. [10] and our present results are discrete analogous of will
known results due to [10].

In the sequel, the following notation is frequently used:

Q(n) = min{q(n),q(n− τ)} ;
(u(n))+ = max{0,u(n)} ;

and

R(l,n) =

(
n−τ−σ−1

∑
s=l

1

(r(s))
1
α

)(
n−1

∑
s=l

1

(r(s))
1
α

)−1

.

2. Some Useful Lemmas
Lemma 2.1. [11]. Let {x(n)} be an eventually positive solu-
tion of (1.1) and {z(n)} be its associated sequence defined by

z(n) = x(n)− p(n)x(n− τ). (2.1)

If {∆z(n)} is eventually negative or limsupn→∞ x(n)> 0, then
z(n)> 0, eventually.
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Lemma 2.2. Assume that (1.3) holds, let {x(n)} be an even-
tually positive solution of (1.1) such that limsupn→∞ x(n)> 0.
Then its associated sequence {z(n)} defined by (2.1) satisfies
∆z(n)> 0, eventually.

Proof. Assume that {x(n)} be an eventually positive solution
of (1.1) such that limsupn→∞ x(n)> 0. Then by Lemma 2.1,
we have z(n)> 0. Also, from (1.1),

∆

[
r(n) |∆z(n)|α−1

∆z(n)
]

=−q(n) f (x(n−σ)

≤−kq(n)xα(n−σ)≤ 0. (2.2)

This shows that
{

r(n) |∆z(n)|α−1
∆z(n)

}
is eventually de-

creasing sequence. Consequently, we have ∆z(n) > 0 or
∆z(n)< 0.

If we let ∆z(n)< 0, then

r(n) |∆z(n)|α−1
∆z(n) = r(n)(∆z(n))α ≤−c < 0.

Also, we have

z(n)− z(n1) =
n−1

∑
s=n1

∆z(s)

=
n−1

∑
s=n1

(r(s)(∆z(s)α)
1
α

(r(s))
1
α

≤
(
r(n1)(∆z(n1))

α
) 1

α

n−1

∑
s=n1

1

(r(s))
1
α

< (−c)
1
α

n−1

∑
s=n1

1

(r(s))
1
α

or

z(n)≤ z(n1)+(−c)
1
α

n−1

∑
s=n1

1

(r(s))
1
α

,

which implies that z(n)→−∞ as n→ ∞. This is a contra-
diction to the fact that z(n) > 0, eventually and the proof is
complete.

Lemma 2.3. [7] If x and y are positive real numbers and
λ > 0, then

Aλ −Bλ ≥ λBλ−1(A−B) i f λ ≥ 1

or

Aλ −Bλ ≥ λAλ−1(A−B) i f 0 < λ ≤ 1.

There is obviously equality when λ = 1 or A = B.

3. Main Results
In this section we derive sufficient conditions under which

every solution of (1.1) is either oscillatory or tends to zero.

Theorem 3.1. Assume that (1.3) holds. Suppose that there
exists a sequence {η(n)}∞

n=n0
of positive real numbers such

that
∞

∑
s=n∗∗

[
η(s)Q(s)Rα(n∗,s)−

((∆η(s))+)α+1

2k(α +1)α+1ηα(s)
(r(s)

+ r(s− τ))

]
= ∞, (3.1)

for all sufficiently large n∗ and for some n∗∗ ≥ n∗ ≥ n0, then
every solution of (1.1) is either oscillatory or tends to zero.

Proof. Assume the contrary. Without loss of generality, we
may suppose that {x(n)} is an eventually positive solution
of (1.1) such that limsupn→∞ x(n) > 0. Then by lemma 2.1,
z(n)> 0 eventually where z(n) is defined by (2.1). Then there
exists an integer n1 ≥ n0 such that for all n≥ n1,

x(n)> 0,x(n−τ)> 0,x(n−σ)> 0 and z(n)> 0. (3.2)

Now, by Lemma 2.2 there exists an integer n2 ≥ n1 such that
∆z(n)> 0 for all n≥ n2. It follows from (1.1) that

∆(r(n)(∆z(n)α)≤−kq(n)xα(n−σ)≤ 0, for all n≥ n1

(3.3)

or

∆r(n)(∆z(n))α)≤−kq(n)zα(n−σ). (3.4)

This show s that {r(n)(∆z(n))α} is nonincreasing sequence.
Also there exists an integer n3 ≥ n2 such that for all n≥ n3,

pα
0 ∆(r(n− τ)(∆z(n− τ))α)

≤−kq(n− τ)zα(n− τ−σ). (3.5)

Combining the inequalities (3.4) and (3.5), we get

∆(r(n)(∆z(n))α)+∆(r(n− τ)(∆z(n− τ))α)

≤−k(q(n)zα(n−σ)+ pα
0 q(n− τ)zα(n− τ−σ)

≤−kQ(n)(zα(n−σ)+ zα(n− τ−σ)

≤−2kQ(n)zα(n− τ−σ) f or all n≥ n3. (3.6)

Define a sequence {w(n)} by

w(n) = η(n)
r(n)(∆z(n))α

zα(n)
. (3.7)

Then w(n)> 0 for all n≥ n3. From (3.7), we have

∆w(n) = η(n)
∆(r(n)(∆z(n))α)

zα(n)

−η(n)
r(n+1)(∆z(n+1))α

zα(n)zα(n+1)
∆zα(n)

+
r(n+1)(∆z(n+1))α

zα(n+1)
∆η(n). (3.8)
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By using the Lemma 2.3 and the fact that ∆z(n) > 0 and
{r(n)(∆z(n))α} is nonincreasing in (3.8), we get

∆w(n)≤ η(n)
∆(r(n)(∆z(n))α)

zα(n)

−αη(n)
r(n+1)(∆z(n+1))α

zα(n+1)∆z(n+1)
∆z(n)

+
r(n+1)(∆z(n+1))α

zα(n+1)
(∆η(n))+ . (3.9)

We can easily show that

α
η(n)r(n+1)(∆z(n+1)α)

zα(n+1)z(n+1)
∆z(n)

≥ αη(n)

η
1+ 1

α (n+1)r
1
α (n)

w1+ 1
α (n+1). (3.10)

Using (3.10) in (3.9), we have

∆w(n)≤ η(n)
∆(r(n)(∆z(n))α)

zα(n)

− αη(n)

η
1+ 1

α (n+1)r
1
α (n)

w
α+1

α (n+1)

+
(∆η(n))+
η(n+1)

w(n+1). (3.11)

Set

A :=
(∆η(n))+
η(n+1)

, B :=
αη(n)

η
1+ 1

α (n+1)r
1
α (n)

,

u := w(n+1). (3.12)

Using the inequality

Au−Bu
α+1

α ≤ αα

(α +1)α+1
Aα+1

Bα
, B > 0, (3.13)

we derive that

∆w(n)≤ η(n)
∆(r(n)(∆z(n))α)

zα(n)

+
1

(α +1)α+1
((∆η(n))+)α+1r(n)

ηα(n)
. (3.14)

Define another sequence {v(n)} by

v(n) = η(n)
r(n− τ)(∆z(n− τ))α

zα(n− τ)
. (3.15)

Observe that v(n) > 0 for all n ≥ n3. Taking difference on

both sides of (3.15), we have

∆v(n) = η(n)
∆(r(n− τ)(∆z(n− τ))α)

zα(n− τ)

−η(n)
r(n− τ +1)(∆z(n− τ +1))α

zα(n− τ)zα(n− τ +1)
∆zα(n− τ)

+
r(n− τ +1)(∆z(n− τ +1))α

zα(n− τ +1)
∆η(n)

≤ η(n)
∆(r(n− τ)(∆z(n− τ))α)

zα(n− τ)

−αη(n)
r(n− τ +1)(∆z(n− τ +1)α

zα(n− τ +1)z(n− τ +1)
∆z(n− τ)

+
r(n− τ +1)(∆z(n− τ +1))α

zα(n− τ +1)
(∆η(n))+

≤ η(n)
∆(r(n− τ)(∆z(n− τ))α)

zα(n− τ)

− αη(n)

η
1+ 1

α (n+1)r
1
α (n− τ)

v
α+1

α (n+1)

+
(∆η(n))+
η(n+1)

v(n+1). (3.16)

Let

A :=
(∆η(n))+
η(n+1)

, B :=
αη(n)

η
1+ 1

α (n+1)r
1
α (n− τ)

,

u := v(n+1). (3.17)

Using the inequality (3.13) in (3.16) along with the fact that
∆z(n)> 0, we obtain

∆v(n)≤ η(n)
∆(r(n− τ)(∆z(n− τ))α)

zα(n)

+
1

(α +1)α+1
(∆η(n))α+1r(n− τ)

ηα(n)
. (3.18)

Combining (3.14) and (3.18) and using the inequality (3.6),
we obtain

∆w(n)+∆v(n)

≤ η(n)
[

∆(r(n)(∆z(n))α +∆(r(n− τ)(∆z(n− τ))α

zα(n)

]
+

((∆η(n))+)α+1

(α +1)α+1ηα(n)
(r(n)+ r(n− τ))

≤−2kη(n)Q(n)
zα(n− τ−σ)

zα(n)

+
((∆η(n))+)α+1

(α +1)α+1ηα(n)
(r(n)+ r(n− τ)). (3.19)

Since ∆[r(n)(∆z(n)α)]≤ 0, we have

z(n)≥ r
1
α (n)∆z(n)

n−1

∑
s=n2

1

r
1
α (s)

, (3.20)
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which implies that

∆

 z(n)
n−1

∑
s=n2

1

r
1
α (s)

≤ 0. (3.21)

Consequently,

z(n− τ−σ)
n−τ−σ−1

∑
s=n2

1

r
1
α (s)

≥ z(n)
n−1

∑
s=n2

1

r
1
α (s)

or

z(n− τ−σ)

z(n)
≥

n−τ−σ−1

∑
s=n2

1

r
1
α (s)

n−1

∑
s=n2

1

r
1
α (s)

or (
z(n− τ−σ)

z(n)

)α

≥ Rα(n2,n). (3.22)

Using (3.22) in (3.19), we obtain

∆w(n)+∆v(n)

≤−2kη(n)Q(n)Rα(n2,n)

+
((∆η(n))+)α+1

(α +1)α+1ηα(n)
(r(n)+ r(n− τ)) . (3.23)

Summing (3.23) from n3 to n−1, we obtain

n−1

∑
s=n3

[
η(s)Q(s)Rα(n2,s)

− ((∆η(s))+)α+1

2k(α +1)α+1ηα(s)
(r(s)+ r(s− τ))

]
≤ w(n3)

2k
+

v(n3)

2k
. (3.24)

Taking limit n→ ∞ in (3.24), we obtain contradiction with
condition (3.1). This completes the proof.
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