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Harvesting model for fishery resource with reserve
area of bird predator and modified effort function
Y. Louartassi1* and J. El Alami2 and N. Elalami3

Abstract
The purpose of this paper is to study the dynamics of fisheries resources with reserve area, in the presence of
bird predators. Aquatic area under investigation is divided into two areas : one for the free fishing and other
limited for any type of fishing. In the project harvesting system according to the modified E effort is considered,
which depends on the effect of resource density. The local and stability criteria, the overall stability and instability
are established for the project model. Finally, the theoretical results are illustrated by numerical simulations in
the last section.
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1. Introduction
Renewable resources are considered an important food source
for the growth and survival of biological population. But the
continued operation and unplanned these resources can lead
to the extinction of resources and thus affecting the survival
of species dependent on resources. For this, there has been a
significant interest in modeling of renewable resources such
as fisheries and forestry. Dynamic models for commercial
fishing have been widely studied in the light of economic and
ecological factors [6, 7]. In recent decades there has been
considerable interest for modeling the dynamics of fisheries

resources systems [2, 4, 5, 10, 15]. Chaudhuri [3] proposed
a model for two species of fish competitors, each of which
develops logistically. It examined the stability analysis and
discussed the bionomic balance and optimal harvesting policy.
It has also been shown [3] that there is no limit cycle in the
positive quadrant. Fan and Wang [11] generalized the classical
model of Clark [6, 7] by considering the time-dependent the
Logistic equation with periodic coefficients and they showed
that their model has a unique positive periodic solution, which
is globally asymptotically stable for positive solutions. Dubey
et al. [8] proposed a model where the fish population depends
in part of a resource and is harvested. They examined the
stability analysis. Dubey et al. [9] discussed a model of a
fishery resource system in an aquatic environment has been
divided into two areas : the free fishing area and the reserved
area. They discussed the biological and bionomic balance
and the optimal harvesting policy. Dubey et al. [10] also
proposed and analyzed a shore-to-sea fishing model where
the fish population is harvested in both zones. Then they stud-
ied the stability analysis and optimal harvest policy taking
taxation as a control instrument. Louartassi et al. [16] has
studied the coastal sea-fishing model where the fish popula-
tion is harvested in two areas of Dubey et al. [10] where he
propose a comprehensive state regulation by output feedback
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based on a Lyapunov function. Sharma et al. [19] proposed
a study the dynamics of fishery resource with reserve area
in the presence of bird predator. The aquatic region under
investigation is divided into two zones : one free for fishing
and another restricted for any kind of fishery. The criteria of
biological and bionomic equilibrium of system are established.
The points of local stability, global stability, and instability
are obtained for the proposed model. An optimal harvesting
policy is established using Pontryagin’s maximum principle.
The purpose of this paper is to study a mathematical model
of fishery resource with reserve area in the presence of bird
predator. In the proposed harvest model, a modified effort
function E is considered that depends on the effect of the den-
sity of the biomass resource. Local stability criteria, global
stability and instability are established for the proposed sys-
tem. The obtained theoretical results are illustrated using
numerical simulations in the last section.

2. The Model
By Sharma et al. [19], it is considered a fishery resource
system consists of two zones : a free fishing and a reserve
area where fishing is prohibited. Each zone is assumed to
be homogeneous. There are also a bird predators feed on
both, that is, fish reserved and restricted areas. It is assumed
that the predator population is harvested in the area without
reservation. We assume that the prey species migrate between
the two areas in a random way. Growth prey in each zone
in the absence of predator is assumed to be logistics. Taking
these in order, the model becomes

dx
dt

= rx
(

1− x
K

)
−σ1x+σ2y−m1xz−q1E1x,

dy
dt

= sy
(

1− y
L

)
+σ1x−σ2y−m2yz,

dz
dt

= −dz+ k1m1xz+ k2m2yz−q2E2z.

(2.1)

Here x(t) and y(t) are the respective biomass densities of
the prey species inside the unreserved and reserved areas, re-
spectively, at a time t, z(t) is the biomass density of predator
at time t; respectively; r and s are intrinsic growth rates of
prey species inside the unreserved and reserved zones, respec-
tively; K and L are the carrying capacities of prey species in
the unreserved and reserved zones, respectively; σ1 and σ2
are migration rates from the unreserved area to reserved area
and the reserved area to the unreserved area, respectively; d is
death rate of predator; m1 and m2 are the capturing rates and
k1 and k2 are the conversion rates of prey in unreserved and
reserved zones, respectively; q1 and q2 are the catchability co-
efficient of prey and predator in unreserved zone, respectively;
E1 and E2 are the efforts applied to harvest the fish population
and predator in unreserved zone, respectively.
In this case the fishing effort E is simply taken as a function
of t i.e. E = E(t), which do not address the inverse effect of

fish abundance on fishing effort. That is, it do not address
the fact that higher the density of fishes, lesser the amount
of effort needed to catch unit harvest. In order to overcome
this deficiency, Idels et al. [14] proposed a modified effort
function which is a function of t as well as x (respectively z)
and is given by

E1(t,x)=α1(t)−β1(t)
1
x

dx
dt

, E2(t,z)=α2(t)−β2(t)
1
z

dz
dt

,

(2.2)

where αi ≥ 0,βi ≥ 0 for i = 1,2 are continuous functions of t.
Incorporating (2.2), we get the following modified version of
the model (2.1) as :

dx
dt

=
r

1−q1β1
x
(

1− x
K

)
− σ1x

1−q1β1
+

σ2y
1−q1β1

− m1xz
1−q1β1

− q1α1x
1−q1β1

,

dy
dt

= sy
(

1− y
L

)
+σ1x−σ2y−m2yz,

dz
dt

=
−dz

1−q2β2
+

k1m1xz
1−q2β2

+
k2m2yz

1−q2β2
− q2α2z

1−q2β2
.

(2.3)

All the parameters are assumed to be positive. Here we ob-
serve that if there is no migration of fish population from
the reserved area to the unreserved area (i.e., σ2 = 0 ) and
r−σ1−q1α1 < 0, then ẋ < 0. Similarly, if there is no migra-
tion of fish population from the unreserved area to reserved
area (i.e., σ1 = 0 ) and s−σ2 < 0, then ẏ < 0. Hence, through-
out our analysis, we assume that

r−σ1−q1α1 > 0, s−σ2 > 0, 1−q1β1 > 0 and 1−q2β2 > 0.
(2.4)

To simplify the study of the proposed model in (2.3), we
assume that catch rates are the same two reserves, which areas,
m1 = m2 = m and conversion rates of prey in unreserved and
reserved zones are the same, that is, k1 = k2 = k. Thus, under
these assumptions, the system (2.3) becomes

dx
dt

=
r

1−q1β1
x
(

1− x
K

)
− σ1x

1−q1β1
+

σ2y
1−q1β1

− mxz
1−q1β1

− q1α1x
1−q1β1

,

dy
dt

= sy
(

1− y
L

)
+σ1x−σ2y−myz,

dz
dt

=
−dz

1−q2β2
+

α (xz+ yz)
1−q2β2

− q2α2z
1−q2β2

.

(2.5)

where α = km.
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First, the following Lemma says it is a region of attraction for
the model system (2.5).

Lemma 2.1. All the solutions of the system (2.5) which initi-
ate in R3

+ are uniformly bounded.

Proof. We define a function w(t) = x(t)+y(t)+z(t) and η >
0 be a constant.
Then, the time derivative of w along the solution of system
(2.5) is

dw
dt

+ηw =
dx
dt

+
dy
dt

+
dz
dt

+ηx+ηy+ηz,

= − r
K(1−q1β1)

(
x− K

2r (r−q1α1−q1β1σ1 +η)
)2

− s
L

(
y− L

2s (s+σ2 +η)
)2

− z
(

x
(

m
1−q1β1

− α

1−q2β2

)
+ y
(

m− α

1−q2β2

)
+
(

d
1−q2β2

+ q2α2
1−q2β2

−η

))
+ K

4r(1−q1β1)
(r−q1α1−q1β1σ1 +η)2 + L

4s (s+σ2 +η)2 ,

≤ K
4r(1−q1β1)

(r−q1α1−q1β1σ1 +η)2 + L
4s (s+σ2 +η)2

= µ.

(2.6)

By the thoery of differentiel inequality [1, 18], we have

0<w(x(t),y(t),z(t))≤ η

µ

(
1− e−ηt)+w(x(0),y(0),z(0))e−ηt ,

(2.7)

and for t→ 0, 0 < w≤ µ/ η . This proves the lemma.

3. Existence of Equilibria

The dynamical behavior of a system is studied at equilibrium
points and equilibrium points of model (2.5) are obtained by
solving ẋ = ẏ = ż = 0. This gives three possible steady states,
namely, P0 (0,0,0) , P1 (x̄, ȳ,0) and P∗ (x∗,y∗,z∗).
At P0 (0,0,0) the population is extinct and this equilibrium
point always exists.
Now, consider the equilibrium point P1 (x̄, ȳ,0), where the
predator is not present. Here x̄ and ȳ are the positive solutions
of

rx̄
(

1− x̄
K

)
−σ1x̄+σ2ȳ−q1α1x̄ = 0,

sȳ
(

1− ȳ
L

)
+σ1x̄−σ2ȳ = 0.

(3.1)

This system (3.1) is already solved by Dubey et. al. [10] and
local and global stability results for the system at P1 (x̄, ȳ,0)
are discussed there.

Now assume here that the interior equilibrium point P∗ (x∗,y∗,z∗)

exists and is a solution of

rx∗
(

1− x∗

K

)
−σ1x∗+σ2y∗−mx∗z∗−q1α1x∗ = 0,

sy∗
(

1− y∗

L

)
+σ1x∗−σ2y∗−my∗z∗ = 0,

−dz∗+α (x∗z∗+ y∗z∗)−q2α2z∗ = 0.
(3.2)

4. Stability Analysis
We now investigate the dynamical behaviour of system (2.5)
at equilibrium points. The general variational matrix corre-
sponding to the system (2.5) is given by

V (x,y,z) =


V1

σ2
1−q1β1

−mx
1−q1β1

σ1 V2 −my

αz
1−q2β2

αz
1−q2β2

V3

 (4.1)

where V1 = r−2rx−σ1−q1α1
1−q1β1

−mz, V2 = s− 2s
L −σ2−mz and

V3 =
−d+α(x+y)−q2α2

1−q2β2
.

Firstly, the equilibrium point P1 (x̄, ȳ,0) has the characteristic
equation is λ 2 +a1λ +a2 = 0,
where

a1 = r
K(1−q1β1)

x̄+ σ2
(1−q1β1)

. x̄
ȳ ,

a2 =
(

r
K(1−q1β1)

x̄+ σ2
(1−q1β1)

. x̄
ȳ

)
×
(

s
L ȳ+σ1

x̄
ȳ

)
−σ1σ2.

(4.2)

Therefore

λ1 +λ2 = −
(

r
K(1−q1β1)

x̄+ σ2
(1−q1β1)

. x̄
ȳ

)
< 0,

λ1×λ2 =
(

r
K(1−q1β1)

x̄+ σ2
(1−q1β1)

. x̄
ȳ

)
×
(

s
L ȳ+σ1

x̄
ȳ

)
−σ1σ2 > 0.

(4.3)

Therefore, all eigenvalues are negative and hence P1 is locally
asymptotically stable.

On the other hand, Let us now suppose that system (2.5) has
a unique positive equilibrium P∗ (x∗,y∗,z∗). The variational
matrix of (2.5) at P∗ is

V (x,y,z)=


1

1−q1β1

(
− r

K x∗−σ2
y∗
x∗

)
σ2

1−q1β1
−m

1−q1β1
x∗

σ1 − s
L y∗−σ1

x∗
y∗ −my∗

αz∗
1−q2β2

αz∗
1−q2β2

0
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(4.4)

The characteristic equation of variational matrix of system
(2.5) at P∗ is given by λ 3 +b1λ 2 +b2λ +b3 = 0, where

b1 = r
K(1−q1β1)

x∗+ σ2
(1−q1β1)

. y∗
x∗ +

s
L y∗+σ1

x∗
y∗ ,

b2 = rσ1
K(1−q1β1)y∗

x∗2 + rs x∗y∗
KL(1−q1β1)

+ αm
1−q2β2

(x∗z∗+ y∗z∗)

+ sσ2
y∗2

Lx∗(1−q1β1)
,

b3 = αmsx∗y∗z∗
L(1−q2β2)

+ αmrx∗y∗z∗
k(1−q1β1)(1−q2β2)

+ αmσ1
(1−q2β2)

.
x∗2z∗

y∗
+ αmσ1

1−q2β2
x∗z∗+ αmσ2

(1−q1β1)(1−q2β2)
y∗z∗

+ αmσ2
(1−q1β1)(1−q2β2)

. y∗2z∗
x∗ .

(4.5)

According to Routh-Hurwitz criteria, the necessary and suffi-
cient conditions for local stability of equilibrium point P∗ are
b1 > 0, b3 > 0, and b1b2−b3 > 0.
It is evident that b1 > 0 and b3 > 0. Thus the stability of P∗

is determined by the sign of b1b2−b3. By direct calculation,
we obtain

b1b2−b3 =
(

r
K(1−q1β1)

x∗+ σ2
(1−q1β1)

. y∗
x∗ +

s
L y∗+σ1

x∗
y∗

)
×

(
rσ1

K(1−q1β1)
x∗2 + rsx∗y∗

KL(1−q1β1)
+ sσ2

L(1−q1β1)
y∗2
x∗

)
+ r

K(1−q1β1)(1−q2β2)
x∗2z∗

+ αm s
L(1−q2β2)

y∗2z∗+αm > 0,

(4.6)

and hence P∗ (x∗,y∗,z∗) is locally asymptotically stable.

Now we will discuss the global stability of the endemic equi-
librium point P∗ (x∗,y∗,z∗) of the system (2.5).

Theorem 4.1. The equilibrium point P∗ (x∗,y∗,z∗) of system
(2.5) is globally asymptotically stable if(

1− y∗σ2
x∗(1−q1β1)σ1

)
(y− y∗)(z− z∗)< 0.

Proof. Let us consider the following Lyapunov function:

V (x,y,z) =
(
x− x∗− x∗ ln

( x
x∗
))

+ l1
(

y− y∗− y∗ ln
(

y
y∗

))
+ l2

(
z− z∗− z∗ ln

( z
z∗
))

,

(4.7)

where l1 and l2 are positive constants to be chosen later on.
Differentiating V (x,y,z) with respect to time t, we get

dV
dt

=

(
x− x∗

x

)
dx
dt

+ l1

(
y− y∗

y

)
dy
dt

+ l2

(
z− z∗

z

)
dz
dt

.

(4.8)

Choosing l1 = (y∗/ x∗) .(σ2/ (1−q1β1)σ1)
and l2 = (m(1−q2β2))/ (α(1−q1β1)), a little algebraic ma-

nipulation yields

dV
dt

= − r
K(1−q1β1)

(x− x∗)2− s
L

y∗σ2
x∗(1−q1β1)σ1

(y− y∗)2

+ m
(

1− y∗σ2
x∗(1−q1β1)σ1

)
(y− y∗)(z− z∗)< 0.

(4.9)

Clearly dV/ dt < 0 if and only if(
1− y∗σ2

x∗(1−q1β1)σ1

)
(y− y∗)(z− z∗)< 0.

Therefore, P∗ (x∗,y∗,z∗) is globally asymptotically stable.

5. Numerical Simulation
To study dynamics of the system (2.5) with the numerical
simulation, for this, we choose the values of the following
parameters (see [19]) :

r = 2.1, s = 1.7, K = L = 100,
σ1 = 0.7, σ2 = 0.1, q1 = 0.02, q2 = 0.01,

α = 0.003, m = 0.02, d = 0.02,
α1 = 10, α2 = 15, β1 = 1, β2 = 1.

(5.1)

In appropriate units with initial conditions (30,30,30). For
the values of the parameters listed below in (5.1), the condi-
tions (2.4) are satisfied. Also, according to the Theorem 4.1
the balance point P∗ (x∗,y∗,z∗) is both locally and globally
asymptotically stable within the quadrant.
For the set of values of parameters given in (5.1), the behavior
of x, y and z with respect to time t is plotted in Figure 1.
In Figure 1, firstly the biomass density of prey species in the
region increases without reservation with respect to time and
little decreases slightly and moved to its equilibrium level.
Secondly, it is clear that the biomass density of the prey popu-
lation in the reserved area increases abruptly near its carrying
capacity, then moved to its equilibrium level near the carrying
capacity of this zone. Finally, the same figure shows that the
density of the biomass of predators increases with time in an
almost linear way and tries to adjust to their equilibrium level.

We note that the αi and βi for i = 1,2 are important pa-
rameters that govern the dynamics of the system. Therefore,
we plotted the behavior of x, y and z with time t for different
values of αi and βi in Figures 2–4.

6. Conclusion
In this paper, we have is a mathematical model of exploitation
of fisheries resources with the reserve area, in the presence
of bird predators and the function of the modified strain has
been proposed. It was assumed that the aquatic ecosystem
consists of two zones : a free fishing area and other restricted
areas where fishing is prohibited. It was assumed that fish
populations are logistic growth in both areas. Using the theory
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Figure 1. Plot x, y and z versus time t

Figure 2. Plot of x verses time t to α1 = 10, α2 = 20, (red),
α2 = 40, (blue), α2 = 60, (green), β1 = β2 = 1

Figure 3. Plot of y verses time t to α1 = 10, α2 = 20, (red),
α2 = 40, (blue), α2 = 60, (green), β1 = β2 = 1

Figure 4. Plot of z verses time t to α1 = 10, α2 = 20, (red),
α2 = 40, (blue), α2 = 60, (green), β1 = β2 = 1

664
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of stability of ordinary differential equation, it has been proven
that there is inner balance under certain conditions and it is
globally asymptotically stable.
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