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Analysis of a quasistatic contact problem with wear
and damage for thermo-viscoelastic materials
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Abstract
We consider a quasistatic contact problem for an thermo visco-elastic body with wear and damage between a
thermo-viscoelastic body and a rigid obstacle. The contact is frictional and bilateral which results in the wear and
damage of contacting surface. The evolution of the wear function is described with Archard’s law.The evolution
of the damage is described by an inclusion of parabolic type. We establish a variational formulation for the model
and we prove the existence of a unique weak solution to the problem. The proof is based on a classical existence
and uniqueness result on parabolic inéqualities, differential equations and fixed point argument
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1. Introduction
Considerable progress has been achieved recently in mod-

eling, mathematical analysis and numerical simulations of
various contact processes and, as a result, a general mathe-
matical theory of contact mechanics is currently maturing. It
is concerned with the mathematical structures which under-
lie general contact problems with different constitutive laws
(i.e., different materials), varied geometries and settings, and
different contact conditions, see for instance [13, 21, 22] and
the references therein. The theory’s aim is to provide a sound,
clear and rigorous background for the constructions of models
for contact between deformable bodies; proving existence,
uniqueness and regularity results; assigning precise mean-
ing to solutions; and the necessary setting for finite element

approximations of the solutions.

The modelisation of a contact phenomenon is determined
by a set of assumptions influencing on the form and struc-
ture of partial differential equations system or on boundary
conditions of the associated mathematical model.

Among the assumptions influencing the partial differential
equations system :

-Hypothesis about the geometry of the deformation (small
deformation or others).

-Hypothesis about the mechanical process (quasi-static or
dynamic).

-Hypothesis about the laws of material behavior (elastic,
viscoelastic,...).

The model equations can be influenced by additional phe-
nomena (thermal, piezoelectric,...).

The boundary conditions on the contact surface are de-
scribed in both normal direction and in the tangential plane,
these are called boundary conditions of friction.

In the direction of normal, we have unilateral and bilateral
contact (when there is no separation between the body and
the obstacle). The normal compliance (when the obstacle is
deformable).
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The boundary conditions are also influenced by the consid-
eration of various underlying phenomena accompanying the
contact with friction, adhesion, wear, thermal effects, the de-
pendence of the threshold friction versus slip or the slip speed
can influence the boundary conditions of the mathematical
model.

The constitutive laws with internal variables has been
used in various publications in order to model the effect of
internal variables in the behavior of real bodies. Some of the
internal state variables considered by many authors are the
temperature and the damage field. Wear is one of the processes
which reduce the lifetime of modern machine elements. It
represents the unwanted removal of materials from surfaces
of contacting bodies occurring in relative motion.

In this paper we consider a mathematical frictional contact,
between thermo-viscoelastic body and a rigid obstacle, with
damage and wear. For this, we consider rate-type constitutive
equation of the form

σ =A ε(u̇)+G
(
ε(u),ζ

)
+F (θ ,ζ ), in Ω×(0,T ) (1.1)

In which u, σ represent, respectively, the displacement
field and the stress field where the dot above denotes the
derivative with respect to the time variable, θ represents the
temperature, ζ is the damage field, A and G are nonlinear op-
erators describing the purely viscous and the elastic properties
of the material, respectively, and F is a nonlinear constitutive
function which describe the behavior of the material. The
differential inclusion used for the evolution of the damage
field is

ζ̇ −κ∆ζ +∂ψK(ζ ) 3 φ
(
ε(u),ζ

)
, in Ω× (0,T ), (1.2)

Where ψK(ζ ) denote the subdifferential of the indicator
function of the set K of admissible damage functions defined
by

K = {ζ ∈ H1(Ω);0≤ ζ ≤ 1, a.e. in Ω}, (1.3)

and φ is given constitutive function which describe the source
of the damage in the system. When ζ = 0 the material is
completely damaged, when ζ = 1 the material is undamaged,
, and for 0 < ζ < 1 there is partial damage.

The thermo-viscoelastic constitutive law (1.1) includes a
temperature effects described by the parabolic equation given
by

θ̇ −κ0∆θ = ψ
(
σ ,ε(u),θ

)
+q, in Ω× (0,T ), (1.4)

Analysis of a dynamic thermo-elastic-viscoplastic contact
problem.was studies in [3] A frictional contact problem with
wear involving elastic-viscoplastic materials with damage
and thermal effects.can be found in [4].Dynamic evolution of
damage in elastic-thermo-viscoplastic materials.was studies
in [18].

In this paper we study a quasistatic problem of frictional
bilateral contact with wear and damage. We model the ma-
terial behavior with an thermo viscoelastic constitutive law
.

This article is organized as follows. In Section 2 we
describe the mathematical models for the frictional contact
problem between thermo-viscoelastic body and a rigid ob-
stacle with damage. The contact is modelled with normal
compliance and wear. In Section 3 we introduce some nota-
tion, list the assumptions on the problem’s data, and derive
the variational formulation of the model. In Section 4 we
state and prove our main existence and uniqueness result, the
prove is carried out in several steps and is based on arguments
of evolutionary variational inequalities, a classical existence
and uniqueness result on parabolic inequalities, differential
equations and the Banach fixed point theorem.

2. Problem Statement
Let us consider a thermo-viscoelastic body occupying a

bounded domain Ω of the space Rd(d = 2,3). Tthe boundary
Γ of Ω is assumed to be Lipschitz continuous, and is par-
titioned into three disjoint measurable parts Γ1, Γ2 and Γ3,
such that the measure of Γ1 is strictly positive. The body
and the rigid obstacle are in bilateral frictional contact along
the part Γ3. Let T > 0 and let [0,T ] be the time interval of
interest We admit a possible external heat source applied in
Ω× (0,T ), given by the functions q. The body Ω is clamped
on Γ1× (0,T ). The surface tractions f2 act on Γ2× (0,T ) and
a body forces of density f0 acts on Ω× (0,T ). We model the
materials with thermo-viscoelastic constituve law with dam-
age. We also assume that the normal derivative of ζ represent
a homogeneous Neumann boundary conditions where

∂ζ

∂ν
= 0

The body and the rigid obstacle can enter in contact along the
part Γ3. We introduce the wear function ω : Γ3× (0,T )→R+

which measures the wear of the surface. The wear is identified
as the normal depth of the material that is lost. Let g be the
initial gap between the body and the rigid foundation . Let pν

and pτ denote the normal and tangential compliance functions.
We denote by v∗ and α∗ = ‖v∗‖ the tangential velocity and
the tangential speed at the contact surface between the body
and the rigid foundation. We use the modified version of
Archard’s law:

ω̇ =−κω v∗σν

To describe the evolution of wear, where κω > 0 is a wear co-
efficient. We introduce the unitary vector δ : Γ3→Rd defined
by δ = v∗/‖v∗‖. When the contact arises, some material of
the contact surfaces worn out and immediately removed from
the system. This process is measured by the wear function ω.

With the assumption above, the classical formulation of
the friction contact problem with wear and damage between a
thermo-viscoelastics body and rigid obstacle is following.

300



Analysis of a quasistatic contact problem with wear and damage for thermo-viscoelastic materials — 301/309

Problem P
Find a displacement field u : Ω× (0,T )→ Rd , a stress

field σ : Ω×(0,T )→ Sd , a temperature θ : Ω×(0,T )→R, a
damage ζ : Ω× (0,T )→R, and a wear ω : Γ3× (0,T )→R+

such that

σ = A ε(u̇)+G
(
ε(u),ζ

)
+F (θ ,ζ ), in Ω× (0,T )

(2.1)

θ̇ −κ0∆θ = ψ
(
σ ,ε(u̇),θ

)
+q, in Ω× (0,T ), (2.2)

ζ̇ −κ∆ζ +∂ψK(ζ ) 3 φ (ε(u),ζ ) , inΩ× (0,T ) (2.3)
Divσ + f0 = 0 in Ω× (0,T ), (2.4)
u = 0 on Γ1× (0,T ), (2.5)
σ ·ν = f2 on Γ2× (0,T ), (2.6)
σν = pν(uv−ω−g) on Γ3× (0,T ), (2.7)

σ τ =−pτ(uv−ω−g)
v∗

‖v∗‖
, on Γ3× (0,T ), (2.8)

ω̇ =−κω α
∗
σν = κω α

∗pν(uv−ω−g),on Γ3× (0,T )
(2.9)

k1
∂θ

∂ν
+Bθ = 0, on Γ× (0,T ), (2.10)

∂ζ

∂ν
= 0, on Γ1× (0,T ), (2.11)

u(0) = u0,θ(0) = θ0, ζ (0) = ζ0, in Ω, (2.12)
ω(0) = ω0, on Γ3 (2.13)

Equations (2.1) and(2.2)represent the thermo-viscoelastic
constitutive law with damage, the evolution of the damage is
governed by the inclusion of parabolic type given by the rela-
tion (2.3). Equation (2.4) is the equilibrium equations for the
stress. Equations (2.5) and (2.6) represent the displacement
and traction boundary condition, respectively. Condition (2.7)
and (2.8)represents the frictional bilateral contact with wear
described above.

Next, the equation (2.9) represents the ordinary differ-
ential equation which describes the evolution of the wear
function. Equations (2.10) and (2.11) represent, respectively
on Γ, a Fourier boundary condition for the temperature and an
homogeneous Neumann boundary condition for the damage
field on Γ. the functions u0, θ0, ζ0and ω0 in (2.12) and (2.13)
are the initial data.

3. Variational formulation and
preliminaries

In this section, we list the assumptions on the data and derive
a variational formulation for the contact problem. To this end,
we need to introduce some notation and preliminary material.
Here and below, Sd represent the space of second-order sym-
metric tensors on Rd . We recall that the inner products and

the corresponding norms on Sd and Rd are given by

u.v = ui.vi, |v|= (v.v)
1
2 , ∀u,v ∈ Rd ,

σ .τ = σi j.τi j, |τ|= (τ · τ)
1
2 , ∀σ ,τ ∈ Sd .

Here and below, the indices i and j run between 1 and
d and the summation convention over repeated indices is
adopted. Now, to proceed with the variational formulation,
we need the following function spaces:

H = {v = (vi);vi ∈ L2(Ω)},
H1 = {v = (vi);vi ∈ H1(Ω)},
H = {τ = (τi j);τi j = τ ji ∈ L2(Ω)},
H1 = {τ = (τi j) ∈H ;divτ ∈ H}.

The spaces H, H1, H and H1 are real Hilbert spaces
endowed with the canonical inner products given by

(u,v)H =
∫

Ω

u.vdx, (u,v)H1 =
∫

Ω

u.vdx+
∫

Ω

∇u.∇vdx,

(σ ,τ)H =
∫

Ω

σ .τdx, (σ ,τ)H1 =
∫

Ω

σ .τdx+
∫

Ω

divσ .Divτdx,

and the associated norms ‖ · ‖H , ‖ · ‖H1 , ‖ · ‖H , and ‖ · ‖H1
respectively. Here and below we use the notation

∇u = (ui, j),

ε(u) = (εi j(u)),εi j(u) =
1
2
(ui, j +u j,i), ∀u ∈ H1

Divσ = (σi j, j), ∀σ ∈H1.

For every element v ∈ H1, we also use the notation v for the
trace of v on Γ and we denote by vν and vτ the normal and
the tangential components of v on the boundary Γ given by

vν = v.ν , vτ = v− vν ν .

Let H ′
Γ

be the dual of HΓ = H
1
2 (Γ)d and let (·, ·)− 1

2 ,
1
2 ,Γ

denote
the duality pairing between H ′

Γ
and HΓ. For every element

σ ∈H1 let σν be the element of H ′
Γ

given by

(σν ,v)− 1
2 ,

1
2 ,Γ

= (σ ,ε(v))H +Divσ ,v)H ∀v ∈ H1.

Denote by σν and σ τ the normal and the tangential traces
of σ ∈H1, respectively. If σ is continuously differentiable
on Ω∪Γ, then

σν=(σν) ·ν , σ τ = σν−σν ν ,

(σν ,v)− 1
2 ,

1
2 ,Γ

=
∫

Γ

σν ·vda

for all v ∈ H1, where da is the surface measure element.
To obtain the variational formulation of the problem (2.1)

(2.13), we introduce for the displacement field we need the
closed subspace of H1 defined by

V =
{

v ∈ H1;v = 0 on Γ1
}
.
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Since measΓ1 > 0, the following Korn’s inequality holds:

‖ε(v)‖H ≥ cK‖v‖H1 ∀v ∈V, (3.1)

Where the constant cK denotes a positive constant which
may depends only on Ω, Γ1 . Over the space V we consider
the inner product given by

(u,v)V = (ε(u),ε(v))H , ∀u,v ∈V, (3.2)

Let ‖ · ‖V be the associated norm. It follows from Korn’s
inequality (3.1) that the norms ‖ ·‖H1 and ‖ ·‖V are equivalent
on V . Then (V,‖ · ‖V ) is a real Hilbert space. Moreover, by
the Sobolev trace theorem and (3.2), there exists a constant
c0 > 0, depending only on Ω, Γ1 and Γ3 such that

‖v‖L2(Γ3)d ≤ c0‖v‖V ∀v ∈V. (3.3)

We also introduce the spaces

E0 = L2(Ω), E1 = H1(Ω),

The spaces V , E1 are real Hilbert spaces endowed with the
canonical inner products denoted by (·, ·)V , (·, ·)E1 . The asso-
ciate norms will be denoted by ‖ ·‖V , ‖ ·‖E1 , respectively. We
recall the following standard result for parabolic variational
inequalities used in section 4 (see [2, p124]). Let V and H be
real Hilbert spaces such that V is dense in H and the injection
map is continuous. The space H is identified with its own
dual and with a subspace of the dual V ′ of V . We write

V ⊂ H ⊂V ′.

We say that the inclusions above define a Gelfand triple.
We denote by ‖·‖V , ‖·‖H , and ‖·‖V ′ , the norms on the spaces
V , H and V ′ respectively, and we use (·, ·)V ′×V for the duality
pairing between V ′ and V . Note that if f ∈ H then

( f ,v)V ′×V = ( f ,v)H ,∀v ∈ H.

Theorem 3.1. Let V ⊂ H ⊂ V ′ be a Gelfand triple. Let K
be a nonempty, closed, and convex set of V . Assume that
a(·, ·) : V ×V → R is a continuous and symmetric bilinear
form such that for some constants ζ > 0 and c0,

a(v,v) = c0 ‖v‖2
H > ζ ‖v‖2

V ,

∀v ∈ H

Then, for every u0 ∈ K and f ∈ L2 (0,T ;H), there exists a
unique function u ∈ H1 (0,T ;H) ∩ L2 (0,T ;V ) such that

u(0) = u0,u(t) ∈ K f or all t ∈ [0,T ] ,

and almost all t ∈ (0,T ) ,

(u̇(t) ,v−u(t))V ′×V +a(u(t) ,v−u(t))> ( f (t) ,v−u(t))H ,

∀v ∈ K,

Finally, for any real Hilbert space X , we use the classical
notation for the spaces Lp(0,T ;X), W k,p(0,T ;X), where 1≤
p ≤ ∞, k ≥ 1. We denote by C(0,T ;X) and C1(0,T ;X) the
space of continuous and continuously differentiable functions
from [0,T ] to X , respectively, with the norms

‖ f‖C(0,T ;X) = max
t∈[0,T ]

‖ f (t)‖X ,

‖ f‖C1(0,T ;X) = max
t∈[0,T ]

‖ f (t)‖X + max
t∈[0,T ]

‖ ḟ (t)‖X ,

respectively.

In the study of the Problem P, we consider the following
assumptions:
The viscosity function A : Ω×Sd → Sd satisfies:

(a) There exists LA > 0 such that

|A (x,ξ 1)−A (x,ξ 2)| ≤ LA |ξ 1−ξ 2|

for all ξ 1,ξ 2 ∈ Sd , a.e. x ∈Ω.
(b) There exists mA > 0 such that

(A (x,ξ 1)−A (x,ξ 2))·(ξ 1−ξ 2)≥mA |ξ 1−ξ 2|2

for all ξ 1,ξ 2 ∈ Sd , a.e. x ∈Ω.
(c) The mapping x 7→A (x,ξ ) is Lebesgue measur-
able on Ω, for any ξ ∈ Sd .
(d) The mapping x 7→A (x,0) is continuous on Sd ,
a.e. x ∈Ω.

(3.4)

The elasticity operator G : Ω×Sd×R→ Sd satisfies:

(a) There exists LG > 0 such that

|G (x,ξ 1,ζ 1)−G (x,ξ 2,ζ 2)| ≤LG

(
|ξ 1−ξ 2|+|ζ 1−ζ 2|

)
,

for all ξ 1,ξ 2 ∈ Sd , for all ζ 1,ζ 2 ∈ R, a.e.
x ∈Ω.
(b)The mapping x 7→G (x,ξ ,ζ ) is Lebesgue
measurable on Ω, for any ξ ∈ Sd ,and for all
ζ ∈ R.
(c) The mapping x 7→ G (x,0,0) belongs to
H .

(3.5)

The thermal expansion operator F : Ω×R×R→ Sd satisfies:

(a) There exists LF > 0 such that |F (x,θ 1,ζ 1)−
F (x,θ 2,ζ 2)| ≤ LF

(
|θ 1−θ 2|+ |ζ 1−ζ 2|

)
, for all

θ 1,θ 2 ∈ R, for all ζ 1,ζ 2 ∈ R, a.e. x ∈Ω.
(b) The mapping x 7→F (x,θ ,ζ ) is Lebesgue mea-
surable on Ω, for any θ ,ζ ∈ R.
(c) The mapping x 7→F (x,0,0) belongs to H .

(3.6)
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The damage source function φ : Ω×Sd×R→ R satisfies:

(a) There exists Lφ > 0 such that |φ(x,ξ 1,ζ1)−
φ(x,ξ 2,ζ2)| ≤ Lφ

(
|ξ 1 − ξ 2|+ |ζ1 − ζ2|

)
, for all

ξ 1,ξ 2 ∈ Sd and ζ1,ζ2 ∈ R a.e. x ∈Ω,
(b) The mapping x 7→ φ(x,ξ ,ζ ) is Lebesgue mea-
surable on Ω, for any ξ ∈ Sd and ζ ∈ R,
(c) The mapping x 7→ φ(x,0,0) belongs to L2(Ω),
(d) φ(x,ξ ,ζ ) is bounded for all ξ ∈ Sd , ζ ∈ R a.e.
x ∈Ω.

(3.7)

The nonlinear constitutive function ψ : Ω×Sd×Sd×R→R
satisfies:

(a) There exists Lψ > 0 such that
|ψ(x,σ1,ξ 1,θ1) − ψ(x,σ2,ξ 2,θ2)| ≤
Lψ

(
|σ1 − σ2| + |ξ 1 − ξ 2| + |θ1 − θ2|

)
, for

all σ1,σ2,ξ 1,ξ 2 ∈ Sd and θ1,θ2 ∈ R a.e. x ∈Ω,
(b) The mapping x 7→ ψ(x,σ ,ξ ,θ) is Lebesgue
measurable on Ω, for any σ ,ξ ∈ Sd and θ ∈ R,
(c) The mapping x 7→ ψ(x,0,0,0) belongs to
L2(Ω),
(d) ψ(x,σ ,ξ ,θ) is bounded for all σ ,ξ ∈ Sd ,
θ ∈ R a.e. x ∈Ω.

(3.8)

The normal compliance function pν : Γ3×R→R+ satisfies:

(a) There exists Lν > 0 such that |pν(x,u1)−
pν(x,u2)| ≤ Lν |u1 − u2| for all u1,u2 ∈ R, a.e.
x ∈ Γ3.
(b) (pν(x,u1)− pν(x,u2))(u1 − u2) ≥ 0 for all
u1,u2 ∈ R, a.e. x ∈ Γ3.
(c) The mapping x 7→ pν(x,u) is measurable on Γ3
for all u ∈ R.
(d) pν(x,u) = 0 for all u≤ 0, a.e. x ∈ Γ3.

(3.9)

The tangential contact function pτ : Γ3×R→ R+ satisfies:

(a) There exists Lτ > 0 such that |pτ(x,u1)−
pτ(x,u2)| ≤ Lτ |u1 − u2| for all u1,u2 ∈ R, a.e.
x ∈Ω.
(b) The mapping x 7→ pτ(x,u) is Lebesgue measur-
able on Γ3 for all u ∈ R.
(c) The mapping x 7→ pτ(x,0) belongs to L2(Γ3).

. (3.10)

We also suppose the following regularities

f0 ∈ L2(0,T ;L2(Ω)d), f2 ∈ L2(0,T ;L2(Γ2)
d),

q ∈ L2(0,T ;L2(Ω)),

(3.11)

u0 ∈V, (3.12)

ζ0 ∈ K, (3.13)

ω0 ∈ L2(Γ3), (3.14)

pν(.,u) ∈ L2(Γ3), pτ(.,u) ∈ L2(Γ3),u ∈ R, (3.15)

g ∈ L2(Γ3), g≥ 0, a.e. on Γ3 (3.16)

where K is the set of admissible damage functions defined in
(1.3).

Using the Riesz representation theorem, we define the
linear mappings f : [0,T ]→V as follows:

(f(t),v)V =
∫

Ω

f0(t) ·vdx+
∫

Γ2

f2(t) ·vda ∀v∈V (3.17)

Next, we define the mappings a : E1×E1→ R, the wear
functional j : V ×V ×L2(Γ3)→ R, respectively by

a(ζ ,ξ ) = κ

∫
Ω

∇ζ ·∇ξ dx, (3.18)

j (u,v,ω) =
∫

Γ3
(pν (uv−ω−g)vν)da+∫

Γ3
(pτ (uv−ω−g)vν)‖vτ −v∗‖da,

for allu,v ∈V ,ω ∈ L2(Γ3)

(3.19)

We note that conditions (3.14) imply

f ∈ L2(0,T ;V ) (3.20)

By a standard procedure based on Green’s formula, we
derive the following variational formulation of the mechanical
problem (2.1) (2.13).

Problem PV
Find a displacement field u : [0,T ]→ V , a stress field

σ : [0,T ]→ H , a temperature θ : [0,T ]→ V , a damage
ζ : [0,T ]→ E1, a wear ω : [0,T ]→ L2(Γ3) such that

σ = A ε(u̇)+G
(
ε(u),ζ

)
+F (θ ,ζ ), in Ω× (0,T )

(3.21)

(σ ,ε(v)− ε(u̇(t)))H + j(u(t),v,ω(t))

− j(u(t), u̇(t),ω(t))≥ (f(t),v− u̇(t))V
∀v ∈V , a.et ∈ (0,T ),

(3.22)

(θ̇ ,v)+a(θ ,v) = (ψ(σ ,ε(u),θ),v)+(q,v)
∀v ∈V ,

(3.23)

(ζ̇ (t),ξ −ζ (t))L2(Ω)+a(ζ (t),ξ −ζ (t))

≥
(

φ
(
ε(u(t)),ζ (t)

)
,ξ −ζ (t)

)
L2(Ω)

,

∀ξ ∈ K,a.e.t ∈ (0,T ),

(3.24)

ω̇ = κω α
∗pν(uv−ω−g) (3.25)

u(0) = u0,θ(0) = θ0,ζ (0) = ζ0, (3.26)

ω(0) = ω0, (3.27)

We notice that the variational Problem PV is formulated in
terms of a displacement field, a stress field, a temperature, a
damage, and a wear. The existence of the unique solution of
problem PV is stated and proved in the next section.
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4. Existence and uniqueness result
Our main existence and uniqueness result is the following.

Theorem 4.1. Assume that (3.4)–(3.16) hold. Then there
exists a unique solution of Problem PV. Moreover, the solution
satisfies

u ∈C1(0,T ;V ), (4.1)
σ ∈C(0,T ;H1), (4.2)

θ ∈W 1,2(0,T ;L2(Ω))∩L2(0,T ;V ), (4.3)

ζ ∈ H1(0,T ;E0)∩L2(0,T ;E1), (4.4)

ω ∈C1(0,T ;L2(Γ3)), (4.5)

The functions u, σ , θ , ζ and ω which satisfy (3.21)-(3.27)
are called a weak solution of the contact Problem P. We
conclude that, under the assumptions (3.4)– (3.16), the me-
chanical problem (2.1)–(2.13) has a unique weak solution
satisfying (4.1) (4.5).

The proof of Theorem 4.1 will be done in several steps
and is based on arguments of nonlinear equations with mono-
tone operators, a classical existence and uniqueness result on
parabolic inequalities and Banach fixed point theorem. To this
end, we assume in what follows that (3.4) (3.16) hold, and we
consider that C is a generic positive constant which depends
on Ω, Γ1, Γ1, Γ3, pν , pτ , A , G , F , ψ , φ , κ , and T . but does
not depend on t nor of the rest of input data, and whose value
may change from place to place.

In order to prove the theorem, we consider for
ω ∈ C 1(0,T ;L 2 (Γ3)); η ∈ C (0,T ;H ); h ∈ C (0,T ;V );
µ ∈C (0,T ;V ′) and χ ∈C (0,T ;L 2 (Γ3)), the following four
auxiliary problems.

First step

Let ω ∈ C 1(0,T ;L 2 (Γ3)), η ∈ C (0,T ;H )and
h ∈ C (0,T ;V ) we consider the following variational problem.

Problem PVωηh
Let vωηh = u̇ωηh
Find a displacement field vωηh : [0,T ]→V , a stress field

σωηh : [0,T ]→H such that

σωηh = A ε(vωηh(t))+η(t) (4.6)

(σωηh(t),ε(v)− ε(vωηh(t)))H +
j(h(t),v,ω(t))− j(h(t),vωηh,ω(t))
≥ (f(t),v−vωηh(t))V ∀v ∈V , t ∈ (0,T ),

(4.7)

uωηh (0) = u0

We have the following result for the problem PVωηh.

Lemma 4.2. PVωηh has a unique weak solution such that
vωηh ∈ C(0,T ;V ), and σωηh ∈ C(0,T ;H1) to the problem
(4.6) and (4.7).

Proof. We define the operators A : V →V such that:

(Au,v)V = (A ε(u),ε(v))H , (4.8)

It follows from (3.4)(a) and (4.8) that:

‖Au−Av‖V ≤ LA‖u−v‖V ∀u,v ∈V . (4.9)

Wich shows that A : V →V is Lipschitz continuous. Now
by (3.4)(b) and (4.8) we find:

(Au−Av,u−v)V ≥ mA‖u−v‖2
V ∀u,v ∈V . (4.10)

Wich shows that A : V →V is a strongly monotone opera-
tor on V.

Moreover, using Riesz representation theorem we may
define the functions Fη : [0,T ]→V by

Fη(t) = f(t)−η(t) ∀t ∈ [0,T ],

Since A is a strongly monotone operator and Lipschitz
continuous operator on V and since j(h(t),v,ω(t))is a proper
convex lower semicontinuous functional, it follows from clas-
sical result on elliptic inequalities (see[6]) that there exists a
unique function vωnh(t) ∈V such that

(A ε(vωηh(t)),ε(v)− ε(vωηh(t)))H +
j(h(t),v,ω(t))− j(h(t),vωηh(t),ω(t))
≥ (Fη(t),v−vωηh(t))V ∀v ∈V , t ∈ (0,T ),

(4.11)

We use the relation (4.6), the assumptions (3.4), we obtain
that

σωnh(t) ∈H

Using the definition (3.17) for f , we deduce

Divσωηh(t)+ f0(t) = 0 (4.12)

With the regularity assumption (3.11) we see that

Divσωηh(t) ∈ H therefore σωηh(t) ∈H1

Let now t1, t2 ∈ [0,T ] , and denote η (ti) = ηi, f(ti) = fi,
h(ti) = hi, vωηh (ti) = vi, σωηh (ti) = σi, for i = 1,2. Using
the relation (4.11) we find that

(Av1−Av2,v1−v2)V ≤ (f1− f2,v1−v2)V +
(η2−η1,ε (v1−v2))H + j (h1,v2,ω)−
j (h1,v1,ω)+ j (h2,v1,ω)− j (h2,v2,ω)

(4.13)

From the definition of the functional j given by (3.19) we
have

j(h1,v2,ω)− j(h1,v1,ω)+ j(h2,v1,ω)− j(h2,v2,ω)

=
∫

Γ3

{pν (h1ν −ω−g)− pν (h2ν −ω−g)}(v2ν − v1ν )da

+
∫

Γ3

{pτ (h1τ −ω−g)− pτ (h2τ −ω−g)}(‖v2τ − v∗‖−‖v1τ − v∗‖)da

We use (3.3), (3.9) and (3.10) to deduce that

j(h1,v2,ω)− j(h1,v1,ω)+ j(h2,v1,ω)
− j(h2,v2,ω)≤C‖h1−h2‖V‖v1−v2‖V

(4.14)
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The relation (3.2), the estimate (4.10) and the inequality
(4.14) combined with (4.13) give us

mA ‖v1−v2‖V ≤C (‖f1− f2‖V +‖η1−η2‖H +‖h1−h2‖V )
(4.15)

The inequality (4.15) and the regularity of the function f,
h and η show that

vωηh ∈C(0,T ;V )

From assumption (3.4) and the relation (4.6) we have

‖σ1−σ2‖H ≤C (‖v1−v2‖V +‖η1−η2‖H ) (4.16)

and from (4.12) we have.

Divσ(ti)+ f0(t) = 0, i = 1,2. (4.17)

The regularity of the function η , v, f0 and the relation
(4.16)-(4.17)show that

σωηh ∈C(0,T ;H1)

Let ω ∈C(0,T ;L2 (Γ3)),h ∈C(0,T ;V ) and let
η ∈C(0,T ;H ) be given. We consider the following operator

Λωη : C (0,T ;V )→C (0,T ;V )

Defined by

Λωη h = u0 +
∫ t

0
vωηh(s)ds ∀h ∈C (0,T ;V ) (4.18)

Lemma 4.3. Let the assumptions (3.4)-(3.16) hold. Then the
operator Λωη has a unique fixed point hωη ∈C(0,T ;V ),

Proof. Let h1,h2 ∈C(0,T ;V ) and let η ∈C(0,T ;H ),we use
the relation vωηhi = viand σωηhi = σi for i = 1,2 .

Using similar arguments as those used in (4.15) we find
that

mA ‖v1(t)−v2(t)‖V ≤C‖h1(t)−h2(t)‖V ∀t ∈ [0,T ]
(4.19)

From (4.18)(a) and (4.19) we have

∥∥Λωη h1−Λωη h2
∥∥

V ≤C
∫ t

0
‖h1(t)−h2(t)‖V ds ∀t ∈ [0,T ]

(4.20)

Reitrating this inequality m times, we obtain∥∥Λωη h1−Λωη h2
∥∥

C(0,T ;V )
≤ CmT m

m!
‖h1−h2‖C(0,T ;V ) ds ∀t ∈ [0,T ]

This show that for m large enough the operator Λm
ωη is

a contraction in the Banach space. Thus, from Banach’s
fixed point theorem the operator Λωη has a unique fixed point
h∗ωη ∈C(0,T ;V ).

For η ∈ C (0,T ;H ), let h∗ωη be the fixed point given
by the above lemma, i.e. hωη∗ = vωη∗h. In the sequel we
denote by (vωη ,σωη)∈C (0,T ;V )×C (0,T ;H1) the unique
solution of Problem PVωηh, i.e. vωη = vωη∗h, σωη = σωη∗h.
Also, we denote by uωη : [0,T ]→V the function defined by

uωη(t) =
∫ t

0
v(s)ds+u0, ∀t ∈ [0,T ]. (4.21)

From Lemma 4.2 we deduce that

uωη ∈C1(0,T ;V )

Now we consider the following problem
Problem PVωη

Find a displacement field uωη : [0,T ]→ V such that for
all t ∈ [0,T ]

(Aε(u̇ωη (t)),ε(v)− ε(u̇ωη (t)))H + j(uωη (t),v,ω(t))−
j(uωη (t), u̇ωη (t),ω(t))+(η(t),ε(v)− ε(u̇ωη (t)))H
≥ (f(t),v− u̇ωη (t))V , ∀v ∈V , t ∈ (0,T ),

(4.22)
uωη(0) = u0 (4.23)

We have the following result for the problem PVωη .

Lemma 4.4. PVωη has a unique weak solution satisfying the
regularity (4.1).

Proof. For each ω ∈C(0,T ;L2(Γ3)) and η ∈C(0,T ;H ),we
denote by hωη ∈C(0,T ;V ) the fixed point obtained in Lemma
4.3 and let uωη be the function defined by

uωη(t) = u0 +
∫ t

0
vωηhωη

(s)ds ∀t ∈ [0,T ] (4.24)

We have Λωη hωη = hωη from (4.18) and (4.24) it follows
that

uωη = hωη (4.25)

Therefore, taking h = hωη in (4.7) and using (4.6),(4.24)
and (4.25) we see that uωη is the unique solution to the prob-
lem PVωη satisfying the regularity expressed in (4.1) .

Second step

In the second step, we use the displacement field uωη

obtained in Lemma 4.4 and Let µ ∈ C (0,T ;V ′), we consider
the following variational problem.

Problem PVωµ

Find the temperature θωµ : [0,T ]→ V which is solution
of the following variational problem

(
θ̇ωµ ,v

)
+a(θωµ ,v) = (µ(t)+q(t) ,v), ∀v ∈V

θµ (0) = 0
(4.26)

We have the following result.
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Lemma 4.5. PVωµ has a unique solution θωµ which satisfies
the regularity (4.3).

Proof. By an application of the Friedrichs-Poincaré inequal-
ity, we can find a constant β ′ > 0 such that

∫
Ω
‖ξ‖2 dx+ β

k0

∫
Γ
‖ξ‖2 dγ ≥ β ′

∫
Ω
‖ξ‖2 dx, ∀ξ ∈V .

(4.27)

Thus, we obtain

a0 (ξ ,ξ )≥ c1 ‖ξ‖2
V , ∀ξ ∈V . (4.28)

Where c1 = k0 min(1,β ′)/2, which implies that a0 is
V -elliptic. Consequently, based on classical arguments of
functional analysis concerning parabolic equations, the vari-
ational equation (4.26) has a unique solution θωµ satisfying
(4.3).

Third step

In the third step, we use the displacement field uωη ob-
tained in Lemma 4.4

We consider the following initial-value problem.

Problem PVωχ

Find a damage ζωχ : [0,T ]→H1 (Ω) such that ζωχ(t)∈K
and

(ζ̇ωχ(t),ξ −ζωχ(t))L2(Ω)+a(ζωχ(t),ξ −ζωχ(t))
≥
(
χ(t),ξ −ζωχ(t)

)
L2(Ω)

, ∀ξ ∈ K, a.e.t ∈ (0,T ),

(4.29)

ζωχ (0) = 0 (4.30)

To solve problem PVωχ , we recall the following abstract
result for parabolic variational inequalities,

Lemma 4.6. There exists a unique solution ζωχ of Problem
PVωχ and it satisfies

ζωχ ∈W 1,2(0,T ;L2(Ω))∩L2(0,T ;H1(Ω)).

Proof. Using (3.18), (3.21) and a classical existence and
uniqueness result on parabolic equations (see [2, P 124] )

Fourth step

In the fourth step, we use the displacement field uωη

obtained in Lemma 4.4
We consider the following initial-value problem.

Problem PVω

Find a wear ω ∈ C 1(0,T ;L 2 (Γ3)) such that

ω̇ = κω α
∗pν(uv−ω−g) (4.31)

ω(0) = ω0, (4.32)

Let us now we consider the operator L : C (0,T ;L2(Γ3))→
C (0,T ;L2(Γ3)) defined by

L ω (t) =−k1v∗
∫ t

0
(σω)V (s)ds ∀t ∈ [0,T ]. (4.33)

Lemma 4.7. The operator L has a unique fixed point ω∗

and it satisfies

ω
∗ ∈C(0,T ;L2(Γ3))

Proof. Let ω1, ω2 ∈ C (0,T ;L2(Γ3)), and t ∈ [0,T ]. We de-
note by (ui,σ i,θi,ζi), for i = 1,2 the solution to the problem
PVω for ω = ωi use the notation uωi = ui, u̇ωi = vωi = vi,
ζωi = ζi, θωi = θi and σωi = σi, where ui =

(
u1

i ,u2
i
)
,ζi =(

ζ 1
i ,ζ

2
i
)
. Moreover we denote in sequel by C various positive

constants which may depend on k1and v∗. Using similar ar-
guments that those used in the proof of the relation (4.39), to
find that∫ t

0 ‖v1 (s)−v2 (s)‖2
V ds

≤C
(∫ t

0 ‖u1 (s)−u2 (s)‖2
V ds+

∫ t
0 ‖ω1 (s)−ω2 (s)‖2

L2(Γ3)
ds
)

(4.34)

Since u1 (0) = u2 (0) = u0 and using (4.34) we obtain

‖u1 (t)−u2 (t)‖2
V ≤C

∫ t
0 ‖ω1 (s)−ω2 (s)‖2

L2(Γ3)
ds

≤C
(∫ t

0 ‖u1 (s)−u2 (s)‖2
V ds+C

∫ t
0 ‖ω1 (s)−ω2 (s)‖2

L2(Γ3)
ds
)

(4.35)

Applying Gronwall inequality, we deduce that

‖u1 (t)−u2 (t)‖2
V ≤C

∫ t
0 ‖ω1 (s)−ω2 (s)‖2

L2(Γ3)
ds (4.36)

So, by (4.34), (4.36) , it follows that∫ t
0 ‖v1 (s)−v2 (s)‖2

V ds≤C
∫ t

0 ‖ω1 (s)−ω2 (s)‖2
L2(Γ3)

ds

(4.37)

On other hand since

σ = A ε(u̇i)+G
(
ε(ui),ζi

)
+F (θ ,ζi) (4.38)

For i = 1,2 we use the assumption (3.4)(b), (3.5), (3.6)
and(3.7) to obtain for s ∈ [0,T ]

‖σ1 (s)−σ2 (s)‖2
H ≤C

(
‖v1 (s)−v2 (s)‖2

V +‖u1 (s)−u2 (s)‖2
V
)

(4.39)

We integrate the previous inequality with respect to time
to deduce that∫ t

0 ‖σ1 (s)−σ2 (s)‖2
H ds

≤C
(∫ t

0 ‖v1 (s)−v2 (s)‖2
V ds+

∫ t
0 ‖u1 (s)−u2 (s)‖2

V ds
) (4.40)
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We substitute (4.36) and (4.37) in the previous inequality
to find∫ t

0 ‖σ1 (s)−σ2 (s)‖2
H ds≤C

∫ t
0 ‖ω1 (s)−ω2 (s)‖2

L2(Γ3)
ds

(4.41)

The definition of the operator L given by (4.33) and
estimate (4.37) give us

‖L ω1 (t)−L ω2 (t)‖2
L2(Γ3)

≤C
∫ t

0 ‖ω1 (s)−ω2 (s)‖2
L2(Γ3)

ds

(4.42)

Reiterating this inequality n times leads to

‖L nω1−L nω2‖2
C (0,T ;L2(Γ3))

≤ CnT n

n! ‖ω1 (s)−ω2 (s)‖2
C (0,T ;L2(Γ3))

(4.43)

Therefore,for n large enough, L n is contractive operator
on the Banach space C (0,T ;L2(Γ3)). The operator L has a
unique fixed point ω∗ ∈ C (0,T ;L2(Γ3)).

Now we have all the ingredients to prove Theorem4.1

Proof of theorem. By taking into account the above results
and the properties of the operators G and F and of the func-
tions ψ and φ we may consider the operator Λ : C (0,T ;H ×
V ′×L2(Ω))→ C (0,T ;H ×V ′×L2(Ω))

Λ(η ,µ,χ)(t) = (Λ1(η ,µ,χ)(t),Λ2(η ,µ,χ)(t),Λ3(η ,µ,χ)(t)),

(4.44)

defined by

Λ1(η ,µ,χ)(t) = G
(
ε(uωη ),ζωχ

)
+F (θωµ ,ζωχ ), (4.45)

Λ2(η ,µ,χ)(t) =
(
ψ
(
σωη ,ε(u̇ωη ),θωµ

))
, (4.46)

Λ3(η ,µ,χ)(t) = 56
(
φ
(
ε(uωη ),ζωχ

))
, (4.47)

Here for every (η ,µ,χ) ∈ C (0,T ;H ×V ′×L2(Ω)), uη ,
θµ , ζχ and ω represents the displacement , the temperature,
the damage and the wear obtained in Lemma4.4, Lemma4.5,
Lemma4.6 and Lemma4.7 respectively and

σω = A ε(u̇ω)+G
(
ε(uω),ζω

)
+F (θω ,ζω) (4.48)

We have the following result.

Lemma 4.8. Let (4.3) be satisfied. Then for (η ,µ,χ) ∈
C (0,T ;H ×V ′×L2(Ω)) , the maping

Λ(η ,µ,χ) : [0,T ]→H ×V ′×L2(Ω)

has a unique element

(η∗,µ∗,χ∗) ∈ C (0,T ;H ×V ′×L2(Ω))

such that Λ(η∗,µ∗,χ∗) = (η∗,µ∗,χ∗).

Proof. Let (η1,µ1,χ1), (η2,µ2,χ2)∈C (0,T ;H ×V ′×L2(Ω)),
and t ∈ [0,T ].

We use the notation uωηi = ui, u̇ωηi = vωηi = vi,ζωχi =
ζi,θωµi = θi and σωηi = σ i,for i = 1,2.

Using (3.2) and the relations (3.5)-(3.7), we obtain

Λ(η1,µ1,χ1)(t)−Λ(η2,µ2,χ2)(t)‖H ×V ′×L2(Ω)

≤ LG

(
‖u1(t)−u2(t)‖V +‖ζ1(t)−ζ2(t)‖L2(Ω)

)
+LF

∫ t
0

(
‖σ1(s)−σ2(s)‖H +LA ‖v1(s)−v2(s)‖V

+‖u1(s)−u2(s)‖V +‖θ1(s)−θ2(s)‖L2(Ω)

)
ds

+Mφ

(
‖u1(t)−u2(t)‖V +‖ζ1(t)−ζ2(t)‖L2(Ω)

)
+Lψ

(
‖σ1(t)−σ2(t)‖H +‖v1(t)−v2(t)‖V+

‖θ1(t)−θ2(t)‖L2(Ω)

)
(4.49)

Since

ui (t) =
∫ t

0
vi (s)ds+u0,∀t ∈ [0,T ] , (4.50)

we have

‖u1(t)−u2(t)‖V ≤
∫ t

0
‖v1 (s)−v2 (s)‖V ds, (4.51)

Applying Young’s and Hölder’s inequalities, (4.49) be-
comes, via (4.51) ,

Λ(η1,µ1,χ1)(t)−Λ(η2,µ2,χ2)(t)‖H ×V ′×L2(Ω)

≤C
(
‖ζ1(t)−ζ2(t)‖L2(Ω)+

∫ t
0
(
‖σ1(s)−σ2(s)‖H

+‖v1(s)−v2(s)‖V +‖u1(s)−u2(s)‖V
+‖θ1(s)−θ2(s)‖L2(Ω)

)
ds
)
.

(4.52)

Taking in mind that

σ i(t) = A (ε(vi(t)))+η i (t) ,∀t ∈ [0,T ] . (4.53)

it follows

(A ε(u̇∗ (t)),ε(v)− ε(u̇∗ (t))H
≤ j(v1,v2,ω)+ j(v2,v1,ω)− j(v1,v1,ω)− j(v2,v2,ω)

(4.54)

So, by using (3.4), (3.19) and (3.3), we deduce that

mA ‖v1(s)−v2(s)‖2
V

≤C2
0‖α‖L∞(Γ3)

(
‖λ‖L∞(Γ3)+1

)
‖v1(s)−v2(s)‖2

V

+‖η1(s)−η2(s)‖H ‖v1(s)−v2(s)‖2
V

(4.55)

Which, by the Gronwall inequality, implies

‖v1(s)−v2(s)‖2
V ≤C‖η1(s)−η2(s)‖2

H (4.56)
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Then∫ t

0
‖u1(s)−u2(s)‖V ds≤C

∫ t

0

∫ s

0
‖η1(r)−η2(r)‖H drds

≤
∫ T

0
‖η1(s)−η2(s)‖H ds

(4.57)

For the temperature , if we take the substitution µ = µ1 ,
µ = µ2 in (4.26) and subtracting the two obtained equations,
we deduce by choosing v = θ1−θ2 as test function

‖θ1 (t)−θ2 (t)‖2
L2(Ω)+C1

∫ t
0 ‖θ1 (t)−θ2 (t)‖2

V
6
∫ t

0 ‖µ1 (s)−µ2 (s)‖V ′ ‖θ1 (s)−θ2 (s)‖V ds, ∀t ∈ [0,T ] ,
(4.58)

Employing Hölder’s and Young’s inequalities, we deduce that

‖θ1 (t)−θ2 (t)‖2
L2(Ω)+

∫ t
0 ‖θ1 (s)−θ2 (s)‖2

V ds
6C

∫ t
0 ‖µ1 (s)−µ2 (s)‖2

V ′ ds ,∀t ∈ [0,T ] .
(4.59)

We use the inclusion L2(Ω)⊂V , we get

‖θ1 (t)−θ2 (t)‖2
L2(Ω)+

∫ t
0 ‖θ1 (s)−θ2 (s)‖2

L2(Ω) ds
6C

∫ t
0 ‖µ1 (s)−µ2 (s)‖2

V ′ ds ,∀t ∈ [0,T ] .
(4.60)

From this inequality, combined with Gronwall’s inequality,
we deduce that

‖θ1 (t)−θ2 (t)‖2
L2(Ω) 6C

∫ t
0 ‖µ1 (s)−µ2 (s)‖2

V ds (4.61)

For the damage field, from (4.29) we deduce that

(ζ̇1− ζ̇2,ζ1−ζ2)L2(Ω)+a1(ζ1−ζ2,ζ1−ζ2)

6 (χ1−χ2,ζ1−ζ2)L2(Ω)
(4.62)

Integrating the previous inequality with respect to time,
using the initial conditions ζ1(0) = ζ2(0) = ζ0 and inequality
a1(ζ1−ζ2,ζ1−ζ2)> 0 to find

1
2
‖ζ1(t)−ζ2(t)‖2

L2(Ω) 6
∫ t

0
(χ1(s)−χ2(s),ζ1(s)−ζ2(s))L2(Ω)ds,

(4.63)

which implies

‖ζ1(t)−ζ2(t)‖2
L2(Ω)

6∫ t
0 ‖χ1(s)−χ2(s)‖2

L2(Ω)
ds+

∫ t
0 ‖ζ1(s)−ζ2(s))‖2

L2(Ω)
ds.

(4.64)

This inequality, combined with Gronwall’s inequality,
leads to

‖ζ1(t)−ζ2(t)‖2
L2(Ω) 6C

∫ t

0
‖χ1(s)−χ2(s)‖2

L2(Ω)ds, ∀t ∈ [0,T ].

(4.65)

Applying the previous inequalities, the estimates (4.61) and
(4.65), we substitute(4.52) to obtain

‖Λ(η1,µ1,χ1)(t)−Λ(η2,µ2,χ2)(t)‖2
V×L2(Ω)

6

C
∫ T

0 ‖(η1,µ1,χ1)(s)− (η2,µ2,χ2)(s)‖2
V×L2(Ω)

ds.
(4.66)

Thus, for m sufficiently large, Λm is a contraction on
C (0,T ;V × L2(Ω)), and so Λ has a unique fixed point in
this Banach space.

Existence. Let (η∗,µ∗,χ∗) ∈ C (0,T ;H ×V ′× L2(Ω)) be
the fixed point of Λ defined by (4.44)-(4.47) and let h∗ = h∗

η∗

be the fixed point of the operator Λη∗ given by Lemma4.2.
We denote

u∗ = u
ωη∗,θ∗ = θ

ωµ∗,ζ∗ = ζ
ωχ∗.

σ∗ = A ε(u̇∗)+G
(
ε(u∗),ζ∗

)
+F (θ∗,ζ∗)

Λ1(η
∗,µ∗,χ∗) = η∗, Λ2(η

∗,µ∗,χ∗) = µ∗ and
Λ3(η

∗,µ∗,χ∗) = χ∗, the definitions (4.45)-(4.47) show that
(3.21)-(3.27) are satisfied. Next, from Lemmas 4.2, 4.4, 4.5,
4.6and 4.7, the regularity conditions (4.1)-(4.5) follow.

Uniqueness. Let ω∗ be the fixed point of the operator L
given by (4.33). The unique solution (u∗,σ∗,θ∗,ζ∗,ω∗) is a
consequence of the uniqueness of the fixed point of the opera-
tor Λ defined by (4.44)-(4.47) and the unique solvability of the
Problem PVωηh, PVωµ , PVωχ and , PVω which completes
the proof.
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