

A study on *I*-Cauchy sequences and *I*-divergence in *S*-metric spaces

Amar Kumar Banerjee^{1*} and Apurba Banerjee²

Abstract

The notion of S-metric space was introduced by Sedghi et al. In this paper we study the ideas of I and I^* -Cauchy sequences in S-metric spaces and investigate their relation following the same approach as done by Das and Ghosal. We then study the ideas of I and I^* -divergent sequences in S-metric spaces and examine their relation under certain general assumption.

Keywords

Ideal, S-metric space, I-Cauchy, I*-Cauchy, I-divergence, I*-divergence, condition (AP).

AMS Subject Classification (2010)

Primary 54A20; Secondary 40A35, 54E15.

Article History: Received 24 November 2017; Accepted 21 February 2018

©2018 MJM.

Contents

1	Introduction and background	326
2	<i>I</i> -convergence, <i>I</i> *-convergence, <i>I</i> -Cauchy <i>I</i> *-Cauchy conditions	
3	<i>I</i> -divergence and <i>I</i> *-divergence	328
4	Conclusion	329
	References	329

1. Introduction and background

The idea of statistical convergence of a sequence of real numbers was introduced by Fast ([11]) and Stienhaus ([24]). Lot of investigations have been done so far on such convergence and its topological consequences after the initial works by Šalát ([21]) (see [2], [19] where many more references can be found). The ideas of I and I^* -convergence which are interesting generalizations of statistical convergence were introduced by Kostyrko et al. ([13]), using the notion of ideals of the set \mathbb{N} of positive integers. Later many works on I and I^* convergence of sequences and also on double sequences have been done (see [17], [3], [4]). The idea of *I*-Cauchy condition was studied by Dems ([10]). The idea of I^* -Cauchy sequences in a linear metric space have been introduced by Nabiev et al. ([20]) where they showed that I^* -Cauchy sequences are *I*-Cauchy and they are equivalent if the ideal *I* satisfies the condition (AP). Later Das and Ghosal ([6]) studied further in

this direction and they showed that under some general assumption, the condition (AP) is both necessary and sufficient for the equivalence of I and I^* -Cauchy conditions and cited an example in support of the fact that in general I-Cauchy sequences may not be I^* -Cauchy. They also introduced the notions of I-divergence and I^* -divergence of sequences in a metric space and discussed on certain basic properties. They also showed that condition (AP) is the necessary and sufficient condition for the equivalence of I and I^* -divergence under certain conditions. In 2014, P. Das, M. Sleziak, V. Toma ([8]) studied on I^{K} -Cauchy condition of functions defined on a nonempty set with values in a uniform space as a generalization of I^* -Cauchy sequences and I^* -Cauchy nets. They showed how this notion can be used to characterize complete uniform spaces. Also they showed the relationship between the condition AP(I, K) and the equivalence of I-Cauchy and I^K -Cauchy functions with values in a metric space. They also studied I^{K} -divergence of functions with values in a metric space. Recently Sedghi et al. ([23]) have introduced the concept of S-metric spaces and proved some basic properties in S-metric

spaces. In this paper we have studied the idea of I and I^* -

convergence in S-metric spaces. In Section 2 we have studied

the concepts of I and I^* -Cauchy conditions of sequences in

S-metric spaces and find their relation following the same di-

rection as in [6]. In section 3 we get acquainted with the ideas

of I-divergence and I^* -divergence of sequences in S-metric

spaces and investigate their relation under certain general

^{1,2} Department of Mathematics, The University of Burdwan, Burdwan-713104, West Bengal, India.

^{*}Corresponding author: 1 akbanerjee1971@gmail.com, akbanerjee@math.buruniv.ac.in; 2 apurbamath12@gmail.com

assumption.

Definition 1.1. ([15]) If X is a non-void set then a family of sets $I \subset 2^X$ is called an ideal if (i) $A, B \in I$ implies $A \cup B \in I$ and (ii) $A \in I, B \subset A$ imply $B \in I$.

The ideal I is called *nontrivial* if $I \neq \{\emptyset\}$ and $X \notin I$. A nontrivial ideal I is said to be *admissible* if $\{x\} \in I$ for each $x \in X$.

Definition 1.2. ([15]) A non-empty family F of subsets of a non-void set X is called a filter if (i) $\emptyset \notin F$

(ii) $A, B \in F$ implies $A \cap B \in F$ and (iii) $A \in F, A \subset B$ imply $B \in F$.

Lemma 1.3. Let I be a nontrivial ideal of $X \neq \emptyset$. Then the family of sets $F(I) = \{A \subset X : X - A \in I\}$ is a filter on X. It is called the filter associated with the ideal.

Definition 1.4. ([23]) Let X be a nonempty set. An S-metric on X is a function $S: X \times X \times X \to [0, \infty)$ that satisfies the following conditions

(i) $S(x,y,z) \ge 0$ for all $x,y,z \in X$, (ii) S(x,y,z) = 0 if and only if x = y = z, (iii) $S(x,y,z) \le S(x,x,a) + S(y,y,a) + S(z,z,a)$ for all $x,y,z,a \in X$.

The pair (X,S) is called an *S-metric space*. Some familiar examples of *S*-metric spaces may be seen from [23]. In an *S*-metric space (X,S), S(x,x,y) = S(y,y,x) holds for all $x,y \in X$.

2. I-convergence, I^* -convergence, I-Cauchy and I^* -Cauchy conditions

Throughout we assume that $I \subset 2^{\mathbb{N}}$ is a nontrivial ideal of the set of all positive integers \mathbb{N} and (X,S) is an S-metric space unless otherwise stated. Below we introduce the following definitions in an S-metric space.

Definition 2.1. (cf. [13]) A sequence $\{x_n\}$ of elements of X is said to be I-convergent to $x \in X$ if for each $\varepsilon > 0$, the set $A(\varepsilon) = \{n \in \mathbb{N} : S(x_n, x_n, x) \ge \varepsilon\} \in I$.

Definition 2.2. ([17]) An admissible ideal I is said to satisfy the condition (AP) if for every countable family $\{A_1, A_2, A_3, \ldots \}$ of sets belonging to I there exists a countable family of sets $\{B_1, B_2, B_3, \ldots \}$ such that $A_j \Delta B_j$ is a finite set for each $j \in \mathbb{N}$ and $\bigcup_{j=1}^{\infty} B_j \in I$.

Note that $B_j \in I$ for all $j \in \mathbb{N}$.

Definition 2.3. (cf. [13]) A sequence $\{x_n\}$ of elements of X is said to be I^* -convergent to $x \in X$ if and only if there exists a set $M \in F(I)$ (i.e., $\mathbb{N} \setminus M \in I$), $M = \{m_1 < m_2 < \cdots < m_k < \cdots\} \subset \mathbb{N}$ such that $\lim_{k \to \infty} S(x_{m_k}, x_{m_k}, x) = 0$.

It can be proved easily that I and I^* -convergence are equivalent for admissible ideals with property (AP).

Definition 2.4. (cf. [20]) Let $I \subset 2^{\mathbb{N}}$ be an admissible ideal. A sequence $\{x_n\}$ of elements of X is called an I-Cauchy sequence in (X,S) if for every $\varepsilon > 0$ there exists a positive integer $n_0 = n_0(\varepsilon)$ such that the set

$$A(\varepsilon) = \{ n \in \mathbb{N} : S(x_n, x_n, x_{n_0}) \ge \varepsilon \} \in I$$

It can be shown that $\{x_n\}$ is *I*-Cauchy if for any given $\varepsilon > 0$, there exists $B = B(\varepsilon) \in I$ such that $m, n \notin B$ implies $S(x_m, x_m, x_n) < \varepsilon$.

Definition 2.5. (cf. [20]) Let $I \subset 2^{\mathbb{N}}$ be an admissible ideal. A sequence $\{x_n\}$ of elements of X is called an I^* -Cauchy sequence in (X,S) if there exists a set $M = \{m_1 < m_2 < \cdots < m_k < \cdots \} \subset \mathbb{N}$, $M \in F(I)$ such that the subsequence $\{x_{m_k}\}$ is an ordinary Cauchy sequence in (X,S) i.e., for each preassigned $\varepsilon > 0$ there exists $k_0 \in \mathbb{N}$ such that $S(x_{m_k}, x_{m_k}, x_{m_r}) < \varepsilon$ for all $k, r \ge k_0$.

Theorem 2.6. Let I be an admissible ideal on \mathbb{N} . If $\{x_n\}$ is an I^* -Cauchy sequence in (X,S) then $\{x_n\}$ is I-Cauchy.

Proof. Let $\{x_n\}$ be an I^* -Cauchy sequence in (X,S). Then by definition there exists a set $M = \{m_1 < m_2 < \cdots < m_k < \cdots\} \subset \mathbb{N}, M \in F(I)$ such that for every $\varepsilon > 0$ there exists a positive integer $k_0 = k_0(\varepsilon)$ such that $S(x_{m_k}, x_{m_k}, x_{m_r}) < \varepsilon$ for all $k, r > k_0 = k_0(\varepsilon)$. Let us take $n_0 = n_0(\varepsilon) = m_{k_0+1}$. Then for every $\varepsilon > 0$, we have $S(x_{m_k}, x_{m_k}, x_{n_0}) < \varepsilon$, for all $k > k_0$. Now let $H = \mathbb{N} \setminus M$. It is clear that $H \in I$ and

$$A(\varepsilon) = \{n \in \mathbb{N} : S(x_n, x_n, x_{n_0}) \ge \varepsilon\} \subset H \cup \{m_1, m_2, \dots, m_{k_0}\} \in I$$

Hence we get that $A(\varepsilon) \in I$. Therefore, for every $\varepsilon > 0$ we can find a positive integer $n_0 = n_0(\varepsilon)$ such that $A(\varepsilon) \in I$ i.e., $\{x_n\}$ is *I*-Cauchy.

In general I-Cauchy condition does not imply I^* -Cauchy condition. The following example is given in this direction.

Example 2.7. Let \mathbb{R} be the real number space with the usual metric d. Let (\mathbb{R},S) be an S-metric space where the S-metric is defined by S(x,y,z)=d(x,z)+d(y,z) for all $x,y,z\in\mathbb{R}$. Let $\mathbb{N}=\bigcup_{j\in\mathbb{N}}\Delta_j$ be a decomposition of \mathbb{N} such that each Δ_j is infinite and $\Delta_i\cap\Delta_j=\emptyset$ for $i\neq j$. Let I be the class of all those subsets A of \mathbb{N} that can intersects only finite number of Δ_i' s. Then I becomes an admissible ideal of \mathbb{N} .

Now $\{\frac{1}{n}\}_{n\in\mathbb{N}}$ is a Cauchy sequence in (\mathbb{R},d) . Let us define a sequence $\{x_n\}$ in (\mathbb{R},S) by $x_n=\frac{1}{j}$ if $n\in\Delta_j$. Let $\varepsilon>0$ be given. Then $\{\frac{1}{n}\}_{n\in\mathbb{N}}$ being a Cauchy sequence there is $k\in\mathbb{N}$ such that $d(\frac{1}{m},\frac{1}{n})<\frac{\varepsilon}{4}$ whenever $m,n\geq k$. Now the set $B=\Delta_1\cup\Delta_2\cup\ldots\cup\Delta_k\in I$ and clearly we see that $m,n\notin B$ implies $S(x_m,x_m,x_n)<\varepsilon$. Hence $\{x_n\}$ is I-Cauchy in (\mathbb{R},S) . Next we shall show that $\{x_n\}$ is not I^* -Cauchy in (\mathbb{R},S) . If possible assume that $\{x_n\}$ is I^* -Cauchy sequence in (\mathbb{R},S) . Then there is

a set $M \in F(I)$ such that the subsequence $\{x_m\}_{m \in M}$ is Cauchy in (\mathbb{R}, S) . Since $\mathbb{N} \setminus M \in I$ so there exists a $p \in \mathbb{N}$ such that $\mathbb{N} \setminus M \subset \Delta_1 \cup \Delta_2 \cup \ldots \cup \Delta_p$. But then it follows that $\Delta_i \subset M$ for all i > p. In particular, $\Delta_{p+1}, \Delta_{p+2} \subset M$. Let us choose a positive real $\varepsilon_0 = \frac{1}{4(p+1)(p+2)} > 0$. Now since $\{x_m\}_{m \in M}$ is Cauchy in (\mathbb{R}, S) then for chosen ε_0 there exists $k \in \mathbb{N}$ such that $S(x_p, x_p, x_q) < \varepsilon_0$ for all $p, q \geq k$. From the construction of Δ_j' s it clearly follows that given any $k \in \mathbb{N}$ there are $m \in \Delta_{p+1}$ and $n \in \Delta_{p+2}$ such that $m, n \geq k$. Then as defined earlier we have $x_m = \frac{1}{p+1}, x_n = \frac{1}{p+2}$ and $S(x_m, x_m, x_n) = 2d(x_m, x_n) = 2|\frac{1}{p+1} - \frac{1}{p+2}| = \frac{2}{(p+1)(p+2)} > \varepsilon_0$. Hence there is no $k \in \mathbb{N}$ for which the inequality $S(x_m, x_m, x_n) < \varepsilon_0$ holds whenever $m, n \in M$ with $m, n \geq k$. This contradicts the fact that $\{x_m\}_{m \in M}$ is Cauchy.

The definition of *P*-ideal is widely known as follows.

Definition 2.8. An admissible ideal $I \subset 2^{\mathbb{N}}$ is called a P-ideal if for every sequence $\{A_n\}_{n\in\mathbb{N}}$ of sets in I there is a set $A_0 \in I$ with $A_n \setminus A_0$ finite for every $n \in \mathbb{N}$.

If *I* is an admissible ideal satisfying the condition (AP) then *I* is a *P*-ideal and the converse is also true.

In consequence of this it can be shown that if I is an admissible ideal satisfying the condition (AP) then for every countable family $\{P_n\}_{n\in\mathbb{N}}$ of sets in F(I) there exists a set $P \in F(I)$ such that $P \setminus P_n$ is finite for all $n \in \mathbb{N}$.

Theorem 2.9. Let I be an admissible ideal satisfying the condition (AP). Then if $\{x_n\}$ is an I-Cauchy sequence in (X,S) it is I^* -Cauchy also.

Proof. Let $\{x_n\}$ be an *I*-Cauchy sequence in (X,S). Then by definition, for every given $\varepsilon > 0$ there exists $n_0 = n_0(\varepsilon)$ such that $A(\varepsilon) = \{n \in \mathbb{N} : S(x_n, x_n, x_{n_0}) \ge \varepsilon\} \in I$. Let $P_k = \{n \in \mathbb{N} : S(x_n, x_n, x_{m_k}) < \frac{1}{k}\}$ for k = 1, 2, 3, ..., where $m_k = n_0(\frac{1}{k})$. It is clear that $P_k \in F(I)$ for every $k \in \mathbb{N}$. Since I satisfies the condition(AP) so there exists a set $P \in F(I)$ such that $P \setminus P_k$ is finite for all $k \in \mathbb{N}$. Now we show that $\{x_m\}_{m \in P}$ is I^* -Cauchy.

So, let $\varepsilon > 0$ and $j \in \mathbb{N}$ be such that $j > \frac{3}{\varepsilon}$. Since $P \setminus P_j$ is a finite set, so there exists k = k(j) such that whenever $m, n \in P$ and $m, n > k_j$ we have $m, n \in P_j$. Hence it follows that

$$S(x_m, x_m, x_n) \le 2S(x_m, x_m, x_{m_i}) + S(x_n, x_n, x_{m_i}) < \varepsilon$$

for m,n>k(j). Thus for any $\varepsilon>0$ there exists $k=k(\varepsilon)\in\mathbb{N}$ such that for $m,n>k(\varepsilon)$ and $m,n\in P\in F(I)$, $S(x_m,x_m,x_n)<\varepsilon$. This shows that the sequence $\{x_n\}$ in (X,S) is an I^* -Cauchy sequence.

Theorem 2.10. Let (X,S) be an S-metric space containing at least one accumulation point. If for every sequence $\{x_n\}$ I-Cauchy condition implies I^* -Cauchy condition then I satisfies the condition (AP).

The proof of the above theorem follows the same approach as in [6].

3. I-divergence and I^* -divergence

The concept of divergent sequence of real numbers was generalized to statistically divergent sequence of real numbers by Macaj and Salat in [19]. Later Das and Ghosal in [6] introduced the concept of divergence of a sequence in a metric space and extended it with the help of ideals. Here following the same approach we introduce the idea of divergent sequence in an *S*-metric space and extend it with the help of ideals. Also we prove some results following the similar approach of [6].

Definition 3.1. (cf. [6]) A sequence $\{x_n\}$ in an S-metric space (X,S) is said to be divergent (or properly divergent) if there exists an element $x \in X$ such that $S(x_n, x_n, x) \to \infty$ as $n \to \infty$.

We note that a divergent sequence in an *S*-metric space cannot have any convergent subsequence.

Definition 3.2. (cf. [6]) A sequence $\{x_n\}$ in an S-metric space (X,S) is said to be I-divergent if there exists an element $x \in X$ such that for any positive real number G, the set

$$A(x,G) = \{ n \in \mathbb{N} : S(x_n, x_n, x) \le G \} \in I$$

Definition 3.3. (cf. [6]) A sequence $\{x_n\}$ in an S-metric space (X,S) is said to be I^* -divergent if there exists $M \in F(I)$ i.e., $\mathbb{N} \setminus M \in I$ such that $\{x_m\}_{m \in M}$ is divergent i.e., there exists some $x \in X$ such that $\lim_{m \to \infty} S(x_m, x_m, x) = \infty$ where $m \in M$.

Theorem 3.4. Let I be an admissible ideal. If $\{x_n\}$ in (X,S) is I^* -divergent then $\{x_n\}$ is I-divergent.

Proof. Since $\{x_n\}$ is I^* -divergent so there exists $M \in F(I)$ i.e., $\mathbb{N} \setminus M \in I$ such that $\{x_m\}_{m \in M}$ is divergent i.e., there exists some $x \in X$ such that $\lim_{m \to \infty} S(x_m, x_m, x) = \infty$ where $m \in M$. Then for any given positive real number G there exists $k \in \mathbb{N}$ such that $S(x_m, x_m, x) > G$ for all m > k and $m \in M$. Hence we have $\{n \in \mathbb{N} : S(x_n, x_n, x) \le G\} \subset \mathbb{N} \setminus M \cup \{1, 2, 3,, k\} \in I$. This implies that $\{x_n\}$ is I-divergent. □

The following example shows that the converse of the above theorem is not in general true.

Example 3.5. Let $\mathbb{N} = \bigcup_{j \in \mathbb{N}} \Delta_j$ be a decomposition of \mathbb{N} such that each Δ_j is infinite and $\Delta_i \cap \Delta_j = \emptyset$ for $i \neq j$. Let I be the class of all those subsets A of \mathbb{N} that can intersects only finite number of Δ'_i s. Then I becomes an admissible ideal of \mathbb{N} . Take the real line \mathbb{R} with the usual metric d. Let (\mathbb{R},S) be an S-metric space where the S-metric is defined by S(x,y,z) = d(x,z) + d(y,z) for all $x,y,z \in \mathbb{R}$. Let $\{x_n\}$ be a sequence in (\mathbb{R},S) defined by $x_i = n$ if $i \in \Delta_n$. Now for any given positive real number G there exists a natural number G such that $G \in \mathbb{R}$ is $G \in \mathbb{R}$ in $G \in \mathbb{R}$

 $S(x_p,x_p,0)=2d(x_p,0)=2d(k,0)=2|k-0|=2k$ and since $S(x_p,x_p,0)\leq G$ so we get $2k\leq G$ where $k\geq m$ which leads to a contradiction. Hence we conclude that $\{i\in\mathbb{N}:S(x_i,x_i,0)\leq G\}\subset\Delta_1\cup\Delta_2\cup.....\cup\Delta_{m-1}\in I$ and consequently $\{x_n\}$ is I-divergent.

Next we shall show that $\{x_n\}$ is not I^* -divergent in (\mathbb{R}, S) . If possible assume that $\{x_n\}$ is I^* -divergent. Then there exists $M \in F(I)$ such that $\{x_m\}_{m \in M}$ is divergent in (\mathbb{R}, S) . Since $\mathbb{N} \setminus M \in I$ so there exists $k \in \mathbb{N}$ such that $\mathbb{N} \setminus M \subset \Delta_1 \cup \Delta_2 \cup \ldots \cup \Delta_k$. But then $\Delta_i \subset M$ for all i > k. In particular $\Delta_{k+1} \subset M$. But this implies that $\{x_i\}_{i \in \Delta_{k+1}}$ is a constant subsequence of $\{x_m\}_{m \in M}$ which is convergent to k+1. This contradicts the fact that $\{x_m\}_{m \in M}$ is divergent in (\mathbb{R}, S) .

Theorem 3.6. If I is an admissible ideal with property (AP) then for any sequence $\{x_n\}$ in (X,S), I-divergence implies I^* -divergence.

Proof. First suppose that I satisfies the condition (AP). Since $\{x_n\}$ is *I*-divergent so there exists some $x \in X$ such that for any positive real number G, the set $A(x,G) = \{n \in \mathbb{N} :$ $S(x_n, x_n, x) \leq G \} \in I$. Let us take $A_1 = \{n \in \mathbb{N} : S(x_n, x_n, x) \leq I \}$ 1}, $A_2 = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x, x) \le 2\}, \dots, A_k = \{n \in \mathbb{N} : 1 < S(x_n, x, x) \le 2\}, \dots, A_k =$ $\mathbb{N}: k-1 < S(x_n, x_n, x) \le k$ for all $k \ge 2$. Thus we get a countable collection of mutually disjoint sets $\{A_i\}$ with $A_i \in I$ for all $i \in \mathbb{N}$. By the condition (AP) there exists a family $\{B_i\}$ of subsets of \mathbb{N} such that $A_i \Delta B_i$ is finite for all $i \in \mathbb{N}$ and $B = \bigcup_{i \in \mathbb{N}} B_i \in I$. Let $M = \mathbb{N} \setminus B$. Then $M \in F(I)$. Let G > 0 be any real. Then there exists $k \in \mathbb{N}$ such that G < k. Then $\{n \in \mathbb{N} : S(x_n, x_n, x) \leq G\} \subset A_1 \cup A_2 \cup \cdots \cup A_k$. Since $A_i \Delta B_i$ is finite for all $i \in \mathbb{N}$ so there exists $n_0 \in \mathbb{N}$ such that $(\bigcup_{i=1}^{\kappa} B_i) \cap \{n \in \mathbb{N} : n \ge n_0\} = (\bigcup_{i=1}^{\kappa} A_i) \cap \{n \in \mathbb{N} : n \ge n_0\}.$ Clearly if $n \ge n_0$ and $n \in M$ then $n \notin \bigcup_{i=1}^k B_i$ which implies $n \notin \bigcup_{i=1}^k A_i$. Therefore $S(x_n, x_n, x) > k > G$. Hence we see there is a set $M = \mathbb{N} \setminus B \in F(I)$ such that the sequence $\{x_m\}_{m\in M}$ is a divergent sequence and consequently $\{x_n\}$ becomes I^* -divergent.

Theorem 3.7. Let (X,S) be an S-metric space containing at least one divergent sequence and let I be an admissible ideal. If for every sequence $\{x_n\}$ in (X,S) I-divergence implies I^* -divergence then I satisfies the condition (AP).

The proof of the above theorem follows the same approach as in [6].

4. Conclusion

Here we have studied the idea of I and I^* -Cauchy condition in a more general structure of an S-metric space. Also we have studied the notions of I-divergence and I^* -divergence in an S-metric space. As we know S-metric space is a generalization of a metric space, the same can be studied in a more general settings like Cone metric spaces, M-metric spaces etc. Also as a continuation of this work the idea of I and I^K -Cauchy conditions may be studied in such generalized spaces.

References

- [1] V. Baláž, J. Červeńanský, P. Kostyrko, T. Šalát, I-convergence and I-continuity of real functions, *Acta Math.* (*Nitra*), 5 (2002), 43-50.
- M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl., 328 (2007), 715-729.
- [3] A.K. Banerjee, A. Banerjee, A note on I-convergence and *I**-convergence of sequences and nets in topological spaces, *Mat. Vesnik*, 67, 3 (2015), 212-221.
- [4] A.K. Banerjee, R. Mondal, A note on convergence of double sequences in a topological space, *Mat. Vesnik*, 69, 2 (2017), 144-152.
- [5] A.K. Banerjee, Anindya Dey, Metric spaces and complex analysis, *New age International(P) Limited Publishers*, 2008.
- P. Das, S.K. Ghosal, Some further results on I-Cauchy sequences and condition (AP), Computers and Mathematics with Applications, 59 (2010), 2597-2600.
- P. Das, S.K. Ghosal, On I-Cauchy nets and completeness, *Topology and its Applications*, 157 (2010), 1152-1156.
- [8] P. Das, M. Sleziak, V. Toma, *I^K*-Cauchy functions, *Topology and its Applications*, 173 (2014), 9-27.
- [9] K. Demirci, *I*-limit superior and limit inferior, *Mathematical Communications*, 6 (2001), 165-172.
- [10] K. Dems: On I-Cauchy sequences, *Real Analysis Exchange*, 30(1) (2004/2005), 123-128.
- [11] H. Fast, Sur la convergence statistique, *Colloq. Math.*, 2 (1951), 241-244.
- [12] H. Halberstem, K.F. Roth, Sequences, Springer, New York, 1993
- [13] P. Kostyrko, T. Šalát, W. Wilczyński, I-convergence, *Real Analysis Exchange*, 26 (2)(2000/2001), 669-686.
- [14] P. Kostyrko, M. Mačaj, T. Šalat, M. Sleziak, I-convergence and extremal I-limit points, *Math. Slovaca*, 55 (4) (2005), 443-464.
- [15] K. Kuratowski, Topologie I, PWN, Warszawa, 1961.
- [16] B.K. Lahiri, P. Das, Further results on I-limit superior and I-limit inferior, *Mathematical Communications*, 8 (2003), 151-156.
- [17] B.K. Lahiri, P. Das, I and *I**-convergence in topological spaces, *Math. Bohemica*, 130 (2) (2005), 153-160.
- [18] B.K. Lahiri, P. Das, I and *I**-convergence of nets, *Real Analysis Exchange*, 33 (2) (2007/2008), 431-442.
- [19] M. Mačaj, T. Šalát, Statistical convergence of subsequences of a given sequence, *Math. Bohemica*, 126 (2001), 191-208.
- [20] A. Nabiev, S. Pehlivan, M. Gurdal, On I-Cauchy sequences, *Taiwanese J. Math.*, 11 (2) (2007), 569-576.
- T. Šalát, On statistically convergent sequences of real numbers, *Math. Slovaca*, 30 (1980), 139-150.
- [22] I.J. Schoenberg, The integrability of certain functions and related summability methods, *Amer. Math. Monthly*, 66 (1959), 361-375.
- ^[23] S. Sedghi, N. Shobe, A. Aliouche, A generalization of

fixed point theorems in S-metric spaces, *Mat. Vesnik*, 64 (3) (2012), 258-266.

[24] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, *Colloq. Math.*, 2 (1951), 73-74.

ISSN(P):2319 – 3786
Malaya Journal of Matematik
ISSN(O):2321 – 5666
