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Abstract
The notion of S-metric space was introduced by Sedghi et al. In this paper we study the ideas of I and I∗-Cauchy
sequences in S-metric spaces and investigate their relation following the same approach as done by Das and
Ghosal. We then study the ideas of I and I∗-divergent sequences in S-metric spaces and examine their relation
under certain general assumption.
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1. Introduction and background
The idea of statistical convergence of a sequence of real num-
bers was introduced by Fast ([11]) and Stienhaus ([24]). Lot
of investigations have been done so far on such convergence
and its topological consequences after the initial works by
S̆alát ([21]) (see [2], [19] where many more references can be
found). The ideas of I and I∗-convergence which are interest-
ing generalizations of statistical convergence were introduced
by Kostyrko et al. ([13]), using the notion of ideals of the
set N of positive integers. Later many works on I and I∗-
convergence of sequences and also on double sequences have
been done (see [17], [3], [4]). The idea of I-Cauchy condition
was studied by Dems ([10]). The idea of I∗-Cauchy sequences
in a linear metric space have been introduced by Nabiev et
al. ([20]) where they showed that I∗-Cauchy sequences are
I-Cauchy and they are equivalent if the ideal I satisfies the
condition (AP). Later Das and Ghosal ([6]) studied further in

this direction and they showed that under some general as-
sumption, the condition (AP) is both necessary and sufficient
for the equivalence of I and I∗-Cauchy conditions and cited
an example in support of the fact that in general I-Cauchy
sequences may not be I∗-Cauchy. They also introduced the
notions of I-divergence and I∗-divergence of sequences in a
metric space and discussed on certain basic properties. They
also showed that condition (AP) is the necessary and sufficient
condition for the equivalence of I and I∗-divergence under
certain conditions. In 2014, P. Das, M. Sleziak, V. Toma ([8])
studied on IK-Cauchy condition of functions defined on a non-
empty set with values in a uniform space as a generalization
of I∗-Cauchy sequences and I∗-Cauchy nets. They showed
how this notion can be used to characterize complete uniform
spaces. Also they showed the relationship between the condi-
tion AP(I,K) and the equivalence of I-Cauchy and IK-Cauchy
functions with values in a metric space. They also studied
IK-divergence of functions with values in a metric space.
Recently Sedghi et al. ([23]) have introduced the concept of
S-metric spaces and proved some basic properties in S-metric
spaces. In this paper we have studied the idea of I and I∗-
convergence in S-metric spaces. In Section 2 we have studied
the concepts of I and I∗-Cauchy conditions of sequences in
S-metric spaces and find their relation following the same di-
rection as in [6]. In section 3 we get acquainted with the ideas
of I-divergence and I∗-divergence of sequences in S-metric
spaces and investigate their relation under certain general
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assumption.

Definition 1.1. ([15]) If X is a non-void set then a family of
sets I ⊂ 2X is called an ideal if
(i) A,B ∈ I implies A∪B ∈ I and
(ii) A ∈ I,B⊂ A imply B ∈ I.

The ideal I is called nontrivial if I 6= { /0} and X /∈ I. A
nontrivial ideal I is said to be admissible if {x} ∈ I for each
x ∈ X .

Definition 1.2. ([15]) A non-empty family F of subsets of a
non-void set X is called a filter if
(i) /0 /∈ F
(ii) A,B ∈ F implies A∩B ∈ F and
(iii) A ∈ F,A⊂ B imply B ∈ F.

Lemma 1.3. Let I be a nontrivial ideal of X 6= /0. Then the
family of sets F(I) = {A⊂ X : X −A ∈ I} is a filter on X. It
is called the filter associated with the ideal.

Definition 1.4. ([23]) Let X be a nonempty set. An S-metric
on X is a function S : X ×X ×X → [0,∞) that satisfies the
following conditions
(i) S(x,y,z)≥ 0 for all x,y,z ∈ X,
(ii) S(x,y,z) = 0 if and only if x = y = z,
(iii) S(x,y,z)≤ S(x,x,a)+S(y,y,a)+S(z,z,a) for all x,y,z,a∈
X.

The pair (X ,S) is called an S-metric space. Some familiar
examples of S-metric spaces may be seen from [23].
In an S-metric space (X ,S), S(x,x,y) = S(y,y,x) holds for all
x,y ∈ X .

2. I-convergence, I∗-convergence,
I-Cauchy and I∗-Cauchy conditions

Throughout we assume that I ⊂ 2N is a nontrivial ideal of the
set of all positive integers N and (X ,S) is an S-metric space
unless otherwise stated. Below we introduce the following
definitions in an S-metric space.

Definition 2.1. (cf. [13]) A sequence {xn} of elements of X
is said to be I-convergent to x ∈ X if for each ε > 0, the set
A(ε) = {n ∈ N : S(xn,xn,x)≥ ε} ∈ I.

Definition 2.2. ([17]) An admissible ideal I is said to satisfy
the condition (AP) if for every countable family {A1,A2,A3, ......}
of sets belonging to I there exists a countable family of sets
{B1,B2,B3, ......} such that A j∆B j is a finite set for each j∈N
and

⋃
∞
j=1 B j ∈ I.

Note that B j ∈ I for all j ∈ N.

Definition 2.3. (cf. [13]) A sequence {xn} of elements of X
is said to be I∗-convergent to x ∈ X if and only if there exists a
set M ∈ F(I) (i.e., N\M ∈ I), M = {m1 < m2 < · · ·< mk <
· · ·} ⊂ N such that limk→∞S(xmk ,xmk ,x) = 0.

It can be proved easily that I and I∗-convergence are equiv-
alent for admissible ideals with property (AP).

Definition 2.4. (cf. [20]) Let I ⊂ 2N be an admissible ideal.
A sequence {xn} of elements of X is called an I-Cauchy se-
quence in (X ,S) if for every ε > 0 there exists a positive
integer n0 = n0(ε) such that the set

A(ε) = {n ∈ N : S(xn,xn,xn0)≥ ε} ∈ I

.

It can be shown that {xn} is I-Cauchy if for any given
ε > 0, there exists B = B(ε) ∈ I such that m,n /∈ B implies
S(xm,xm,xn)< ε .

Definition 2.5. (cf. [20]) Let I ⊂ 2N be an admissible ideal.
A sequence {xn} of elements of X is called an I∗-Cauchy se-
quence in (X ,S) if there exists a set M = {m1 < m2 < · · · <
mk < · · ·} ⊂ N, M ∈ F(I) such that the subsequence {xmk} is
an ordinary Cauchy sequence in (X ,S) i.e., for each preas-
signed ε > 0 there exists k0 ∈N such that S(xmk ,xmk ,xmr)< ε

for all k,r ≥ k0.

Theorem 2.6. Let I be an admissible ideal on N. If {xn} is
an I∗-Cauchy sequence in (X ,S) then {xn} is I-Cauchy.

Proof. Let {xn} be an I∗-Cauchy sequence in (X ,S). Then
by definition there exists a set M = {m1 < m2 < · · ·< mk <
· · ·} ⊂ N, M ∈ F(I) such that for every ε > 0 there exists a
positive integer k0 = k0(ε) such that S(xmk ,xmk ,xmr)< ε for
all k,r > k0 = k0(ε). Let us take n0 = n0(ε) = mk0+1. Then
for every ε > 0, we have S(xmk ,xmk ,xn0) < ε , for all k > k0.
Now let H = N\M. It is clear that H ∈ I and

A(ε)= {n∈N : S(xn,xn,xn0)≥ ε}⊂H∪{m1,m2, .......,mk0}∈ I

Hence we get that A(ε) ∈ I. Therefore, for every ε > 0 we
can find a positive integer n0 = n0(ε) such that A(ε) ∈ I i.e.,
{xn} is I-Cauchy.

In general I-Cauchy condition does not imply I∗-Cauchy
condition. The following example is given in this direction.

Example 2.7. Let R be the real number space with the usual
metric d. Let (R,S) be an S-metric space where the S-metric
is defined by S(x,y,z) = d(x,z)+d(y,z) for all x,y,z ∈R. Let
N =

⋃
j∈N ∆ j be a decomposition of N such that each ∆ j is

infinite and ∆i∩∆ j = /0 for i 6= j. Let I be the class of all those
subsets A of N that can intersects only finite number of ∆′is.
Then I becomes an admissible ideal of N.
Now { 1

n}n∈N is a Cauchy sequence in (R,d). Let us define
a sequence {xn} in (R,S) by xn =

1
j if n ∈ ∆ j. Let ε > 0 be

given. Then { 1
n}n∈N being a Cauchy sequence there is k ∈ N

such that d( 1
m ,

1
n ) <

ε

4 whenever m,n ≥ k. Now the set B =
∆1∪∆2∪ ......∪∆k ∈ I and clearly we see that m,n /∈B implies
S(xm,xm,xn)< ε . Hence {xn} is I-Cauchy in (R,S). Next we
shall show that {xn} is not I∗-Cauchy in (R,S). If possible as-
sume that {xn} is I∗-Cauchy sequence in (R,S). Then there is

327



A study on I-Cauchy sequences and I-divergence in S-metric spaces — 328/330

a set M ∈ F(I) such that the subsequence {xm}m∈M is Cauchy
in (R,S). Since N \M ∈ I so there exists a p ∈ N such that
N\M ⊂ ∆1∪∆2∪ ......∪∆p. But then it follows that ∆i ⊂M
for all i > p. In particular, ∆p+1,∆p+2 ⊂M. Let us choose
a positive real ε0 = 1

4(p+1)(p+2) > 0. Now since {xm}m∈M

is Cauchy in (R,S) then for chosen ε0 there exists k ∈ N
such that S(xp,xp,xq) < ε0 for all p,q ≥ k. From the con-
struction of ∆′js it clearly follows that given any k ∈ N there
are m ∈ ∆p+1 and n ∈ ∆p+2 such that m,n ≥ k. Then as de-
fined earlier we have xm = 1

p+1 ,xn =
1

p+2 and S(xm,xm,xn) =

2d(xm,xn) = 2| 1
p+1 −

1
p+2 | =

2
(p+1)(p+2) > ε0. Hence there

is no k ∈ N for which the inequality S(xm,xm,xn)< ε0 holds
whenever m,n ∈M with m,n ≥ k . This contradicts the fact
that {xm}m∈M is Cauchy.

The definition of P-ideal is widely known as follows.

Definition 2.8. An admissible ideal I ⊂ 2N is called a P-ideal
if for every sequence {An}n∈N of sets in I there is a set A0 ∈ I
with An \A0 finite for every n ∈ N.

If I is an admissible ideal satisfying the condition (AP)
then I is a P-ideal and the converse is also true.
In consequence of this it can be shown that if I is an admissible
ideal satisfying the condition (AP) then for every countable
family {Pn}n∈N of sets in F(I) there exists a set P∈ F(I) such
that P\Pn is finite for all n ∈ N.

Theorem 2.9. Let I be an admissible ideal satisfying the
condition (AP). Then if {xn} is an I-Cauchy sequence in (X ,S)
it is I∗-Cauchy also.

Proof. Let {xn} be an I-Cauchy sequence in (X ,S). Then by
definition, for every given ε > 0 there exists n0 = n0(ε) such
that A(ε) = {n ∈N : S(xn,xn,xn0)≥ ε} ∈ I. Let Pk = {n ∈N :
S(xn,xn,xmk) <

1
k} for k = 1,2,3, ...., where mk = n0(

1
k ). It

is clear that Pk ∈ F(I) for every k ∈ N. Since I satisfies the
condition(AP) so there exists a set P ∈ F(I) such that P\Pk is
finite for all k ∈ N. Now we show that {xm}m∈P is I∗-Cauchy.

So, let ε > 0 and j ∈ N be such that j > 3
ε
. Since P\Pj

is a finite set, so there exists k = k( j) such that whenever
m,n ∈ P and m,n > k j we have m,n ∈ Pj . Hence it follows
that

S(xm,xm,xn)≤ 2S(xm,xm,xm j)+S(xn,xn,xm j)< ε

for m,n > k( j). Thus for any ε > 0 there exists k = k(ε) ∈ N
such that for m,n > k(ε) and m,n ∈ P ∈ F(I), S(xm,xm,xn)<
ε . This shows that the sequence {xn} in (X ,S) is an I∗-Cauchy
sequence.

Theorem 2.10. Let (X ,S) be an S-metric space containing
at least one accumulation point. If for every sequence {xn} I-
Cauchy condition implies I∗-Cauchy condition then I satisfies
the condition (AP).

The proof of the above theorem follows the same approach
as in [6].

3. I-divergence and I∗-divergence
The concept of divergent sequence of real numbers was gen-
eralized to statistically divergent sequence of real numbers
by Macaj and Salat in [19]. Later Das and Ghosal in [6] in-
troduced the concept of divergence of a sequence in a metric
space and extended it with the help of ideals. Here follow-
ing the same approach we introduce the idea of divergent
sequence in an S-metric space and extend it with the help
of ideals. Also we prove some results following the similar
approach of [6].

Definition 3.1. (cf. [6]) A sequence {xn} in an S-metric space
(X ,S) is said to be divergent (or properly divergent) if there
exists an element x ∈ X such that S(xn,xn,x)→ ∞ as n→ ∞.

We note that a divergent sequence in an S-metric space
cannot have any convergent subsequence.

Definition 3.2. (cf. [6]) A sequence {xn} in an S-metric space
(X ,S) is said to be I-divergent if there exists an element x ∈ X
such that for any positive real number G, the set

A(x,G) = {n ∈ N : S(xn,xn,x)≤ G} ∈ I

.

Definition 3.3. (cf. [6]) A sequence {xn} in an S-metric space
(X ,S) is said to be I∗-divergent if there exists M ∈ F(I) i.e.,
N \M ∈ I such that {xm}m∈M is divergent i.e., there exists
some x ∈ X such that limm→∞S(xm,xm,x) = ∞ where m ∈M.

Theorem 3.4. Let I be an admissible ideal. If {xn} in (X ,S)
is I∗-divergent then {xn} is I-divergent.

Proof. Since {xn} is I∗-divergent so there exists M ∈ F(I)
i.e., N\M ∈ I such that {xm}m∈M is divergent i.e., there exists
some x ∈ X such that limm→∞S(xm,xm,x) = ∞ where m ∈M.
Then for any given positive real number G there exists k ∈ N
such that S(xm,xm,x)> G for all m > k and m∈M. Hence we
have {n ∈ N : S(xn,xn,x)≤ G} ⊂ N\M∪{1,2,3, .....,k} ∈ I.
This implies that {xn} is I-divergent.

The following example shows that the converse of the
above theorem is not in general true.

Example 3.5. Let N =
⋃

j∈N ∆ j be a decomposition of N
such that each ∆ j is infinite and ∆i ∩∆ j = /0 for i 6= j. Let
I be the class of all those subsets A of N that can intersects
only finite number of ∆′is. Then I becomes an admissible
ideal of N.Take the real line R with the usual metric d. Let
(R,S) be an S-metric space where the S-metric is defined by
S(x,y,z) = d(x,z)+ d(y,z) for all x,y,z ∈ R. Let {xn} be a
sequence in (R,S) defined by xi = n if i ∈ ∆n. Now for any
given positive real number G there exists a natural number m
such that G

2 < m. Let us consider the set {i ∈N : S(xi,xi,0)≤
G}. We assert that {i ∈ N : S(xi,xi,0)≤ G}∩∆k = φ for all
k ≥ m. If possible let {i ∈ N : S(xi,xi,0) ≤ G}∩∆k 6= φ for
some k ≥ m and p ∈ {i ∈ N : S(xi,xi,0) ≤ G} ∩∆k. Then
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S(xp,xp,0) = 2d(xp,0) = 2d(k,0) = 2|k−0|= 2k and since
S(xp,xp,0)≤G so we get 2k≤G where k≥m which leads to
a contradiction. Hence we conclude that {i∈N : S(xi,xi,0)≤
G} ⊂ ∆1 ∪∆2 ∪ ......∪∆m−1 ∈ I and consequently {xn} is I-
divergent.

Next we shall show that {xn} is not I∗-divergent in (R,S).
If possible assume that {xn} is I∗-divergent. Then there exists
M ∈ F(I) such that {xm}m∈M is divergent in (R,S). Since
N\M ∈ I so there exists k ∈ N such that N\M ⊂ ∆1∪∆2∪
......∪∆k. But then ∆i ⊂M for all i > k. In particular ∆k+1 ⊂
M. But this implies that {xi}i∈∆k+1 is a constant subsequence
of {xm}m∈M which is convergent to k+1. This contradicts the
fact that {xm}m∈M is divergent in (R,S).

Theorem 3.6. If I is an admissible ideal with property (AP)
then for any sequence {xn} in (X ,S), I-divergence implies
I∗-divergence.

Proof. First suppose that I satisfies the condition (AP). Since
{xn} is I-divergent so there exists some x ∈ X such that
for any positive real number G, the set A(x,G) = {n ∈ N :
S(xn,xn,x)≤G} ∈ I. Let us take A1 = {n ∈N : S(xn,xn,x)≤
1}, A2 = {n ∈ N : 1 < S(xn,xn,x) ≤ 2},...............,Ak = {n ∈
N : k− 1 < S(xn,xn,x) ≤ k} for all k ≥ 2. Thus we get a
countable collection of mutually disjoint sets {Ai} with Ai ∈ I
for all i ∈ N. By the condition (AP) there exists a family
{Bi} of subsets of N such that Ai∆Bi is finite for all i ∈ N
and B =

⋃
i∈N Bi ∈ I. Let M = N \B. Then M ∈ F(I). Let

G > 0 be any real. Then there exists k ∈ N such that G < k.
Then {n ∈ N : S(xn,xn,x) ≤ G} ⊂ A1 ∪A2 ∪ ·· · ∪Ak. Since
Ai∆Bi is finite for all i ∈ N so there exists n0 ∈ N such that
(
⋃k

i=1 Bi)
⋂
{n ∈ N : n ≥ n0} = (

⋃k
i=1 Ai)

⋂
{n ∈ N : n ≥ n0}.

Clearly if n ≥ n0 and n ∈ M then n /∈
⋃k

i=1 Bi which im-
plies n /∈

⋃k
i=1 Ai. Therefore S(xn,xn,x)> k > G. Hence we

see there is a set M = N \B ∈ F(I) such that the sequence
{xm}m∈M is a divergent sequence and consequently {xn} be-
comes I∗-divergent.

Theorem 3.7. Let (X ,S) be an S-metric space containing at
least one divergent sequence and let I be an admissible ideal.
If for every sequence {xn} in (X ,S) I-divergence implies I∗-
divergence then I satisfies the condition (AP).

The proof of the above theorem follows the same approach
as in [6].

4. Conclusion
Here we have studied the idea of I and I∗-Cauchy condition in
a more general structure of an S-metric space. Also we have
studied the notions of I-divergence and I∗-divergence in an
S-metric space. As we know S-metric space is a generalization
of a metric space, the same can be studied in a more general
settings like Cone metric spaces, M-metric spaces etc. Also
as a continuation of this work the idea of I and IK-Cauchy
conditions may be studied in such generalized spaces.
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