

https://doi.org/10.26637/MJM0602/0004

A study on *I***-Cauchy sequences and** *I***-divergence in** *S***-metric spaces**

Amar Kumar Banerjee^{1*} and Apurba Banerjee²

Abstract

The notion of *S*-metric space was introduced by Sedghi et al. In this paper we study the ideas of *I* and *I* ∗ -Cauchy sequences in *S*-metric spaces and investigate their relation following the same approach as done by Das and Ghosal. We then study the ideas of *I* and *I*^{*}-divergent sequences in *S*-metric spaces and examine their relation under certain general assumption.

Keywords

Ideal, *S*-metric space, *I*-Cauchy, *I*[∗]-Cauchy, *I*-divergence, *I*[∗]-divergence, condition (AP).

AMS Subject Classification (2010) Primary 54A20; Secondary 40A35, 54E15.

1,2*Department of Mathematics, The University of Burdwan, Burdwan-713104, West Bengal, India.* ***Corresponding author**: ¹ akbanerjee1971@gmail.com, akbanerjee@math.buruniv.ac.in; ²apurbamath12@gmail.com **Article History**: Received 24 November 2017; Accepted 21 February 2018 **COMBINEY 18 And Accepted 21** February 2018

Contents

1. Introduction and background

The idea of statistical convergence of a sequence of real numbers was introduced by Fast ([\[11\]](#page-3-2)) and Stienhaus ([\[24\]](#page-4-0)). Lot of investigations have been done so far on such convergence and its topological consequences after the initial works by Salát ([[21\]](#page-3-3)) (see [\[2\]](#page-3-4), [\[19\]](#page-3-5) where many more references can be found). The ideas of *I* and *I* ∗ -convergence which are interesting generalizations of statistical convergence were introduced by Kostyrko et al. ([\[13\]](#page-3-6)), using the notion of ideals of the set N of positive integers. Later many works on *I* and *I*^{*}convergence of sequences and also on double sequences have been done (see [\[17\]](#page-3-7), [\[3\]](#page-3-8), [\[4\]](#page-3-9)). The idea of *I*-Cauchy condition was studied by Dems ([\[10\]](#page-3-10)). The idea of *I*[∗]-Cauchy sequences in a linear metric space have been introduced by Nabiev et al. ([\[20\]](#page-3-11)) where they showed that *I* ∗ -Cauchy sequences are *I*-Cauchy and they are equivalent if the ideal *I* satisfies the condition (AP). Later Das and Ghosal ([\[6\]](#page-3-12)) studied further in

this direction and they showed that under some general assumption, the condition (AP) is both necessary and sufficient for the equivalence of *I* and *I* ∗ -Cauchy conditions and cited an example in support of the fact that in general *I*-Cauchy sequences may not be *I*[∗]-Cauchy. They also introduced the notions of *I*-divergence and *I* ∗ -divergence of sequences in a metric space and discussed on certain basic properties. They also showed that condition (AP) is the necessary and sufficient condition for the equivalence of *I* and *I* ∗ -divergence under certain conditions. In 2014, P. Das, M. Sleziak, V. Toma ([\[8\]](#page-3-13)) studied on I^K -Cauchy condition of functions defined on a nonempty set with values in a uniform space as a generalization of *I* ∗ -Cauchy sequences and *I* ∗ -Cauchy nets. They showed how this notion can be used to characterize complete uniform spaces. Also they showed the relationship between the condition $AP(I, K)$ and the equivalence of *I*-Cauchy and I^K -Cauchy functions with values in a metric space. They also studied *I ^K*-divergence of functions with values in a metric space. Recently Sedghi et al. ([\[23\]](#page-3-14)) have introduced the concept of *S*-metric spaces and proved some basic properties in *S*-metric spaces. In this paper we have studied the idea of *I* and I^* convergence in *S*-metric spaces. In Section 2 we have studied the concepts of *I* and *I* ∗ -Cauchy conditions of sequences in *S*-metric spaces and find their relation following the same direction as in [\[6\]](#page-3-12). In section 3 we get acquainted with the ideas

of *I*-divergence and *I* ∗ -divergence of sequences in *S*-metric spaces and investigate their relation under certain general

.

assumption.

Definition 1.1. *([\[15\]](#page-3-15)) If X is a non-void set then a family of sets I* ⊂ 2 *X is called an ideal if* (i) *A*, *B* ∈ *I* implies $A ∪ B ∈ I$ and *(ii)* $A \in I$, $B \subset A$ *imply* $B \in I$.

The ideal *I* is called *nontrivial* if $I \neq \{0\}$ and $X \notin I$. A nontrivial ideal *I* is said to be *admissible* if $\{x\} \in I$ for each *x* ∈ *X*.

Definition 1.2. *([\[15\]](#page-3-15)) A non-empty family F of subsets of a non-void set X is called a filter if* (i) $\emptyset \notin F$ (iii) *A*, *B* ∈ *F* implies $A ∩ B ∈ F$ and *(iii)* $A \in F, A \subset B$ *imply* $B \in F$.

Lemma 1.3. Let *I* be a nontrivial ideal of $X \neq \emptyset$. Then the *family of sets* $F(I) = \{A \subset X : X - A \in I\}$ *is a filter on X. It is called the filter associated with the ideal.*

Definition 1.4. *([\[23\]](#page-3-14)) Let X be a nonempty set. An S-metric on X is a function* $S: X \times X \times X \rightarrow [0, \infty)$ *that satisfies the following conditions* $(i) S(x, y, z) \geq 0$ *for all x*, $y, z \in X$, *(ii)* $S(x, y, z) = 0$ *if and only if* $x = y = z$, *(iii)* $S(x, y, z)$ ≤ $S(x, x, a) + S(y, y, a) + S(z, z, a)$ *for all* $x, y, z, a \in$ *X.*

The pair (*X*,*S*) is called an *S-metric space*. Some familiar examples of *S*-metric spaces may be seen from [\[23\]](#page-3-14). In an *S*-metric space (X, S) , $S(x, x, y) = S(y, y, x)$ holds for all $x, y \in X$.

2. *I***-convergence,** *I* ∗ **-convergence,** *I***-Cauchy and** *I* ∗ **-Cauchy conditions**

Throughout we assume that $I \subset 2^{\mathbb{N}}$ is a nontrivial ideal of the set of all positive integers $\mathbb N$ and (X, S) is an *S*-metric space unless otherwise stated. Below we introduce the following definitions in an *S*-metric space.

Definition 2.1. *(cf. [\[13\]](#page-3-6))* A sequence $\{x_n\}$ of elements of *X is said to be I-convergent to* $x \in X$ *if for each* $\varepsilon > 0$ *, the set* $A(\varepsilon) = \{ n \in \mathbb{N} : S(x_n, x_n, x) \geq \varepsilon \} \in I.$

Definition 2.2. *([\[17\]](#page-3-7)) An admissible ideal I is said to satisfy the condition (AP) if for every countable family* $\{A_1, A_2, A_3, \ldots \}$ *of sets belonging to I there exists a countable family of sets* ${B_1, B_2, B_3, \ldots}$ } *such that A*_{*j*}∆*Bj is a finite set for each j* ∈ N $and \bigcup_{j=1}^{\infty} B_j \in I.$

Note that $B_j \in I$ for all $j \in \mathbb{N}$.

Definition 2.3. *(cf. [\[13\]](#page-3-6))* A sequence $\{x_n\}$ of elements of X *is said to be* I^* -convergent to $x \in X$ *if and only if there exists a set M* ∈ *F*(*I*) (*i.e.,* $\mathbb{N} \setminus M$ ∈ *I*), $M = \{m_1 < m_2 < \cdots < m_k < m$ \cdots } $\subset \mathbb{N}$ *such that* $\lim_{k \to \infty} S(x_{m_k}, x_{m_k}, x) = 0$ *.*

It can be proved easily that *I* and *I* ∗ -convergence are equivalent for admissible ideals with property (AP).

Definition 2.4. *(cf. [\[20\]](#page-3-11))* Let $I \subset 2^{\mathbb{N}}$ be an admissible ideal. *A sequence* {*xn*} *of elements of X is called an I-Cauchy sequence in* (X, S) *if for every* $\varepsilon > 0$ *there exists a positive integer* $n_0 = n_0(\varepsilon)$ *such that the set*

$$
A(\varepsilon) = \{ n \in \mathbb{N} : S(x_n, x_n, x_{n_0}) \ge \varepsilon \} \in I
$$

It can be shown that $\{x_n\}$ is *I*-Cauchy if for any given $\varepsilon > 0$, there exists $B = B(\varepsilon) \in I$ such that $m, n \notin B$ implies $S(x_m, x_m, x_n) < \varepsilon$.

Definition 2.5. *(cf. [\[20\]](#page-3-11))* Let $I \subset 2^{\mathbb{N}}$ be an admissible ideal. *A sequence* {*xn*} *of elements of X is called an I* ∗ *-Cauchy sequence in* (X, S) *if there exists a set* $M = \{m_1 < m_2 < \cdots < m_m\}$ m_k < ··· } ⊂ N, $M \in F(I)$ *such that the subsequence* $\{x_{m_k}\}$ *is an ordinary Cauchy sequence in* (*X*,*S*) *i.e., for each preassigned* $\varepsilon > 0$ *there exists* $k_0 \in \mathbb{N}$ *such that* $S(x_{m_k}, x_{m_k}, x_{m_r}) < \varepsilon$ *for all* $k, r \geq k_0$ *.*

Theorem 2.6. Let *I* be an admissible ideal on \mathbb{N} . If $\{x_n\}$ is *an I*[∗] *-Cauchy sequence in* (*X*,*S*) *then* {*xn*} *is I-Cauchy.*

Proof. Let $\{x_n\}$ be an *I*^{*}-Cauchy sequence in (X, S) . Then by definition there exists a set $M = \{m_1 < m_2 < \cdots < m_k < \}$ \cdots } $\subset \mathbb{N}$, $M \in F(I)$ such that for every $\varepsilon > 0$ there exists a positive integer $k_0 = k_0(\varepsilon)$ such that $S(x_{m_k}, x_{m_k}, x_{m_r}) < \varepsilon$ for all $k, r > k_0 = k_0(\varepsilon)$. Let us take $n_0 = n_0(\varepsilon) = m_{k_0+1}$. Then for every $\varepsilon > 0$, we have $S(x_{m_k}, x_{m_k}, x_{n_0}) < \varepsilon$, for all $k > k_0$. Now let $H = \mathbb{N} \setminus M$. It is clear that $H \in I$ and

$$
A(\varepsilon) = \{n \in \mathbb{N} : S(x_n, x_n, x_{n_0}) \ge \varepsilon\} \subset H \cup \{m_1, m_2, \dots, m_{k_0}\} \in I
$$

Hence we get that $A(\varepsilon) \in I$. Therefore, for every $\varepsilon > 0$ we can find a positive integer $n_0 = n_0(\varepsilon)$ such that $A(\varepsilon) \in I$ i.e., ${x_n}$ is *I*-Cauchy.

In general *I*-Cauchy condition does not imply *I* ∗ -Cauchy condition. The following example is given in this direction.

Example 2.7. *Let* R *be the real number space with the usual metric d. Let* (R,*S*) *be an S-metric space where the S-metric is defined by* $S(x, y, z) = d(x, z) + d(y, z)$ *for all* $x, y, z \in \mathbb{R}$ *. Let* $N = \bigcup_{j \in \mathbb{N}} \Delta_j$ *be a decomposition of* $\mathbb N$ *such that each* Δ_j *is infinite and* Δ ^{*i*} ∩ Δ ^{*j*} = \emptyset *for i* \neq *j.* Let *I* be the class of all those subsets A *of* N *that can intersects only finite number of* Δ_i 's. *Then I becomes an admissible ideal of* N*.*

Now $\{\frac{1}{n}\}_n \in \mathbb{N}$ *is a Cauchy sequence in* (\mathbb{R}, d) *. Let us define a* sequence $\{x_n\}$ in (\mathbb{R}, S) by $x_n = \frac{1}{j}$ if $n \in \Delta_j$. Let $\varepsilon > 0$ be given. Then $\{\frac{1}{n}\}_{{n\in\mathbb{N}}}$ being a Cauchy sequence there is $k\in\mathbb{N}$ *such that* $d(\frac{1}{m}, \frac{1}{n}) < \frac{\varepsilon}{4}$ *whenever* $m, n \geq k$ *. Now the set* $B =$ $\Delta_1 \cup \Delta_2 \cup \ldots \cup \Delta_k \in I$ *and clearly we see that* $m, n \notin B$ *implies* $S(x_m, x_m, x_n) < \varepsilon$ *. Hence* $\{x_n\}$ *is I-Cauchy in* (\mathbb{R}, S)*. Next we shall show that* $\{x_n\}$ *is not* I^* -*Cauchy in* (\mathbb{R}, S) *. If possible assume that* $\{x_n\}$ *is* I^* -Cauchy sequence in (\mathbb{R}, S) . Then there is

a set $M \in F(I)$ *such that the subsequence* $\{x_m\}_{m \in M}$ *is Cauchy in* (\mathbb{R}, S)*. Since* $\mathbb{N} \setminus M \in I$ *so there exists a p* ∈ \mathbb{N} *such that* $\mathbb{N} \setminus M \subset \Delta_1 \cup \Delta_2 \cup \ldots \cup \Delta_p$ *. But then it follows that* $\Delta_i \subset M$ *for all i* > *p. In particular,* ∆*p*+1,∆*p*+² ⊂ *M. Let us choose a* positive real $\varepsilon_0 = \frac{1}{4(p+1)(p+2)} > 0$ *. Now since* $\{x_m\}_{m \in M}$ *is Cauchy in* (\mathbb{R}, S) *then for chosen* ε_0 *there exists* $k \in \mathbb{N}$ *such that* $S(x_p, x_p, x_q) < \varepsilon_0$ *for all* $p, q \geq k$. From the con*struction of* Δ'_{j} *s it clearly follows that given any* $k \in \mathbb{N}$ *there are* $m \in \Delta_{p+1}$ *and* $n \in \Delta_{p+2}$ *such that* $m, n \geq k$. *Then as defined earlier we have* $x_m = \frac{1}{p+1}$, $x_n = \frac{1}{p+2}$ and $S(x_m, x_m, x_n)$ $2d(x_m, x_n) = 2|\frac{1}{p+1} - \frac{1}{p+2}| = \frac{2}{(p+1)(p+2)} > \varepsilon_0$. Hence there *is no* $k \in \mathbb{N}$ *for which the inequality* $S(x_m, x_m, x_n) < \varepsilon_0$ *holds whenever* $m, n \in M$ *with* $m, n \geq k$. This contradicts the fact *that* $\{x_m\}_{m \in M}$ *is Cauchy.*

The definition of *P*-ideal is widely known as follows.

Definition 2.8. *An admissible ideal I* ⊂ 2 ^N *is called a P-ideal if for every sequence* ${A_n}_{n \in \mathbb{N}}$ *of sets in I there is a set* $A_0 \in I$ *with* $A_n \setminus A_0$ *finite for every* $n \in \mathbb{N}$ *.*

If *I* is an admissible ideal satisfying the condition (AP) then *I* is a *P*-ideal and the converse is also true. In consequence of this it can be shown that if *I* is an admissible ideal satisfying the condition (AP) then for every countable family ${P_n}_{n \in \mathbb{N}}$ of sets in $F(I)$ there exists a set $P \in F(I)$ such that $P \setminus P_n$ is finite for all $n \in \mathbb{N}$.

Theorem 2.9. *Let I be an admissible ideal satisfying the condition (AP). Then if* $\{x_n\}$ *is an I-Cauchy sequence in* (X, S) *it is I*[∗] *-Cauchy also.*

Proof. Let $\{x_n\}$ be an *I*-Cauchy sequence in (X, S) . Then by definition, for every given $\varepsilon > 0$ there exists $n_0 = n_0(\varepsilon)$ such that $A(\varepsilon) = \{ n \in \mathbb{N} : S(x_n, x_n, x_{n_0}) \ge \varepsilon \} \in I$. Let $P_k = \{ n \in \mathbb{N} : S(x_n, x_n, x_{n_0}) \ge k \}$ $S(x_n, x_n, x_{m_k}) < \frac{1}{k}$ for $k = 1, 2, 3, \dots$, where $m_k = n_0(\frac{1}{k})$. It is clear that $P_k \in F(I)$ for every $k \in \mathbb{N}$. Since *I* satisfies the condition(AP) so there exists a set $P \in F(I)$ such that $P \setminus P_k$ is finite for all $k \in \mathbb{N}$. Now we show that $\{x_m\}_{m \in P}$ is I^* -Cauchy.

So, let $\varepsilon > 0$ and $j \in \mathbb{N}$ be such that $j > \frac{3}{\varepsilon}$. Since $P \setminus P_j$ is a finite set, so there exists $k = k(j)$ such that whenever *m*,*n* ∈ *P* and *m*,*n* > *k*_{*j*} we have *m*,*n* ∈ *P*_{*j*}. Hence it follows that

$$
S(x_m, x_m, x_n) \leq 2S(x_m, x_m, x_{m_j}) + S(x_n, x_n, x_{m_j}) < \varepsilon
$$

for $m, n > k(j)$. Thus for any $\varepsilon > 0$ there exists $k = k(\varepsilon) \in \mathbb{N}$ such that for $m, n > k(\varepsilon)$ and $m, n \in P \in F(I), S(x_m, x_m, x_n)$ *ε*. This shows that the sequence $\{x_n\}$ in (X, S) is an I^* -Cauchy \Box sequence.

Theorem 2.10. *Let* (*X*,*S*) *be an S-metric space containing at least one accumulation point. If for every sequence* $\{x_n\}$ *I*-*Cauchy condition implies I* ∗ *-Cauchy condition then I satisfies the condition (AP).*

The proof of the above theorem follows the same approach as in [\[6\]](#page-3-12).

3. *I***-divergence and** *I* ∗ **-divergence**

The concept of divergent sequence of real numbers was generalized to statistically divergent sequence of real numbers by Macaj and Salat in [\[19\]](#page-3-5). Later Das and Ghosal in [\[6\]](#page-3-12) introduced the concept of divergence of a sequence in a metric space and extended it with the help of ideals. Here following the same approach we introduce the idea of divergent sequence in an *S*-metric space and extend it with the help of ideals. Also we prove some results following the similar approach of [\[6\]](#page-3-12).

Definition 3.1. *(cf. [\[6\]](#page-3-12))* A sequence $\{x_n\}$ *in an S-metric space* (*X*,*S*) *is said to be divergent (or properly divergent) if there exists an element* $x \in X$ *such that* $S(x_n, x_n, x) \to \infty$ *as* $n \to \infty$ *.*

We note that a divergent sequence in an *S*-metric space cannot have any convergent subsequence.

Definition 3.2. *(cf. [\[6\]](#page-3-12))* A sequence $\{x_n\}$ *in an S-metric space* (X, S) *is said to be I-divergent if there exists an element* $x \in X$ *such that for any positive real number G, the set*

$$
A(x,G) = \{n \in \mathbb{N} : S(x_n,x_n,x) \le G\} \in I
$$

Definition 3.3. *(cf.* $[6]$ *)* A sequence $\{x_n\}$ *in an S*-metric space (X, S) *is said to be I*^{*}-divergent *if there exists* $M \in F(I)$ *i.e.*, $N \setminus M \in I$ *such that* $\{x_m\}_{m \in M}$ *is divergent i.e., there exists some* $x \in X$ *such that* $\lim_{m \to \infty} S(x_m, x_m, x) = \infty$ *where* $m \in M$.

Theorem 3.4. Let *I* be an admissible ideal. If $\{x_n\}$ in (X, S) *is* I^* -divergent then $\{x_n\}$ *is I*-divergent.

Proof. Since $\{x_n\}$ is *I*^{*}-divergent so there exists $M \in F(I)$ i.e., $\mathbb{N} \setminus M \in I$ such that $\{x_m\}_{m \in M}$ is divergent i.e., there exists some $x \in X$ such that $\lim_{m \to \infty} S(x_m, x_m, x) = \infty$ where $m \in M$. Then for any given positive real number *G* there exists $k \in \mathbb{N}$ such that $S(x_m, x_m, x) > G$ for all $m > k$ and $m \in M$. Hence we have ${n \in \mathbb{N} : S(x_n, x_n, x) \le G}$ ⊂ $\mathbb{N} \setminus M \cup \{1, 2, 3, \dots, k\} \in I$. This implies that $\{x_n\}$ is *I*-divergent. □

The following example shows that the converse of the above theorem is not in general true.

Example 3.5. *Let* $\mathbb{N} = \bigcup_{j \in \mathbb{N}} \Delta_j$ *be a decomposition of* \mathbb{N} *such that each* Δ_j *is infinite and* $\Delta_i \cap \Delta_j = \emptyset$ *for i* \neq *j.* Let *I be the class of all those subsets A of* N *that can intersects only finite number of* Δ'_i *s. Then I becomes an admissible ideal of* N*.Take the real line* R *with the usual metric d. Let* (R,*S*) *be an S-metric space where the S-metric is defined by S*(*x*, *y*, *z*) = *d*(*x*, *z*) + *d*(*y*, *z*) *for all x*, *y*, *z* \in R*. Let* {*x_n*} *be a sequence in* (\mathbb{R}, S) *defined by* $x_i = n$ *if* $i \in \Delta_n$ *. Now for any given positive real number G there exists a natural number m such that* $\frac{G}{2}$ < *m.* Let us consider the set { $i \in \mathbb{N}$: $S(x_i, x_i, 0) \le$ *G*}*. We assert that* $\{i \in \mathbb{N} : S(x_i, x_i, 0) \le G\} \cap \Delta_k = \emptyset$ *for all* $k \geq m$. *If possible let* $\{i \in \mathbb{N} : S(x_i, x_i, 0) \leq G\} \cap \Delta_k \neq \emptyset$ for *some* $k \ge m$ *and* $p \in \{i \in \mathbb{N} : S(x_i, x_i, 0) \le G\} \cap \Delta_k$. Then

.

 $S(x_p, x_p, 0) = 2d(x_p, 0) = 2d(k, 0) = 2|k - 0| = 2k$ *and since* $S(x_p, x_p, 0) \le G$ *so we get* $2k \le G$ *where* $k \ge m$ *which leads to a* contradiction. Hence we conclude that $\{i \in \mathbb{N} : S(x_i, x_i, 0) \leq \}$ G \subset ∆₁ ∪ ∆₂ ∪ ∪ ∆_{*m*−1} \in *I and consequently* {*x_n*} *is Idivergent.*

Next we shall show that $\{x_n\}$ *is not* I^* -divergent in (\mathbb{R}, S) *. If possible assume that* {*xn*} *is I* ∗ *-divergent. Then there exists* $M \in F(I)$ *such that* $\{x_m\}_{m \in M}$ *is divergent in* (\mathbb{R}, S) *. Since* $\mathbb{N} \setminus M \in I$ *so there exists* $k \in \mathbb{N}$ *such that* $\mathbb{N} \setminus M \subset \Delta_1 \cup \Delta_2 \cup \Delta_3$∪∆*^k . But then* ∆*ⁱ* ⊂ *M for all i* > *k. In particular* ∆*k*+¹ ⊂ *M. But this implies that* {*xi*}*i*∈∆*k*+¹ *is a constant subsequence of* $\{x_m\}_{m \in M}$ *which is convergent to* $k+1$ *. This contradicts the fact that* $\{x_m\}_{m \in M}$ *is divergent in* (\mathbb{R}, S) *.*

Theorem 3.6. *If I is an admissible ideal with property (AP) then for any sequence* $\{x_n\}$ *in* (X, S) *, I-divergence implies I* ∗ *-divergence.*

Proof. First suppose that *I* satisfies the condition (AP). Since ${x_n}$ is *I*-divergent so there exists some $x \in X$ such that for any positive real number *G*, the set $A(x, G) = \{n \in \mathbb{N}$: *S*(*x_n*, *x_n*, *x*) ≤ *G*} ∈ *I*. Let us take $A_1 = \{n \in \mathbb{N} : S(x_n, x_n, x)$ ≤ 1}, $A_2 = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \leq 2\}$,..............., $A_k = \{n \in \mathbb{N} : 1 < S(x_n, x_n, x) \leq 2\}$ $N : k - 1 < S(x_n, x_n, x) \leq k$ for all $k \geq 2$. Thus we get a countable collection of mutually disjoint sets $\{A_i\}$ with $A_i \in I$ for all $i \in \mathbb{N}$. By the condition (AP) there exists a family ${B_i}$ of subsets of N such that $A_i \Delta B_i$ is finite for all $i \in \mathbb{N}$ and $B = \bigcup_{i \in \mathbb{N}} B_i \in I$. Let $M = \mathbb{N} \setminus B$. Then $M \in F(I)$. Let *G* > 0 be any real. Then there exists $k \in \mathbb{N}$ such that $G \leq k$. Then $\{n \in \mathbb{N} : S(x_n, x_n, x) \leq G\} \subset A_1 \cup A_2 \cup \cdots \cup A_k$. Since $A_i \Delta B_i$ is finite for all $i \in \mathbb{N}$ so there exists $n_0 \in \mathbb{N}$ such that $(\bigcup_{i=1}^{k} B_i) \cap \{n \in \mathbb{N} : n \ge n_0\} = (\bigcup_{i=1}^{k} A_i) \cap \{n \in \mathbb{N} : n \ge n_0\}.$ Clearly if $n \ge n_0$ and $n \in M$ then $n \notin \bigcup_{i=1}^k B_i$ which implies $n \notin \bigcup_{i=1}^{k} A_i$. Therefore $S(x_n, x_n, x) > k > G$. Hence we see there is a set $M = \mathbb{N} \setminus B \in F(I)$ such that the sequence ${x_m}_{m \in M}$ is a divergent sequence and consequently ${x_n}$ becomes *I* ∗ -divergent. П

Theorem 3.7. *Let* (*X*,*S*) *be an S-metric space containing at least one divergent sequence and let I be an admissible ideal. If for every sequence* $\{x_n\}$ *in* (X, S) *I-divergence implies* I^* *divergence then I satisfies the condition (AP).*

The proof of the above theorem follows the same approach as in [\[6\]](#page-3-12).

4. Conclusion

Here we have studied the idea of *I* and *I*[∗]-Cauchy condition in a more general structure of an *S*-metric space. Also we have studied the notions of *I*-divergence and *I*[∗]-divergence in an *S*-metric space. As we know *S*-metric space is a generalization of a metric space, the same can be studied in a more general settings like Cone metric spaces, *M*-metric spaces etc. Also as a continuation of this work the idea of I and I^K -Cauchy conditions may be studied in such generalized spaces.

References

- ^[1] V. Baláž, J. Červeńanský, P. Kostyrko, T. Šalát, Iconvergence and I-continuity of real functions, *Acta Math. (Nitra),* 5 (2002), 43-50.
- [2] M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, *J. Math. Anal. Appl.,* 328 (2007), 715-729.
- [3] A.K. Banerjee, A. Banerjee, A note on I-convergence and *I* ∗ -convergence of sequences and nets in topological spaces, *Mat. Vesnik,* 67, 3 (2015), 212-221.
- [4] A.K. Banerjee, R. Mondal, A note on convergence of double sequences in a topological space, *Mat. Vesnik,* 69, 2 (2017), 144-152.
- [5] A.K. Banerjee, Anindya Dey, Metric spaces and complex analysis, *New age International(P) Limited Publishers,* 2008.
- [6] P. Das, S.K. Ghosal, Some further results on I-Cauchy sequences and condition (AP), *Computers and Mathematics with Applications,* 59 (2010), 2597-2600.
- [7] P. Das, S.K. Ghosal, On I-Cauchy nets and completeness, *Topology and its Applications,* 157 (2010), 1152-1156.
- [8] P. Das, M. Sleziak, V. Toma, *I ^K*-Cauchy functions, *Topology and its Applications,* 173 (2014), 9-27.
- [9] K. Demirci, *I*-limit superior and limit inferior, *Mathematical Communications,* 6 (2001), 165-172.
- [10] K. Dems: On I-Cauchy sequences, *Real Analysis Exchange,* 30(1) (2004/2005), 123-128.
- [11] H. Fast, Sur la convergence statistique, *Colloq. Math.,* 2 (1951), 241-244.
- [12] H. Halberstem, K.F. Roth, Sequences, *Springer, New York,* 1993.
- [13] P. Kostyrko, T. Šalát, W. Wilczyński, I-convergence, Real *Analysis Exchange,* 26 (2)(2000/2001), 669-686.
- [14] P. Kostyrko, M. Mačaj, T. Šalat, M. Sleziak, Iconvergence and extremal I-limit points, *Math. Slovaca,* 55 (4) (2005), 443-464.
- [15] K. Kuratowski, Topologie I, *PWN, Warszawa,* 1961.
- [16] B.K. Lahiri, P. Das, Further results on I-limit superior and I-limit inferior, *Mathematical Communications,* 8 (2003), 151-156.
- [17] B.K. Lahiri, P. Das, I and I^{*}-convergence in topological spaces, *Math. Bohemica,* 130 (2) (2005), 153-160.
- [18] B.K. Lahiri, P. Das, I and *I* ∗ -convergence of nets, *Real Analysis Exchange,* 33 (2) (2007/2008), 431-442.
- [19] M. Mačaj, T. Šalát, Statistical convergence of subsequences of a given sequence, *Math. Bohemica,* 126 (2001), 191-208.
- [20] A. Nabiev, S. Pehlivan, M. Gurdal, On I-Cauchy sequences, *Taiwanese J. Math.,* 11 (2) (2007), 569-576.
- $[21]$ T. Salát, On statistically convergent sequences of real numbers, *Math. Slovaca,* 30 (1980), 139-150.
- [22] I.J. Schoenberg, The integrability of certain functions and related summability methods, *Amer. Math. Monthly,* 66 (1959), 361-375.
- [23] S. Sedghi, N. Shobe, A. Aliouche, A generalization of

fixed point theorems in S-metric spaces, *Mat. Vesnik,* 64 (3) (2012), 258-266.

[24] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, *Colloq. Math.,* 2 (1951), 73-74.

> $***$ ******* ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 $**********$

