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Abstract
In this work we study some spectral properties, normalized eigenfunction, Green’s function and
expansion formula of a nonlocal boundary value problem of the Sturm-Liouville equation.
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1. Introduction
In differential equation theory Many interesting ap-

plications appear (see for example [1], [2] and [5], [6]
and [10]-[12]). The eigenfunction expansion of non-
local boundary value problems can be investigate through
the method of Green function.
For the solution of problem (1.1) when ρ(x) 6= 1 under
different conditions the spectral expansion formula was
investigated with different methods in [7]-[9]. In present
work we find the eigenfunction expansion formula and
prove its convergence for following version of the Sturm-
Liouville equation with a non-local boundary condition
(1.1)-(1.2).

Consider the following Sturm-Liouville problem

−y′′+q(x)y = λ
2y, x ∈ (0,π), (1.1)

y(0) = 0, y(ξ ) = 0, ξ ∈ (0,π], (1.2)

where the non-negative real function q(x) has a second
piecewise derivatives on (0,π) and λ is spectral param-
eter.
In [3] the author proved that the eigenvalues λn,n =
0,1,2, .. of problems (1.1)-(1.2) are real and the corre-
sponding eigenfunctions ϕ(x,λ ),ψ(x,λ ) are orthogo-
nal.
In present work we study the eigenfunction, expansion
formula.
Let ϕ(x,λ ) be the solution of the differential equation,
which satisfies the conditions

ϕ(0,λ ) = 0 ϕ
′(0,λ ) = 1 (1.3)

and then

−ϕ
′′(x,λ )+q(x)ϕ(x,λ ) = λ

2
ϕ(x,λ ), (1.4)
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taking the complex conjugate we have

−ϕ ′′(x,λ )+q(x)ϕ(x,λ ) = λ
2
ϕ(x,λ ). (1.5)

By the aid of the uniqueness theorem, we have ϕ(x,λ ) =
ϕ(x,λ ). In a similar way, we can see that ψ(x,λ ) =
ψ(x,λ ) where ψ(x,λ ) is the solution of (1.1)-(1.2), way
as [3] which is given by

ψ(x,λ )=
cos(ξ − x)

λ
+
∫

ξ

x

sinλ (x− τ)

λ
q(τ)ψ(τ,λ )dτ,

(1.6)

where

ψ(ξ ,λ ) = 0, ψ
′(ξ ,λ ) = 1,

that is, the eigenfunctions of the problem (1.1)-(1.2) are
real.
As we know from [3], the eigenvalues of problem (1.1)-
(1.2) coincide with the roots of the function Ψ(λ ) =
0, where Ψ(λ ) is the Wronskian of the two solutions
ϕ(x,λ ),ψ(x,λ ) of (1.1)-(1.2) and we have in [4]

Ψ(λ ) =W [ϕ(x,λ ),ψ(x,λ )] = 0, (1.7)

so that ψ(x,λn) is a constant multiple of ϕ(x,λn), say

ψ(x,λn) = βnϕ(x,λn), βn 6= 0. (1.8)

2. Some spectral properties

Definition 2.1. For every n=1, 2, ... the numbers

an =
∫

ξ

0
ϕ

2(x,λn)dx =
ξ

2
+O

(
1
n2

)
, (2.1)

are called the normalization numbers of boundary value
problem (1.1)-(1.2).

Lemma 2.2. The eigenvalues of the non-local boundary
value problem (1.1)-(1.2) are simple and give by

Ψ̇(λn) = 2λnβnan, (2.2)

where Ψ̇(λn) =
d

dλ
W (λ ).

Proof. Since

−ϕ
′′(x,λn)+q(x)ϕ(x,λn) = λ

2
n ϕ(x,λn),

−ψ
′′(x,λ )+q(x)ψ(x,λ ) = λ

2
ψ(x,λ ),

we get

d
dx

W (λ ) = (λ 2
n −λ

2)ϕ(x,λn)ψ(x,λn).

With the help of (1.2) and using (2.1), (1.8), we get

Ψ̇(λ ) = (λn−λ )(λn +λ )βn

[∫
ξ

0
ϕ

2(x,λn)dx
]
,

for λ → λn we arrive at (2.2).

3. Green’s function
We introduce the function R(x, t,λ ) by

R(x, t,λ ) =− 1
Ψ


ϕ(x,λ )ψ(t,λ ), t ≤ x,

ϕ(t,λ )ψ(x,λ ), x≤ t.
(3.1)

which is called the Green’s function of the nonhomoge-
neous problem

−y′′+q(x)y = λ
2y+ f (x), 0≤ x≤ π,

(3.2)

y(0) = 0, y(ξ ) = 0, ξ ∈ (0,π].

Where f (x)∈D(A). The function R(x, t,λ ) is also, called
the kernel of the resolvent Rλ = (A−λ 2I)−1, where A≡
−(d2/dx2) + q(x),D(A) = {y(x) : ∃y′′,y(0) = y(ξ ) =
0}. In the following lemmas, we prove some essential
properties of R(x, t,λ ) which are useful in the forthcom-
ing study of the eigenfunction expansion of the problem
(1.1)-(1.2)

Lemma 3.1. Let f (x) be any function belonging to
L2(0,π), then the function

y(x,λ ) =
∫

ξ

0
R(x, t,λ ) f (t)dt (3.3)

is the solution of problem (3.2).

proof. By applying the method of variation of pa-
rameters.We seek the solution of the nonhomogeneous
problem (3.2) in the following

y(x,λ ) =C1ϕ(x,λ )+C2ψ(x,λ ), (3.4)
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and we get the coefficients C1(x,λ ) and C2(x,λ ) as

C1(x,λ ) =−
1

Ψ(λ )

∫ x

0
ψ(t,λ ) f (t)dt,

(3.5)

C2(x,λ ) =−
1

Ψ(λ )

∫
ξ

x
ϕ(t,λ ) f (t)dt.

Substituting (3.5) into (3.4) and keeping in mind (3.1),
we get the required formula (3.3).
Now we show that (3.3) satisfies the non-local boundary
condition (3.2). From (3.2) by using (1.1)-(1.2), we have

y(0) =− 1
Ψ

∫
ξ

0
ϕ(0,λ )ψ(t,λ ) f (t)dt = 0,

(3.6)

y(ξ ) =− 1
Ψ

∫
ξ

0
ϕ(t,λ )ψ(ξ ,λ ) f (t)dt = 0

The proof is completed.

Lemma 3.2. Under the conditions of Lemma 2.3, the
function R(x, t,λ ) satisfies the following formula

Resλ=λny(x,λ ) = Resλ=λn

∫
ξ

0
R(x, t,λ ) f (t)dt

=
−1

2λnan
ϕ(x,λ )

∫
ξ

0
ϕ(t,λn) f (t)dt.

(3.7)

proof. With the help of (3.1) and (3.3), we get

Resλ=λn

∫
ξ

0
R(x, t,λ ) f (t)dt =− 1

Ψ(λ )

[
ψ(x,λn)∫ x

0
ϕ(t,λ )dt +ϕ(x,λn)

∫
ξ

0
ψ(t,λn) f (t)dt

]
=− 1

Ψ(λ )

[
βnϕ(x,λn)

∫
ξ

0
ϕ(t,λn) f (t)dt

]
(3.8)

by using (2.2), we arrive (3.7).

Lemma 3.3. Under the conditions of Lemma 3.7 in [3],
the resolvent R(x, t,λ ) satisfies the following inequality:

R(x, t,λ ) =


O
(

e|λ |(t−x)

|λ |2

)
, 0≤ x≤ t ≤ ξ ≤ π,

O
(

e|λ |(x−t)

|λ |2

)
, 0≤ x≤ t ≤ ξ ≤ π.

(3.9)

proof. From [3], we have

ϕ(x,λ ) = O
(

e|λ |x

|λ |

)
, 0≤ x≤ π,

ψ(x,λ ) = O
(

e|λ |(ξ−x)

|λ |

)
, 0≤ x≤ ξ ≤ π.

(3.10)

It can be easily seen that,

1
Ψ(λ )

≤CO
(
|λ |e−|λ |ξ

)
, C = cont. (3.11)

We have two possibilities, one of which for x≤ t and the
other one for t ≤ x. by direct substitution from (3.10),
(3.11) into the first branch of (3.1), we obtain

O
(

e|λ |(t−x)

|λ |2

)
, 0≤ x≤ t ≤ ξ ≤ π. (3.12)

In the case of x≤ t, again by substituting (3.10), (3.11)
into the first branch of (3.1), we obtain

O
(

e|λ |(x−t)

|λ |2

)
, 0≤ x≤ t ≤ ξ ≤ π. (3.13)

In the following lemma, we prove an integral formula
which is satisfied by R(x, t,λ ) and help in proving the
eigenfunction expansion formula

Lemma 3.4. If the function f (x) on [0,π] has a second-
order derivatives and satisfies the non-local condition
f (0) = f (ξ ) = 0, then the following integral formula is
true ∫

ξ

0
R(x, t,λ ) f (t)dt =− f (x)

λ 2

+
∫

ξ

0

R(x, t,λ )
λ 2

[
− f ′′(t)+q(t) f (t)

]
dt

(3.14)

where R(x, t,λ ) is the kernel of the resolvent of the non-
homogeneous

proof. By the aid of lemma 3.1, we have

∫
ξ

0
R(x, t,λ ) f (t)dt =− 1

Ψ

[
ψ(x,λ )

∫
ξ

0
ϕ(t,λ ) f (t)dt

+ϕ(x,λ )
∫

ξ

0
ψ(t,λ ) f (t)dt

]
(3.15)
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where the functions ϕ(x,λ ) and ψ(x,λ ) are the solu-
tions of the homogenous (1.1)-(1.2), so that

∫
ξ

0
R(x, t,λ ) f (t)dt =− 1

Ψ

[
ψ(x,λ )

λ 2∫
ξ

0
[−ϕ

′′(t,λ )+q(t)ϕ(t,λ )] f (t)dt

+
ϕ(x,λ )

λ 2

∫
ξ

0
[−ψ

′′(t,λ )+q(t)ψ(t,λ )] f (t)dt
]
,

(3.16)

from which we have∫
ξ

0
R(x, t,λ ) f (t)dt =

1
Ψ

[
ψ(x,λ )

λ 2

∫ x

0
ϕ
′′(t,λ )

f (t)dt +
ϕ(x,λ )

λ 2

∫
ξ

x
ψ
′′(t,λ ) f (t)dt

]
+

1
λ 2

∫
ξ

0
R(x, t,λ )q(t)dt

(3.17)

Integrating by parts twice (3.17) and then using the
boundary conditions f (0) = f (ξ ) = ϕ(0,λ ) = 0 and
f (0) = f (ξ ) = ψ(ξ ,λ ) = 0, respectively, and keeping
in mind (3), we get

ψ(x,λ )
∫ x

0
ϕ
′′(t,λ ) f (t)dt +ϕ(x,λ )

∫
ξ

x
ψ
′′(t,λ ) f (t)dt

=−Ψ(λ ) f (x)−Ψ(λ )
∫

ξ

0
R(x, t,λ ) f ′′(t)dt(3.18)

Substituting from (3.18) into (3.17), we get the required
result.

4. Expansion formula

Theorem 4.1. The eigenfunctions (varphi(x,λn)n≥0 of
the nonlocal boundary value problem (1.1)-(1.2) is com-
plete in L2(0,π).

proof. Let f (x) ∈ L2(0,π) and assume∫
ξ

0
f (x)ϕ(x,λn)dx = 0, n≥ 0.

Then from (3.7), we have Resλ=λny(x,λ ) = 0 and conse-
quently, for fixed x ∈ [0,π] the function y(x,λ ) is entire

with respect to λ . Let us denote

Gδ := λ : |λ −λ
0
n | ≥ δ ,n = 0,±1,±2, ...

where δ is sufficiently small positive number from (3.11),
we have

|Ψ(λ )| ≥C
e|λ |ξ

|λ |
,

for fixed δ > 0 and sufficiently large λ ∗ > 0

|y(x,λ )| ≤ |λ |Cδ , λ ∈ Gδ , |λ | ≥ λ
∗.

Using the maximum principle and liouville theorem we
get y(x,λ ) ≡ 0. From this we obtain f (x) ≡ 0 a.e. on
(0,π). Thus we conclude the completeness of the eigen-
functions ϕ(x,λn) in L2(0,π).

Theorem 4.2. Let f (x) be a second-order integrable
derivatives on f ∈ [0,π] and satisfy the conditions f (0)=
f (ξ ) = 0, then the following formula of eigenfunction
expansion is true

f (x) =
∞

∑
k=0

bkϕ(x,λk), (4.1)

where bk =
1

2ak

∫ ξ

0 ϕ(t,λk) f (t)dt and the series uniformly
converges to f (x),x ∈ [0,π].

proof. We write (3.14) in the form∫
ξ

0
R(x, t,λ ) f (t)dt =

− f (x)
λ 2 + r(x,λ ) (4.2)

where

r(x,λ ) =
∫

ξ

0

R(x, t,λ )
λ 2

[
− f ′′(t)+q(t) f (t)

]
dt.(4.3)

from the condition of the theorem imposed on q(x), it
can be easily shown that

|r(x,λ )| ≤ M0

|λ 2|
, λ ∈ Γn (4.4)

where Mo is constant which is independent of x, t,λ and
the contour Γn, defined for sufficiently large n on the
contours

Γn =
{

λ : |λ |= |λ 0
n |+

ι

2

}
, inf

n6=m
|λ 0

n −λ
0
m|= ι > 0.
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We multiply both sides of (4.2) by 1
2πi λ and integrating

with respect to λ on the contour Γn

In =
1

2πi

∮
Γn

λy(x,λ )dλ =
− f (x)

2πi

∮
Γn

dλ

λ

+
1

2πi

∮
Γn

λ r(x,λ )dλ .

(4.5)

Among the poles of the function R(x, t,λ ), as a func-
tion of λ , lie only λ0,λ1, ....,λn inside Γn. By using the
residues formula and (3.7), we have

In =
1

2πi

∮
Γn

λy(x,λ )dλ

=
n

∑
k=0

Resλ=λn

[∫
ξ

0
R(x, t,λ ) f (t)dt

]
=

n

∑
k=0

bkϕ(x,λk).

(4.6)

Further

− f (x)
2πi

∮
Γn

dλ

λ
=− f (x) (4.7)

By using (4.4), we have∣∣∣∣ 1
2πi

∮
Γn

λ r(x,λ )dλ

∣∣∣∣≤ M0

2π

∮
Γn

dλ

|λ |
≤ constant

n
(4.8)

By substitution from (4.7), (4.8) into (4.5), we get∣∣∣∣∣ f (x)− n

∑
k=0

bkϕ(x,λk)

∣∣∣∣∣≤ constant
n

(4.9)

which completes the uniform convergence of the series
∑

∞
k=0 bkϕ(x,λk) to f (x), x ∈ [0,π]. That is

f (x) =
∞

∑
k=0

bkϕ(x,λk). (4.10)

Since the system of eigenfunctions ϕ(x,λn)n ≥ 0 are
complete and orthogonal in L2(0,π), the Parseval equal-
ity

∫
ξ

0
| f (x)|2dx =

∞

∑
k=0

ak|bk|2.

hold.

References

[1] K. Aydemir, O. S. Mukhtarov, Second-order differ-
ential operators with interior singularity, Advances
in Difference Equations, 2015.

[2] R. Chaudhary and D. N. Pandey, Existence results
for nonlinear fractional differential equation with
nonlocal integral boundary conditions, Malaya J.
Mat., 4(3)(2016), 392–403.

[3] A. M. A. EL-Sayed, Z. F. A. EL-Raheem AND N.
A. O. Buhalima, Eigenvalues and eigenfunctions of
non-local boundary value problems of the Sturm-
Liouville equation, Electronic Journal of Mathemat-
ical Analysis and Applications, Vol. 5(1) Jan. 2017,
pp.179-186.

[4] G. Freiling, V. Yurko, Inverse Sturm-Liouville Prob-
lems and their Applications, Nova Science, New
York(2001).

[5] G. Sh. Guseinov, Eigenfunction expansions for a
Sturm-Liouville problem on time scales, Interna-
tional Journal of Difference Equationns, ISSN 0973-
6069, Vol 2. No. 1, pp 93-104, 2007.

[6] H. Hochstadt, On inverse problems associated with
Sturm-liouville operators, Journal of Differential
Equations, 17, 220-235 (1975)

[7] K. R. Mamedov, F. A. Cetinkaya, inverse problem
for a class of Sturm-Liouville operator with spec-
tral parameter in boundary condition, Bound. Value
Probl. 2013, 183 (2013)

[8] K. R. Mamedov, F. A. Cetinkaya, Eigenparame-
ter dependent inverse boundary value problem for
a class of Sturm-Liouville operator, Bound. Value
Probl. 2014, 194 (2014)

[9] K. R. Mamedov, F. A. Cetinkaya, A uniqeness the-
orem for a Sturm-Liouville equation wit spectral
parameter in boundary conditions, Appl. Math. Inf.
Sci. 9, no. 2,981-988 (2015)

[10] K. R. Mamedov, F. A. Cetinkaya, Boundary value
problem for a Sturm-Liouville operator with piece-
wise continuous coefficient, Hacettepe Journal of
Mathematics and Statistics, Vol. 44(4), 867-874,
2015.

[11] A. Stikonas. A survey on stationary problems,
Green’s functions and spectrum of Sturm-liouville
problem with nonlocal boundary conditions, Non-
linear Analysis: Modelling and control. Vol. 19, No.
3, 301-334, 2014.

[12] Vikram Singh and Dwijendra N Pandey, Existence
results for multi-term time-fractional impulsive dif-

342



Eigenfunction expansion of the Sturm-Liouville equation with a non-local boundary condition — 343/343

ferential equations with fractional order boundary
conditions, Malaya Journal of Matematik, Vol. 5,
No. 4, 619-624, 2017.

?????????
ISSN(P):2319−3786

Malaya Journal of Matematik
ISSN(O):2321−5666

?????????

343

http://www.malayajournal.org

	Introduction
	Some spectral properties
	Green's function
	Expansion formula
	References

