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1. Introduction
Now-a-days the theory of fractional differential equations

have been occupying an importance place in science and tech-
nology.Fractional differential equations have been widely used
for modeling various processes in physics, chemistry,biology,
aerodynamics of complex medium,polymer rheology, thermo-
elasticity and control of dynamical systems(see [3, 5, 17] and
the references therein). Recently, many researchers have given
attention to the existence and uniqueness of solution of the
initial value problems [8, 15], periodic boundary value prob-
lems [2, 14, 18], problems with integral boundary conditions
[4, 7, 10–13] and with nonlocal integral boundary conditions
[1] for fractional differential equations. It is well known that
the method of upper and lower solutions [6, 16]coupled with

its associated monotone iteration scheme is an interesting,
constructive and powerful mechanism which offers existence
and uniqueness results for nonlinear problems in a closed set.
Recently,Wei et.al.[19] proved existence and uniqueness of
the solution of periodic boundary value problem for a frac-
tional differential equation,using the method of upper lower
solutions and its associated monotone iterations.In this paper,
we extend these results for nonlinear system of Riemann-
Liouville fractional differential equations,by removing the
bounded demand of f (t,u(t)) in [9].

We organize the paper as follows: In Section 2,we con-
sider the periodic boundary value problem for nonlinear sys-
tem of Riemann - Liouville fractional differential equations
and introduce the notion of upper lower solution. Existence
and uniqueness results of periodic boundary value problem for
system of nonlinear fractional differential equations involving
Riemann-Liouville fractional derivatives are proved in the last
section.

2. Upper Lower Solutions

In this section,we consider the periodic boundary value
problems for a system of nonlinear Riemann - Liouville frac-
tional differential equations and introduce the notion of upper
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and lower solutions.Consider the following system of nonlin-
ear Riemann-Liouville fractional differential equations

Dα u1(t) = f1
(
t,u1(t),u2(t)

)
,

Dα u2(t) = f2
(
t,u1(t),u2(t)

)
,

t ∈ (0,T ], 0<α ≤ 1,

(2.1)

with periodic boundary conditions

t1−α u1(t)|t=0 = t1−α u1(t)|t=T ,

t1−α u2(t)|t=0 = t1−α u2(t)|t=T .
(2.2)

It is called periodic boundary value problems(PBVP) for the
system of nonlinear Riemann-Liouville fractional differential
equations. Assume that J = [0,T ] ⊂ R is a compact inter-
val and fi(t,u1(t),u2(t)) ∈C([0,T ]×R2,R), i = 1,2. Further
assume that u1 and u2 are measurable Lebesgue functions
i.e.u1,u2 ∈ L1(0,T ). Suppose

C([0,T ]) =
{

ui : ui(t)is continuous on [0,T ], ||ui||C = max
t∈[0,T ]

|ui(t)|
}
, i = 1,2.

C1−α([0,T ]) =
{

ui ∈C[0,T ] : t1−α ui(t) ∈C([0,T ]), ||ui||C1−α
= ||t1−α ui||C

}
.

Assume that upper and lower solutions satisfy the following order relation

(v1,v2)≤ (w1,w2), t ∈ (0,T ] : t1−α vi(t)|t=0 ≤ t1−α wi(t)|t=0, i = 1,2. (2.3)

Now we define the order interval or ( functional interval )sector as follows:

Definition 2.1. The order interval in a space C1−α([0,T ])∩L1(0,T ) is denoted by S and is defined as

S =

{
(u1,u2) ∈C1−α([0,T ])∩L1(0,T ) :

(
v1(t),v2(t)

)
≤
(
u1(t),u2(t)

)
≤

(
w1(t),w2(t)

)
, t ∈ (0,T ]; t1−α vi(t)|t=0 ≤ t1−α ui(t)|t=0 ≤ t1−α wi(t)|t=0

}
.

In the following,we define quasimonotonicity and Lipschitz condition of function fi(t,u1,u2), i = 1,2 as follows.

Definition 2.2. A function fi(t,u1,u2) ∈C(J×R2,R), i = 1,2 is said to be quasimonotone nondecreasing
(
nonincreasing

)
if

for each i,ui ≤ vi and u j = v j, i 6= j, then

fi(t,u1,u2)≤ fi(t,v1,v2)
(

fi(t,u1,u2)≥ fi(t, t,v1,v2)
)
.

Definition 2.3. Let fi(t,u1,u2) : [0,T ]×R2→ R be a real valued continuous function. We say that fi(t,u1,u2) satisfies one
sided Lipschitz condition if there exists Mi ≥ 0 such that

f1(t,u1,u2)− f1(t,u∗1,u2)≥−M1(u1−u∗1) for v1 ≤ u∗1 ≤ u1 ≤ w1,

f2(t,u1,u2)− f2(t,u1,u∗2)≥−M2(u2−u∗2) for v2 ≤ u∗2 ≤ u2 ≤ w2.
(2.4)

Further to ensure the uniqueness of solution of PBVP (2.1)-(2.2),we assume that there exists Ni ≥ 0 such that

f1(t,u1,u2)− f1(t,u∗1,u2)≤ N1(u1−u∗1) for v1 ≤ u∗1 ≤ u1 ≤ w1,

f2(t,u1,u2)− f2(t,u1,u∗2)≤ N2(u2−u∗2) for v2 ≤ u∗2 ≤ u2 ≤ w2.
(2.5)

From conditions (2.4) and (2.5), we conclude that function f=( f1, f2) satisfies Lipschitz condition

| fi(t,u1,u2)− fi(t,u∗1,u
∗
2)| ≤ Ki(|u1−u∗1|+ |u2−u∗2|), (2.6)

with Mi = Ni = Ki.

Now we consider the following results of the linear PBVP
for a fractional differential equation which are main ingredi-

ents in the proof of our existence and uniqueness results of
solution of the PBVP (2.1)-(2.2).

Lemma 2.4. [19] The linear periodic boundary value prob-
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lem

Dα u(t)+Mu(t) = σ(t),

t1−α u(t)|t=0 = t1−α u(t)|t=T ,

where M > 0 is a constant and σ ∈C[0,T ] has the following
integral representation of the solution

u =
T 1−α Γ(α)tα−1Eα,α(−Mtα)

[1−Γ(α)]Eα,α(−MT α)
(2.7)

(×)
∫ T

0
(T − s)α−1Eα,α

(
−M(T − s)α

)
σ(s)ds

+
∫ t

0
(t− s)α−1Eα,α

(
−M(t− s)α

)
σ(s)ds, (2.8)

where Eα,α(t) =∑
∞
k=0

tk

Γ((k+1)α) is the Mittag-Leffler func-
tion (see [5]).

Lemma 2.5. [19] If u(t) ∈C1−α([0,T ])∩L1(0,T ) and satis-
fies the relations

Dα u(t)+Mu(t)≥ 0, t ∈ (0,T ),

t1−α u(t)|t=0 = t1−α u(t)|t=T ,

where M > 0 is a constant,then u(t)≥ 0, t ∈ (0,T ].

3. Main Results
In this section we develop method of upper lower solutions

and construct two monotone convergent sequences,which
converge monotonically from above and below to maximal
and minimal solutions respectively. As an application of
this method,existence and uniqueness results for the PBVP
(2.1)− (2.2) are proved when the functions f1(t,u1,u2) and
f2(t,u1,u2) are quasimonotone nonincreasing as well as quasi-
monotone nondecreasing

Theorem 3.1. Suppose that

(i) v0 = (v0
1,v

0
2) and w0 = (w0

1,w
0
2) ∈C1−α([0,T ])∩L1(0,T )

are lower and upper solutions of the PBVP (2.1)−(2.2),
such that order relation (2.3) holds,

(ii) function fi(t,u1,u2)∈C([0,T ]×R2,R) satisfies one-sided
Lipschitz condition (2.4),

(iii) functions f1 and f2 are quasimonotone nondecreasing.

Then there exist monotone sequences
{vn

1(t),v
n
2(t)},{wn

1(t),w
n
2(t)}⊂C1−α([0,T ])∩L1(0,T ) such

that

{vn
1(t),v

n
2(t)}→ (v1,v2) and {wn

1(t),w
n
2(t)}→ (w1,w2),

as n→ ∞ on (0,T ], where the functions (v1(t),v2(t)) and
(w1(t),w2(t)) are minimal and maximal solutions on S for the
PBVP (2.1)− (2.2) and satisfy the monotone property

v0
1 ≤ v1

1 ≤ ...≤ vn
1 ≤ ...≤ v1 ≤ w1 ≤ ...≤ wn

1...≤ w1
1 ≤ w0

1,

v0
2 ≤ v1

2 ≤ ...≤ vn
2 ≤ ...≤ v2 ≤ w2 ≤ ...≤ wn

2...≤ w1
2 ≤ w0

2.
(3.1)

Also,if the one sided Lipschitz condition (2.5) holds,then the
PBVP (2.1)− (2.2) has unique solution on S.

Proof:Consider PBVP for system of linear fractional dif-
ferential equations

Dα u1(t)+M1u1 = f1(t,η1,η2)+M1η1

= σ1(t,η1,η2), t ∈ (0,T ),

t1−α u1(t)|t=0 = t1−α u1(t)|t=T ,

(3.2)

Dα u2(t)+M2u2 = f2(t,η1,η2)+M2η2

= σ2(t,η1,η2), t ∈ (0,T ),

t1−α u2(t)|t=0 = t1−α u2(t)|t=T ,

(3.3)

for any (η1,η2) ∈ S. Clearly,linear problems (3.2) and (3.3)
have exactly one solution u1(t) and u2(t) ∈ C1−α([0,T ])∩
L1(0,T ) respectively, follows from Lemma 2.1 and whose
integral representation is as in (2.7). Now define A[η1,µ] =
u1(t) as follows:

u1 =
T 1−α Γ(α)tα−1Eα,α(−M1tα)

[1−Γ(α)]Eα,α(−M1T α)

(×)
∫ T

0
(T − s)α−1Eα,α

(
−M1(T − s)α

)
σ1ds

+
∫ t

0
(t− s)α−1Eα,α

(
−M1(t− s)α

)
σ1ds. (3.4)

Also we define and A[η2,µ] = u2(t), as follows:

u2 =
T 1−α Γ(α)tα−1Eα,α(−M2tα)

[1−Γ(α)]Eα,α(−M2T α)

(×)
∫ T

0
(T − s)α−1Eα,α

(
−M2(T − s)α

)
σ2ds

+
∫ t

0
(t− s)α−1Eα,α

(
−M2(t− s)α

)
σ2ds. (3.5)

An operator A is from [v0
i (t),w

0
i (t)] into C1−α([0,T ])∩L1(0,T )

and ηi is solution of the PBVP (2.1)- (2.2) iff ηi = A[ηi,µ].
Now we prove

(I)v0
i (t)≤ A[v0(t),w0(t)] and w0

i (t)≥ A[w0(t),v0(t)], i = 1,2, (3.6)

(II) If v0
i ≤ ηi ≤ µi ≤ w0

i then A[ηi,µ]≤ A[η ,µi], i = 1,2. (3.7)
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To prove (I), set A[v0(t),w0(t)] = v1
i (t) where v1

i (t) =
(v1

1(t),v
1
2(t)). Note that v1

1(t) and v1
2(t) are the unique solu-

tions of linear PBVP (3.2) and (3.3) respectively. The func-
tion v0

i (t) is a lower solution of the PBVP (2.1)− (2.2). Set
pi(t) = v0

i (t)− v1
i (t) with ηi = v0

i (t). We observe that

Dα pi(t) = Dα v0
i (t)−Dα v1

i (t),

≤ fi(t,v0
1(t),v

0
2(t))− fi(t,v0

1(t),v
0
2(t))

−Mi(v0
i (t)− v1

i (t)),

≤−Mi(v0
i (t)− v1

i (t)),

Dα pi(t)≤−Mi pi(t),

and boundary conditions

t1−α pi(t)|t=0 = t1−α v0
i (t)|t=0− t1−α v1

i (t)|t=0

= t1−α v0
i (t)|t=T − t1−α v1

i (t)|t=T

= t1−α pi(t)|t=T .

Using Lemma 2.2,we get pi(t)≤ 0 implies that v0
i (t)≤ v1

i (t)=
A[v0(t),w0(t)]. To prove that w0

i (t) ≥ A[w0(t),v0(t)]; we set
A[w0(t),v0(t)] = w1

i (t) where w1
i (t) = (w1

1(t),w
1
2(t)). Note

that w1
1(t) and w1

2(t)) are the unique solutions of linear PBVP
(3.2) and (3.3) respectively. The function w0

i (t) is an upper so-
lution of the PBVP (2.1)− (2.2). Define pi(t) = w0

i (t)−w1
i (t)

with ηi = w0
i (t). We observe that

Dα pi(t) = Dα w0
i (t)−Dα w1

i (t),

Dα pi(t)≥−Mi pi(t),

and boundary conditions

t1−α pi(t)|t=0 = t1−α w0
i (t)|t=0− t1−α w1

i (t)|t=0

= t1−α w0
i (t)|t=T − t1−α w1

i (t)|t=T

= t1−α pi(t)|t=T .

Using Lemma 2.2,we get pi(t)≥ 0 implies that

w0
i (t)≥ w1

i (t) = A[w0(t),v0(t)].

Now,we prove (II).The operator A is monotone.Let η̄ =(η1,η2)
and µ = (µ1,µ2) in [v0(t),w0(t)] be such that ηi ≤ µi. Sup-
pose that A[ηi,µ] = ui = (u1

i ,u
2
i ) and A[η ,µi] = vi = (v1

i ,v
2
i ).

Consider pi(t) = ui(t)− vi(t) and observe that

Dα pi(t) = Dα ui(t)−Dα vi(t)

= fi(t,η1,η2)− fi(t,µ1,µ2)+Mi(ηi−ui)

−Mi(µi− vi)

≤Mi(ηi−ui)−Mi(µi− vi)+Mi(µi−ηi)

≤−Mi(ui(t)− vi(t)),

Dα pi(t)≤−Mi pi(t),

and boundary conditions

t1−α pi(t)|t=0 = t1−α ui(t)|t=0− t1−α vi(t)|t=0

= t1−α ui|t=T − t1−α vi(t)|t=T

= t1−α pi(t)|t=T .

Applying Lemma 2.2,we get pi(t)≤ 0 implies that ui(t)≤
vi(t). Hence A[ηi,µ]≤ A[η ,µi] Thus the operator A possess
the monotone property on [v0(t),w0(t)]. Define the sequences
{vn

i } and {wn
i } by vn

i =A[vn−1
i ,wn−1

i ] and wn
i =A[wn−1

i ,vn−1
i ].

Using (3.6) and (3.7),we obtain

v0
i ≤ v1

i ≤ ...≤ vn
i ≤ ...≤wn

i ...≤w1
i ≤w0

i , i= 1,2. (3.8)

Let Pi = {vn
i : n = 1,2, ...} and Qi = {wn

i : n = 1,2, ...}. We
show that the sets Pi and Qi are relatively compact in
C1−α([0,T ])∩L1(0,T ). For any ηi ∈ S and by definition of
lower and upper solution along with one sided Lipschitz con-
dition,we have

Dα v0
i +Miv0

i ≤ fi(t,v0
1,v

0
2)+Miv0

i

≤ fi(t,η1,η2)+Miηi ≤
fi(t,w0

1,w
0
2)+Miw0

i ≤ Dα w0
i +Miw0

i .

Let Pi = {vn
i : n = 1,2, ...}, i = 1,2 and S ⊂ C1−α([0,T ])∩

L1(0,T ) are bounded sets.Furthermore,the set {σi(t,η1,η2)=
fi(t,η1,η2)+Miηi|ηi ∈ S} is also a bounded set.Hence there
exist constants Bi, i = 1,2 such that

||σi(t,vn
i )||= max

0≤t≤T
|t1−α

σi(t,vn
i )| (3.9)

≤ Bi⇐⇒ |σi(t,vn
i )| ≤ Bit1−α , t ∈ (0,T ]

(3.10)

On the other hand {vn
i (t)|n = 1,2, ...}, i = 1,2 satisfy

vn
i (t)=Γ(α)ui0e(−Mit)

α +
∫ t

0
e(−Mi(t−s))

α σi(vn−1
i )(s)ds (3.11)

where
e(−Mit)

α = tα−1Eα,α(−Mitα)

ui0 =
T 1−α

[1−Γ(α)]Eα,α (−MiT α )

∫ t
0 e(−Mi(t−s))

α σi(vn−1
i )(s)ds

From the condition (3.9),we have
|σi(t,η1,η2)| ≤ Bit1−α , t ∈ (0,T ],η1,η2 ∈ Pi

|ui0| ≤ BiT α

Γ(2α)[1−Γ(α)Eα,α (−MiT α )]

Without lose of generality,we assume that 0≤ t1 ≤ t2 ≤ 1 and
for ε > 0 there exist δ = δ (ε) when |t1− t2| < δ ,and since
Eα,α(t) ∈C[0,T ], we have

|Eα,α(−Mitα
1 )−Eα,α(−Mitα

2 )|<
ε

3Γ(α)max{|ui0|,Bi/Mi}
,

(t2− t1)α <
εΓ(2α)

6BiΓ(α)
(3.12)
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From above equations,we obtain

|t1−α

1 vn
i (t1)− t1−α

2 vn
i (t2)| (3.13)

= |Γ(α)ui0[t1−α

1 e(−Mit1)
α − t1−α

2 e(−Mit2)
α ]|+

[t1−α

1 e(−Mit1)
α ∗σ(vn−1

i )(t1)−

t1−α

2 e(−Mit1)
α ∗σi(vn−1

i )(t2)]

≤ Γ(α)|ui0||Eα,α(−Mitα
1 )−Eα,α(−Mitα

2 )|+
LΓ(α)

Mi
|Eα,α(−Mitα

1 )−Eα,α(−Mitα
2 )|+

2BiΓ(α)

Γ(2α)
(t2− t1)α

< ε. (3.14)

This implies that Pi is equi-continuous and by the Ascoli-
Arzela theorem, we conclude that Pi is relatively compact set
of C1−α([0,T ])∩L1(0,T ). Similarly,we can show that Qi is
relatively compact set of C1−α([0,T ])∩L1(0,T ).Therefore,the
sequences {vn

1,v
n
2} and {wn

1,w
n
2} converge uniformly to (v1,v2)

and (w1,w2) on [0,T ] respectively.We have point wise limits

{vn
1(t),v

n
2(t)}→ (v1,v2)and{wn

1(t),w
n
2(t)}→ (w1,w2)

as n→ ∞on(0,T ]. Moreover, by (3.8), the limit functions
satisfy the following monotone property

v0
1 ≤ v1

1 ≤ ...≤ vn
1 ≤ ...≤ v1 ≤ w1 ≤ ...≤ wn

1...≤ w1
1 ≤ w0

1

v0
2 ≤ v1

2 ≤ ...≤ vn
2 ≤ ...≤ v2 ≤ w2 ≤ ...≤ wn

2...≤ w1
2 ≤ w0

2

(3.15)

Now,we prove that (v1,v2) and (w1,w2) are solutions of
PBVP (2.1) - (2.2).We know

σ1(t,η1,η2) = f1(t,η1,η2)+M1η1

Clearly, the function σ1 is continuous and monotone non-
decreasing and monotone convergence of {vn

1(t)} to v1(t) as
n → ∞ on (0,T ] implies that σ1(vn

1)(t) converges to
σ1(v1)(t), t ∈ (0,T ]. Let n→ ∞ in (3.11) and apply the domi-
nated convergence theorem,we observe that v1(t) satisfies the
integral equation

v1(t)

= N1

∫ T

0
(T − s)α−1Eα,α

(
−M1(T − s)α

)
σ1(v1)(s)ds

+
∫ t

0
(t− s)α−1Eα,α

(
−M1(t− s)α

)
σ1(v1)(s)ds,

(3.16)

where N1 =
T 1−α Γ(α)tα−1Eα,α (−M1tα )

[1−Γ(α)]Eα,α (−M1T α ) . We conclude that v1(t)
is an integral representation of the solution to problem (3.2),
i.e.v1(t) is an integral representation of the solution to problem

(2.1)-(2.2). By the assumption of the function f1 and Lemma
2.1,v1(t) is the classical solution of the PBVP (2.1)-(2.2). This
proves that the lower sequence {vn

1(t)} converges to a solution
v1(t) of problem (2.1)-(2.2). Further,we know

σ2(t,η1,η2) = f2(t,η1,η2)+M2η2

Clearly, the function σ2 is continuous and monotone non-
decreasing and monotone convergence of {vn

2(t)} to v2(t) as
n→∞ on (0,T ], implies that σ2(vn

2)(t) converges to σ2(v2)(t), t ∈
(0,T ]. Let n→ ∞ in (3.11) and apply the dominated con-
vergence theorem,we observe that v2(t) satisfies the integral
equation

v2

= N2

∫ T

0
(T − s)α−1Eα,α

(
−M2(T − s)α

)
σ2(v2)ds

+
∫ t

0
(t− s)α−1Eα,α

(
−M2(t− s)α

)
σ2(v2)(s)ds,

(3.17)

where N2 =
T 1−α Γ(α)tα−1Eα,α (−M2tα )

[1−Γ(α)]Eα,α (−M2T α ) . We conclude that v2(t)
is an integral representation of the solution to problem (3.3),
i.e.v2(t) is an integral representation of the solution to problem
(2.1)-(2.2).By the assumption of the function f2 and lemma
2.1,v2(t) is the classical solution of the PBVP (2.1)-(2.2).This
proves that the lower sequence {vn

2(t)} converges to a solution
v2(t) of the problem (2.1)-(2.2). Similarly,we can prove that
upper sequence {wn

1,w
n
2} converge uniformly to a solution

(w1,w2) of periodic boundary value problems (2.1) - (2.2) and
satisfies the relation v1(t)≤w1(t) and v2(t)≤w2(t)t ∈ (0,T ].
It follows that relations (3.1) hold as well as (v1,v2) and
(w1,w2) are minimal and maximal solutions of the PBVP
(2.1)-(2.2) on the order interval S respectively.

Finally, if condition (2.9) holds, then vi(t) = wi(t), i = 1,2
is a unique solution of the PBVP (2.1)-(2.2). It is sufficient
to prove vi(t)≥ wi(t), t ∈ (0,T ], since we have vi(t)≤ wi(t).
We observe that the function ui(t) = vi(t)−wi(t) satisfies the
relations

Dα ui(t)+M1ui(t) =−[ fi(t,w1,w2)− fi(t,vi,v2)]

+M1(vi(t)−wi(t))≥ 0

t1−α ui(t)|t=0 = t1−α ui(t)|t=T , i = 1,2, t ∈ (0,T ]

Then Lemma 2.3 implies that ui(t) ≥ 0, t ∈ (0,T ], which
proves vi(t)≥wi(t), t ∈ (0,T ] and hence we obtain that vi(t)=
wi(t) is a unique solution of the PBVP (2.1)-(2.2). This com-
pletes the proof.

Corollary 3.2. Assume that

(i) v0 = (v0
1,v

0
2) and w0 = (w0

1,w
0
2) ∈C1−α([0,T ])∩L1(0,T )

are lower and upper solutions of the PBVP (2.1)−(2.2),
such that order relation (2.3) holds,

(ii) function fi(t,u1,u2) ∈ C([0,T )×R2,R) satisfies Lips-
chitz condition (2.6) ,
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(iii) functions f1 and f2 are quasimonotone nondecreasing.

Then the PBVP (2.1)− (2.2) has unique solution in the order
interval.

Proof. Observe that

−Ki(ui−u∗i )≤ fi(t,u1,u2)− fi(t,u∗1,u
∗
2) (3.18)

≤ Ki(ui−u∗i ), (3.19)

for v0
i ≤ u∗i ≤ ui ≤ w0

i , which follows from (2.6) i.e.Lipschitz
conditions (2.4) and (2.5) hold with Ki = Mi. Then the Theo-
rem 3.1 implies that the problem (2.1)-(2.2) has one and only
one solution in the ordered interval.
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