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Enumeration of disjoint Hamilton cycles in a divisor
Cayley graph
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Abstract
Hamilton cycles are cycles of largest length and triangles are cycles of smallest length in a graph. In this
paper an enumeration method of determining the number of disjoint Hamilton cycles in the Divisor Cayley graph
associated with the arithmetical function, namely the divisor function d(n),n≥ 1 is presented.
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1. Introduction
In 1980 Nathanson [11] introduced the concept of Congru-
ences in Number Theory into Graph Theory and thus paved
the way for the emergence of a new class of graphs called
Arithmetic Graphs. According to him an arithmetic graph is a
simple graph whose vertex set is V = {1,2, ...,n}, the set of
first n positive integers and two vertices x and y are adjacent
if and only if x+ y ≡ z (mod n) where z ∈ S, a pre-assigned
subset of V . Later many researchers [5, 12, 14] followed this
trend and studied arithmetical graphs associated with various
arithmetical functions.

There is another class of graphs, called Cayley graphs. A
Cayley graph is the graph whose vertex set V is the set of
elements of a finite group (X , ·) and two vertices x and y are
adjacent if and only if x−1y , or, y−1x are in some symmetric
subset S of X (a subset S of a group (X , ·) is called a symmetric

subset of X if s−1 is in S for all s ∈ S). This Cayley graph is

denoted by G(X ,S) and |S|- regular and contains
|X ||S|

2
edges

(see pp 15-16, [8] ).
The cycle structure of Cayley graphs and Unitary Cayley

graphs were studied by Berrizbeitia and Guidici [1, 2] and
Detzer and Guidici [6]. Recently Maheswari and Madhavi [8–
10] studied the enumeration methods for finding the number of
triangles and Hamilton cycles in arithmetic graphs associated
with the quadratic residues modulo a prime p and the Euler
totient function ϕ(n) , n≥ 1 an integer. In [4] Chalapathi et al.
gave a method of enumeration of triangles in the arithmetic
Cayley graph, namely the divisor Cayley graph associated
with the divisor function d(n), n≥ 1 an integer. The main aim
of this paper is to give an enumeration process for counting
the number of disjoint Hamilton cycles in the divisor Cayley
graph. In this study we have followed Bondy and Murty [3] for
graph theory and Apostol [13] for number theory terminology.

2. The Divisor Cayley Graph and its
Properties

Definition 2.1. Let n≥ 1 be an integer. Consider the group
(Zn,⊕), the group of residue classes modulo n with respect
to the addition modulo n. The set D∗ = {d,n−d : d divides
n and d 6= n} is a symmetric subset of the group (Zn,⊕),
which does not contain the identity element 0 of (Zn,⊕). The
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divisor Cayley graph G(Zn,D∗) is the Cayley graph asso-
ciated with the group (Zn,⊕) and its symmetric subset D∗.
That is the graph G(Zn,D∗) is the graph whose vertex set is
Zn = {0,1,2, ...,n−1} and the edge set is E = {(x,y) : either
x− y or y− x is in D∗}.

In [4] it is established that G(Zn,D∗) is |D∗|-regular with

size
n|D∗|

2
, connected and the degree of each vertex in G(Zn,D∗)

is odd (even) if and only if n is even(odd). Further, it is not
bipartite and Eulerian if and only if n is odd.

Lemma 2.2. The graph G(Zn,D∗) is Hamiltonian.

Proof. For 0 ≤ i ≤ n− 1, (i+ 1)− i = 1 and 1 ∈ D∗ since
1 divides n trivially. So i and i+ 1 are adjacent and thus
(0,1,2, ...,n−1,0) is a cycle of length n which is a Hamilton
cycle in G(Zn,D∗) so that G(Zn,D∗) is Hamiltonian.

Definition 2.3. The cycle (0,1,2, ...,n− 1,0) is called the
outer Hamilton cycle of the graph G(Zn,D∗).

Lemma 2.4. If n is a prime then the graph G(Zn,D∗) is the
outer Hamilton cycle.

Proof. Suppose that n is a prime. Then 1 is the only divisor
of n other than n so that D∗ = {1,n− 1}. Hence the graph
G(Zn,D∗) is 2-regular and the only edges in G(Zn,D∗) are
(i, i+1) for 0≤ i≤ n−1 so that G(Zn,D∗) is the outer Hamil-
ton cycle.

Lemma 2.5. Let n≥ 1 be an integer and d 6= n be a divisor
of n. Then G(Zn,D∗) contains exactly d disjoint cycles each
of length

n
d

.

Proof. Let d be a divisor of n and let k =
n
d

.For 1 ≤ i ≤ k,

(i + 1)d − id = d ∈ D∗ so that (i, i + 1) is an edge. Also
kd = (

n
d
)d = n = 0. So

C0 = (0,d,2d, ...,kd = 0)
is a cycle of length k in G(Zn,D∗). Similarly one can see
C1 = (1,d +1,2d +1, ...,kd +1 = 1),
C2 = (2,d +2,2d +2, ...,kd +2 = 2),
...,
Cd−1 = (d− 1,d + (d− 1),2d + (d− 1), ...,kd + (d− 1) =
d−1)
are also cycles of length k. Further no two of these cycles have
a vertex in common so that they are disjoint cycles. Moreover
the vertex set of C0∪C1∪C2∪ ...∪Cd−1 is equal to the vertex
set of G. Hence corresponding to each divisor d of n there are
d disjoint cycles, each of length k(=

n
d
) in G(Zn,D∗).

Remark 2.6. For any divisor d of n the d disjoint cycles
C0,C1,C2, ...,Cd−1 are referred to as the cycles corresponding
to the divisor d. These cycles play a crucial role in determin-
ing the edge disjoint Hamilton cycles in the divisor Cayley
graph G(Zn,D∗).

3. Enumeration of disjoint Hamilton
cycles in a Divisor Cayley graph

Definition 3.1. Hamilton cycles H1 and H2 are said to be
edge disjoint if the edge sets E(H1) and (H2) are disjoint.

Theorem 3.2. If n is even then the graph G(Zn,D∗) cannot
be decomposed into edge disjoint Hamilton cycles.

Proof. Let n ≥ 1 be an even integer. Then by part (a) of
Lemma 2.4 of [4] the degree q of each vertex is odd and the
number of edges in G(Zn,D∗) is

nq
2

. If G(Zn,D∗) is decom-
posed into the union of k disjoint Hamilton cycles (since each
Hamilton cycle contains n edges) then the number of edges
in G(Zn,D∗) is nk so that nk =

nq
2

, or, k = q
2 . This is not

possible since q is odd. So G(Zn,D∗) cannot be decomposed
into edge disjoint Hamilton cycles.

Theorem 3.3. The graph G(Zn,D∗) can be decomposed into
edge disjoint Hamilton cycles if, and only if, n is odd.

Proof. First suppose that the graph G(Zn,D∗) is a union of k
number of edge disjoint Hamilton cycles, say H1,H2, ...,Hk.
Since each Hi, 1≤ i≤ k contains n edges the number of edges
in G(Zn,D∗) is kn. If G(Zn,D∗) is r- regular then the number
of edges in G(Zn,D∗) is also equal to

rn
2

so that
nr
2

= nk.
This gives r = 2k so that r is even. That is, each vertex of
G(Zn,D∗) is of even degree so that n is odd.

Conversely assume that n is odd. Adopting the following
procedure all the edge disjoint Hamilton cycles of G(Zn,D∗)
can be found. Let d1 > d2 > ...> dm be divisors of n other than
1 and n. Then di’s are also odd. Choose the outer Hamilton
cycle H0 = (0,1,2, ...,n− 1,0) and consider the d disjoint
cycles C0,C1,C2, ...,Cd−1 corresponding to the divisor d = d1.
Each of the Ci’ s is edge disjoint with H0. Let the spanning
subgraph C0 =C0∪C1∪C2∪ ...∪Cd−1 .

Using the following procedure in d stages in which a pair
of edges are deleted in each stage from H0 and adjoined to
the spanning sub graph C0 and on the other hand a pair of
edges are deleted from C0 and adjoined to H0 and H0 is
transformed into a Hamilton cycle H1 while the cycles in C0
are merged into a Hamilton cycle C1. More specifically at the
ith stage
(i) the edges (i− 1,1) , (d +(i− 1),d + i) are deleted from
H012...i−1 and these are adjoined to C012...i−1 and the edges
(i−1,d+(i−1)) and (i,d+ i) are deleted from C012...i−1 and
these adjoined to H012...i−1 to get H012...i and C012...i if i is odd
and
(ii) the edges (i−1, i), ((i−1)+d−1, i+d−1) are deleted from
H012...i−1 and these are adjoined to C012...i−1 and the edges
(i− 1,(i− 1)+ d−1), (i, i+ d−1) are deleted from C012...i−1
and these are adjoined to H012...i−1 to get H012...i and C012...i
if i is even. Here d−1 is the inverse of d in (Zn,⊕) and d−1 =

(k−1)d where k =
n
d

.
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We repeat this process by taking the divisor d2 in place of
d1 and the Hamilton cycle C1 in place of the outer Hamilton
cycle H0 and the union of disjoint cycles corresponding to
d2 in place of C0 and obtain a Hamilton cycle H2 = H0123...d2
from C2 and a Hamilton cycle C2 =C0123...d2 by merging the
d2 disjoint cycles corresponding to the divisor d2. Applying
this procedure for all the divisors of n other than 1 and n
we obtain the required disjoint Hamilton cycles of G(Zn,D∗).
This procedure is illustrated for a divisor d in step 1.
Step 1: Choose the outer Hamilton cycle H0 =(0,1,2, ...,n−
1,0) and the divisor d(= d1) of n. Let us take its complement
H C

0 of H0 and the spanning sub graph C0 that contains all
disjoint cycles C0,C1,C2, ...,Cd−1 generated by the divisor d
in H C

0 . It is easy to observe that the vertices 0,1,2, ...,(d−1)
lie in distinct cycles that are generated by d.

Figure 1. Graph H0.

Figure 2. Graph C0.

Using the procedure outlined above in d stages we construct a
pair of Hamilton cycles, one from H0 and the other by merg-
ing the cycles C0,C1,C2, ...,Cd−1 in the following way.
Stage 1: Delete the edges (0,1),(d,1+d) from H0 and ad-
join these to C0 and delete the edges (0,d),(1,1+ d) from

C0 and adjoin to H0. By this H0 transforms into H01 =
(0,d,d − 1,d − 2, ...,3,2,1,d + 1,d + 2, ...,(k− 1)d + (d −
1),1,0) which is a Hamilton cycle and C0 transforms into
C01, which is a union of the disjoint cycles C1,C2, ...,Cd−1,
where C1 =(0,(k−1)d,(k−2)d, ...,3d,2d,d,d+1,2d+1, ...,
(k−1)d +1,1,0), which is the cycle got by merging the first
two cycles C0 and C1 in C0, by the construction it is clear that
H01 and C01 are disjoint.

Figure 3. Graph H01.

Figure 4. Graph C01.

Stage 2: Delete the edges (1,2) and (1+(k− 1)d,2+(k−
1)d) from H01 and adjoin these edges to C01 and delete the
edges (1,1+ (k− 1)d) and (2,2+ (k− 1)d) from and C01
adjoin these edges to H01. By this H01 transforms into H012
which is the disjoint union of the two cycles (0,d,d−1, ...,2,
(k−1)d +2,(k−1)d +3, ...,(k−1)d +d−1,0) and (1,d +
1,d + 2, ...,(k− 1)d,(k− 1)d + 1,1) while C01 transforms
into C012 which is the disjoint union of C2,C3,C4, ...,Cd−1,
where C2 = (0,(k−1)d,(k−1)d−1, ...,3d,2d,d,d+1,2d+
1, ...,(k− 1)d + 1,(k− 1)d + 2, ...,2d + 2,d + 2,2,1,0). By
the construction it is clear that H012 and C012 are disjoint.

Observe that starting with Hamilton cycle H0 this process
after ith stage transforms the Hamilton cycle H0 into
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Figure 5. Graph H012.

Figure 6. Graph C012.

(i) a Hamilton cycle H0123...i if i is odd and
(ii) a subgraph H0123...i which is a union of two disjoint cycles
if i is even.

Repeating this process successively d times the outer
Hamilton cycle H0 transforms into the Hamilton cycle (since
d is odd)
H012...d =(0,d,2d, ...,3d,3d+1, ...,4d,4d+1, ...,(k−1)d,(k
−1)d + 1,1,d + 1,d + 2,2,(k− 1)d + 2,(k− 1)d + 3,3,d +
3,d+4,4,(k−1)d+5,5,d+5, ...,2d−2,2d−1,d−1,(k−
1)d +(d−1),0)
and the subgraph C0 is transformed into the Hamilton cycle
(which is got by merging the cycles C0,C1, ...,Cd−1 )
C012...d = (0,(k−1)d, ...,3d,2d,2d−1,3d−1,(k−1)d−1,
kd−1,(k−1)d+(d−2), ...,(k−1)d+5, ...,d+4,2d+4, ...,
(k−1)d+4,(k−1)d+3, ...,2d+3,d+3,d+2,2d+2, ...,(k
−1)d + 2,(k− 1)d + 1, ...,3d + 1,2d + 1,d + 1,d,d− 1,d−
2, ...,5,4,3,2,1,0).

Let us take H012...d = H1 and C012...d = C1. The construc-
tion of the Hamilton cycles H1 and C1 shows that they are
edge disjoint. The following edges of H1 are transmitted to
C1.
(i) (0,1),(1,2),(2,3), ...,(d1−1,d1)

Figure 7. Graph H012...d = H1.

Figure 8. Graph C012...d = C1.

(ii) (d1,d1 + 1),(d1 + 2,d1 + 3), ...,(2d1− 1,2d1) (since d +
d−1 = 2d−1 and d +d = 2d)
(iii) (n− d1 + 1,n− d1 + 2),(n− d1 + 3,n− d1 + 4), ...,(n−
2,n−1) (since (n−d)+d−2 = n−2 and (n−d)+d−1 =
n−1).
Step 2: Let us take C1 in place of H0 and the spanning sub-
graph consisting of all cycles generated by the divisor d2 in
the complement C c

1 of C1. Since d1 and d2 are also odd, d2 ≤
d1−2. Hence the set as edges {(0,1), ...,(d2−1,d2)} belong
to the set of edges given in (i). Moreover, d1,d1 + 2,2d1−
1;n− d1 + 1,n− d1 + 3, ... are all odd and d2 < d1 so that
the set of all edges {(d2,d2 + 1),(d2 + 2,d2 + 3), ...,(2d2−
1,2d2),(n− d2 + 1,n− d2 + 2), ...,(n− 2,n− 1)} belong to
the set of all edges given in (ii) and (iii).

Repeating the procedure given in step1 with d2 in place
of d1 one obtains the Hamilton cycles H012...d2 = H2 and
C012...d2 = C2. From the construction of H1,H2 and C2 it is
clear that they are mutually edge disjoint.

Repeating the same procedure as in the step 1 and step
2 for the divisors d3,d4, ...,dm, one gets edge disjoint Hamil-
ton cycles H3,H4, ...,Hm and Hm+1 = Cm which are edge
disjoint with H1 and H2.
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Further each Hi, 1 ≤ i ≤ m+ 1 being Hamiltonian con-
tains exactly n edges. So the number of edges in H1∪H2∪
...∪Hm+1 is equal to n(m+1).

Also d1,d2, ...,dm,1 are the only divisors of n other than
n.So
D∗ = {d1,d2, ...,dm,1,n−d1,n−d2, ...,n−dm,n−1}
and |D∗|= 2(m+1). Since G(Zn,D∗) is |D∗|- regular and the

number of edges of G(Zn,D∗) is
n|D∗|

2
, or, n(m+1), which

is equal to the number of edges in H1 ∪H2 ∪ ...∪Hm+1.
Thus G(Zn,D∗) is a disjoint union of the Hamilton cycles
H1,H2, ...,Hm+1.

The following corollary is immediate from the Theorem
3.3.

Corollary 3.4. If n≥ 1 is an odd integer then G(Zn,D∗) has
m+ 1 disjoint Hamilton cycles, where m is the number of
divisors of n other than 1 and n.

Corollary 3.5. If n≥ 1 is an odd integer then the number of
edge disjoint Hamilton cycles of G(Zn,D∗) is d(n)−1, where
d(n) is the number divisors of n.

Proof. For any odd positive integer n≥ 1, the divisor function
d(n) denotes the number of divisors including 1 and n. By
the Corollary 3.4 the number of disjoint Hamilton cycles in
G(Zn,D∗) is m+ 1 where m is the number of divisors of n
other than 1 and n. So m= d(n)−2 and the number of disjoint
Hamilton cycles of G(Zn,D∗) is d(n)−1.

Example 3.6. For the divisor Cayley graph the G(Z15,D∗) let
us enumerate the edge disjoint Hamilton cycles. The divisors
of 15 other than 15 are 1,3 and 5. So D = {1,3,5} and D∗ =
{1,3,5,10,12,14}. The graph of G(Z15,D∗) is as follows.

Figure 9. The Graph G(Z15,D∗).

Step 1: For the divisor d = 5, the 5 disjoint cycles of length
3 are (0,5,10,0), (1,6,11,1) , (2,7,12,2) , (3,8,13,3) and
(4,9,14,4).

The outer Hamilton cycle H0 and the spanning sub graph
C0 which is the union of the above 5 cycles are as follows.
(i) Deleting the edges (0,1),(5,6) from H0 and adjoining
these to C0 and deleting the edges (0,5),(1,6) from C0 and

Figure 10. The Graphs of H0 and C0 respectively.

adjoining these to H0, H0 transforms into the Hamilton cy-
cle H01 = (1,2,3,4,5,0,14,13,12,11,10,9,8,7,6,1) and C0
into the subgraph C01 = (0,1,11,6,5,10,0)∪ (3,13,8,3)∪
(2,7,12,2)∪ (4,9,14,4).

Figure 11. The Graphs of H01 and C01 respectively.

(ii) Deleting the edges (1,2),(11,12) from H01 and adjoin-
ing them to C01 and deleting the edges (1,11),(2,12) from
C01 and adjoining them to H01, H01 transforms into H012 =
(1,11,10,9,8,7,1)∪ (2,3,4,5,0,14,13,12,2) and C01 trans-
forms into C012 = (0,1,2,7,12,11,6,5,10,0)∪ (3,8,13,3)∪
(4,9,14,4).

Figure 12. The Graphs of H012 and C012 respectively.

(iii) Deleting the edges (2,3),(7,8) from H012 and adjoining
to C012 and the Hamilton cycle deleting the edges (2,7),(3,8)
from C012 and adjoining them to H012, H012 transforms into
H0123 = (0,5,4,3,8,9,10,11,1,6,7,2,12,13,14,0) and the
subgraph C0123 = (0,1,2,3,13,8,7,12,11,6,5,10,0)∪ (4,9,
14,4).
(iv) Deleting the edges (3,4),(13,14) from H0123 and adjoin-
ing them to C0123 and deleting the edges (3,13),(4,14) from
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Figure 13. The Graphs of H0123 and C0123 respectively.

C0123 and adjoining them to H0123, H0123 transforms into
H01234 =(0,5,4,14,0)∪(1,6,7,2,12,13,3,8,9,10,11,1) and
the subgraph C0123 into C01234 =(0,1,2,3,4,9,14,13,8,7,12,
11,6,5,10,0).

Figure 14. The Graphs of H01234 and C01234 respectively.

(v) Deleting the edges (4,5),(9,10) from H01234 and adjoin-
ing them to C01234 and deleting the edges (4,9),(5,10) from
C01234 and adjoining them to H01234, H01234 transforms into
the Hamilton cycle H012345 = (0,5,10,11,1,6,7,2,12,13,
3,8,9,4,14,0) and the subgraph C01234 into C012345 =(0,1,2,
3,4,5,6,11,12,7,8,13,9,10,0). We take H012345 = H1 and
C012345 = C1.

Figure 15. The Hamilton cycles H1 and C1 respectively.

Step 2:Let us take the divisor 3 of 15 in place of the divisor 5
and the Hamilton cycle C1 in place of the outer Hamilton cycle
H0. Consider the subgraph C

′
0 consisting of the disjoint cy-

cles generated by the divisor 5 in the compliment C c
1 . That is

C
′
0 = (0,3,6,9,12,0) ∪ (1,4,7,10,13,1) ∪ (2,5,8,11,14,2)

corresponding to the divisor 3 of 15 are as follows.
Let us apply the procedure enumerated in step 1 to C1 and C

′
0

in the following three stages.
(i) Deleting the edges (0,1),(3,4) from C1 and adjoining to

Figure 16. The Graphs of C1 and C
′
0 respectively.

C
′
0 and deleting the edges (0,3),(1,4) from C

′
0 and adjoining

these to C1,C1 transforms into H
′
01 =(0,3,2,1,4,5,6,11,12,7,

8,13,14,9,0) and C
′
0 into the subgraph C

′
01 =(0,1,13,10,7,4

,3,6,9,12,0)∪ (2,5,8,11,14,2).
(ii) Deleting the edges (1,2),(13,14) from H

′
01 and adjoin-

ing them to C
′
01 and deleting the edges (1,13),(2,14) from

C
′
01 and adjoining them to H

′
01, H

′
01 transform into H

′
012 =

(0,3,2,14,9,10,0)∪(1,4,5,6,11,12,7,8,13,1) and C
′
01 into

C1
012 = (0,1,2,5,8,11,14,13,10,7,4,3,6,9,12,0).

(iii) Deleting the edges (2,3),(5,6) from H
′
012 and adjoining

them to C
′
012 and deleting the edges (2,5),(3,6) from C

′
012 and

adjoining them to H
′
012, H

′
012 transforms into the Hamilton cy-

cle H
′
0123 = (0,3,6,11,12,7,8,13,1,14,5,2,14,9,10,0) and

C
′
0123 into the Hamilton cycle C

′
0123 =(0,1,2,3,4,7,10,13,14,

11,8,5,6,9,12,0). We denote H
′
0123 = H2 and C

′
0123 = H3.

Figure 17. The Hamilton cycles H2 and H3 respectively.

Thus the three edge disjoint Hamilton cycles of the divisor
Caley graph G(Z15,D∗) are H1, H2 and H3 given in Figure
18.

4. Conclusion
In [4] Madhavi et al. gave a method of enumeration of tri-
angles in a divisor Cayley graph and in [7] they could suc-
cessfully extend this enumeration process to general Cayley
graphs. The authors are working to extend the process of
enumeration of disjoint Hamilton cycles in divisor Cayley
graphs presented in this paper to general Hamiltonian Cayley
graphs and some progress has been obtained in this direction.
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Figure 18. The Hamilton cycles H1, H2 and H3
respectively.
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