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Qualitative behaviour of solutions of hybrid
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Abstract
In this paper, we present existence and qualitative behaviour of solution of hybrid fractional integral equation with
linear perturbation of second kind by applying measure of noncompactness in Banach space. We established
our result in the Banach space of real-valued functions defined, continuous and bounded in the right hand real
axis.
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1. Introduction
Measure of noncompactness and fixed point theorems are the
most valuable and effective implements in the framework of
nonlinear analysis , which acts as principle role for solvabil-
ity of linear and nonlinear integral equations. Recently, the
theory of such integral equations is developed effectively and
emerge in the fields of mathematical, analysis, engineering,
mathematical physics and nonlinear functional analysis (e.g.,
1, 3-5,9, 10, 15-17, 19).

Nonlinear integral equation with bounded intervals has
been studied extensively in the literature as regard various
aspects of the solutions. This includes existence, uniqueness,
stability and extremality of solutions. But the study of non-
linear integral equation with unbounded intervals is relatively
new and exploited for the new characteristics of attractivity

and asymptotic attractivity of solutions. There are two ap-
proaches for dealing with theses characteristics of solutions,
namely, classical fxed point theorems involving the hypothe-
ses from analysis and topology and the fixed point theorems
involving the use of measure of noncompactness. Each one of
these approaches has some advantage and disadvantages over
the others was discussed in Dhage [12]. In 2005, Apell [2]
discussed some measure of noncompactness in the application
of nonlinear integral equations.

Let J = [t0, t0 + a] in R be a closed and bounded inter-
val where t0 ∈ R and a ∈ R with a > 0 and a given a real
number 0 < q < 1. Consider the hybrid fractional integral
equation(HFIE) with linear perturbation of second type

a(t) = h(t)+ f (t,a(t))+
1

Γq

∫ t

t0
(t−s)q−1g(t,a(s))ds (1.1)

where t,s ∈ J,h : J → R, f : J×R→ R is continuous and
g : J×R→ R is locally Holder continuous.

In this paper,we are going to discuss two qualitative be-
havior such as global attractivity and positivity of hybrid
fractional integral equation (1.1) with linear perturbation of
second type using measure of noncompactness under certain
conditions. We established our result in the Banach space of
real-valued functions defined, continuous and bounded on the
right hand real half axis R+.
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2. Basic Definitions and Results
This section is devoted to conflict to collect some definitions
and auxialiary results which will be needed in the further
considerations of this paper. At the beginning we present some
basic facts concerning the measure of noncompactness. We
accept the following definitions of the concept of a measure
of noncompactness given in Dhage [7].

Let X be a Banach space, P(X) a class of subset of E
with property p. Pcl(X),Pbd(X),Pcl,bd(X),Prcp(X) denote the
class of closed, bounded, closed and bounded and relatively
compact subsets of X respectively.

A function dH : P(X)×P(X)→ R+ defined by

dH(A,B) = max{sup
a∈A

D(a,B),sup
b∈B

D(b,A)} (2.1)

satisfies all the conditions of a metric on P(X) and is called
Hausdorff Pompeiu metric on X , where D(a,B) = inf{‖a−
b‖ : b ∈ B}. It is clear that the space (Pcl(X),dH) is complete
metric space.

Definition 2.1. A sequence {Xn} of non-empty sets in Pp(X)
is said to be converge to a set X, called the limiting set if
dH(Xn→ 0) as n→ ∞. a mapping µ : Pp(X)→ R+ is called
continuous if for any sequence {Xn} in Pp(X) we have

dH(Xn,X)→ 0⇒| µ(Xn)−µ(X) |→ 0 as n→ ∞

Definition 2.2. A mapping µ : Pp(X)→R+ is called if X1,X2 ∈
Pp(X) are two sets with A ⊆ B, then µ(X1) ≤ µ(X2), where
⊆ is a order relation by inclusion in Pp(X).

Now we define the measure of noncompactness for a
bounded subset of the Banach space X .

Definition 2.3. Let X1 ⊂ X. A function µ : Pbd(X)→ R+ is
called a measure of noncompactness, if it satisfies:

1. φ 6= µ−1(0)⊂ Prcp(X),

2. µ(X1) = µ(X1), where X1 is closure of X1,

3. µ(X1) = µ(Conv(X1)), where Conv(X1) is convex hull
of X1,

4. µ is nondecreasing, and

5. if {Xn} is a decreasing sequence of sets in Pbd(X)
such that limn→∞ µ(Xn) = 0, then the limiting set X∞ =
limn→∞ = ∩∞

n=0Xn is nonempty.

Definition 2.4. The family kerµ is said to be the kernel of
measure of noncompactness where

kerµ = {X1 ∈ Pbd(X) | µ(X1) = 0} ⊂ Prcp(X).

Definition 2.5. A measure µ is complete or full if the kernel
kerµ of µ consists of all possible relatively compact subsets
of X.

The following definition appear in Dhage[12].

Definition 2.6. A mapping K : X → X is called D − set −
Lipschitz if there exists a continuous nondecreasing function
φ : R+ → R+ such that µ(K(X1)) ≤ φ(µ(X1)) for all X1 ∈
Pbd(X) with K(X1) ∈ Pbd(X), where φ(0) = 0. Sometimes we
call the function φ to be a D − f unction of K on X. In the
special case, when φ(r) = kr,k > 0, K is called a k− set−
Lipschitz mapping and if k < 1, then K is called a k− set−
contraction on X. If φ(r) < r for r > 0, then K is called a
nonlinear D− set− contraction on X.

Theorem 2.7. ([14]) Let C be a non-empty, closed, convex
and bounded subset of a Banach space X and let K : C→C
be a continuous and nonlinear D − set− contraction. Then
K has a fixed point.

Remark 2.8. Let us write Fix(K) by the set all fixed points
of the operator K which belongs to C. It can be easily shown
that the Fix(K) existing in Theorem 2.7 belongs to family
kerµ . In fact if Fix(K) /∈ kerµ , then µ(Fix(K)) > 0 and
K(Fix(K)) = Fix(K). From nonlinear D− set− contraction
it follows that µ(K(Fix(K)))≤ φ(µ(Fix(K))) which is a con-
tradiction since φ(r)< r for r > 0. Hence Fix(K) ∈ ker(µ).

Let the Banach space BC(R+,R) be consisting of all real
functions a = a(t) defined, continuous and bounded on R+.
This space is equipped with the standard supremum norm

‖a‖= sup{| a(t) |: t ∈ R+}

We will use the Hausdorff or ball measure of noncompactness
in BC(R+,R). A formula for Hausdorff measure of noncom-
pactness useful in application is defined as follows. Let us fix
a nonempty and bounded subset X1 of the space BC(R+,R)
and a positive number T . For x ∈ X1 and ε ≥ 0 denote by
ωT (a,ε) the modulus of continuity of the function a on the
closed and bounded interval [0,T ] defined by

ω
T (a,ε) = sup{| a(t)−a(s) |: t,s ∈ [0,T ], | t− s |≤ ε}

Next, let us

ω
T (X1,ε) = sup{ ω

T (a,ε) : a ∈ X1},

ω
T
0 (X1) = lim

ε→0
ω

T (X1,ε).

It is known that ωT
0 is a measure of noncompactness in the

Banach space C([0,T ],R) of real valued and continuous func-
tions defined on a closed and bounded interval [0,T ] in R
which is equivalent to Hausdorff or ball measure

χ(X1) =
1
2

ω
T
0 (X1)

for any bounded subset X1 of C([0,T ],R). We define

ω0(X1) = lim
T→∞

ω
T
0 (X1).

For a fixed number t ∈ R+ let us write

X1(t) = {a(t) : a ∈ X1},
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‖ X1(t) ‖= sup{a(t) : a ∈ X1},
and

‖ X1(t)− c ‖= sup{a(t)− c : x ∈ X1}.
Let the functions µ ′s be defined on the family Pcl,bd(X1) by
the formulas

µa(X1) = max{ω0(X1), limsup
t→∞

diamX1(t)}, (2.2)

µb(X1) = max{ω0(X1), limsup
t→∞

‖ X1(t) ‖}, (2.3)

µc(X1) = max{ω0(X1), limsup
t→∞

‖ X1(t)− c ‖}. (2.4)

Let T > 0 be fixed. Then for any a ∈ BC(R+,R) define

δT (a) = sup{
∣∣ | a(t) | −a(t)

∣∣ : a ∈ X1},

δT (X1) = sup{δT (a) : a ∈ X1}
δ (X1) = lim

T→∞
δT (X1)

Define functions µad ,µbd ,µcd : Pbd(X)→ R+ by

µad(X1) = max{µa(X1),δ (X1)}, (2.5)

µbd(X1) = max{µb(X1),δ (X1)} (2.6)

µcd(X1) = max{µc(X1),δ (X1)} (2.7)

for all X1 ∈ Pcl,bd(X).

Remark 2.9. It is shown as in Banas and Goebel [7] that the
functions µa,µb,µc,µad , µbd and µcd are measure of noncom-
pactness in the space BC(R+,R). The kernels kerµa,kerµb
and kerµc of the measures µa,µb and µc consists of nonempty
and bounded subsets X of BC(R+,R) such that functions from
X1 are locally equicontinuous on R+ and the thickness of bun-
dle formed by functions from X1 tends to zero at infinity. The
functions from kerµc come closer along a line y(t) = c and
the functions from kerµb come closer to line y(t) = c as t
increases to ∞ through R+. A similar situation is true for
the kernels kerµad ,kerµbd and kerµcd . Moreover, these mea-
sure µad ,µbd and µcd characterize the ultimate positivity of
the functions belonging to the kernels of kerµad ,kerµbd and
kerµcd .

The above property of kerµa,kerµb,kerµc and kerµad ,
kerµbd ,kerµcd permits us to characterize solutions of the in-
tegral equations considered in the sequel. In order to intro-
duce further concepts used in this paper, let us assume that
X = BC(R+,R) and Ω be a subset of X . Let K : X → X be an
operator and consider the following operator equation in X ,

Ka(t) = a(t) (2.8)

for all t ∈ R+. We give different characterizations of the solu-
tions for the the operator equation (2.8) on R+. The following
definitions appear in Dhage[13].

Definition 2.10. We say that solutions of the equation (2.8)
are locally attractive if there exists a closed ball Br(a0) in
the space BC(R+,R) for some a0 ∈ BC(R+,R) such that
arbitrary solutions a = a(t) and b = b(t) of the equation(2.8)
belonging to Br(a0)∩Ω we have that

lim
t→∞

(a(t)−b(t)) = 0. (2.9)

In this case when the limit(2.9) is uniform with respect
to the set Br(a0)∩Ω, i.e., when for each ε > 0 there exists
T > 0 such that

| a(t)−b(t) |≤ ε (2.10)

for all a,b∈Br(a0)∩Ω being solution of (2.1) and for t ≥ T,
we will say that solutions of equation(2.8) are uniformally
locally attractive on R+.

Definition 2.11. The solution a = a(t) of equation(2.8) is
said to be globally attractive if (2.9) holds for each solution
b = b(t) of (2.8) on ω . In other words, we may say that the
solutions of the equation (2.9) are globally attractive if for
arbitrary solutions a(t) and b(t) of (2.8) on Ω, the condition
(2.9) is satisfied. In the case when the condition (2.9) is
satisfied uniformly with respect to the set Ω, i.e., if for every
ε > 0 there exists T > 0 such that the inequality(2.10) is
satisfied for all a,b ∈ Ω being the solutions of (2.8) and for
t ≥ T , we will say that solutions of the equation(2.8) are
uniformly globally attractive on R+.

Definition 2.12. A line b(t) = c, where c a real number, is
called an attractor for a solution a ∈ BC(R+,R) to the equa-
tion(2.8) if limt→∞[a(t)− c] = 0 and the solution a to the
equation (2.8) is also called asymptotic to the line b(t) = c
and the line is an asymptote for the solution a on R+.

The following definitions appear in Dhage[12].

Definition 2.13. The solutions of equations (2.8) are said
to be globally asymptotic attractive if for any two solutions
a = a(t) and b = b(t) of the equation (2.8), the condition (2.9)
is satisfied and there is a line which is a common attractor to
them on R+. When the condition (2.9) is satisfied uniformly
, i.e., if for every ε > 0 there exists T > 0 such that the in-
equality (2.10) is satisfied for t ≥ T and for all a,b being
the solution of (2.8) and having a line as common attractor,
we will say that solutions of the equation (2.8) are uniformly
globally asymptotically attractive on R+.

Remark 2.14. The notion of global attractivity of solutions
are introduced in Hu and Yan [17] and concept of global and
local asymptotic attractivity have been presented in Dhage[13]
while concept of uniform global and local attractivity were
introduced in Banas and Rzepka [6] and concept of global
asymptotic attractivity of solutions are presented in Dhage[12]
and local attractivity of a nonlinear quadratic fractional inte-
gral equation have been presented in [11].
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Definition 2.15. A solution a of the equation (2.8) is called
locally ultimately positive if there exists a closed ball Br(a0)
in BC(R+,R) for some a0 ∈ BC(R+,R) such that a∈Br(a0)
and

lim
t→∞

[| a(t) | −a(t)] = 0. (2.11)

When the limit (2.11) is uniform with respect to the solution
set of the operator equation (2.8),i.e., when for each ε > 0
there exist T > 0 such that

|| a(t) || − | a(t) |≤ ε (2.12)

for all a being solutions of (2.8) and for t ≥ T ,we will say that
solutions of equation (2.8) are uniformly locally ultimately
positive on R+.

Definition 2.16. A solution a ∈ C(R+,R) of the equation
(2.8) is called globally ultimate positive if (2.11) is satisfied.
When the limit (2.11) is uniform with respect to the solution
set of the operator equation (2.8) in C(R+,R) , i.e., when
for each ε > 0 there exists T > 0 such that (2.12) is satisfied
for all x being solutions of (2.8) and for t ≥ T , we will say
that solutions of equation 2.8 are uniformly globally ultimate
positive on R+.

Remark 2.17. The global attractivity and global asymptotic
attractivity implies the local attractivity and local asymptotic
attractivity, respectively, to the solutions for the operator equa-
tion (2.8) on R+. Similarly, global ultimate positivity implies
local ultimate positivity to the solutions for the operator equa-
tion (2.8) on unbounded intervals. The converse of the above
statements may not be true.

3. Attractivity and Positivity of Solutions

By a solution of FIE(1.1), we mean a function a∈C(J,R) that
satisfies FIE(1.1) where C(J,R) is the space of continuous
real valued functions on J. Let FIE(1.1) satisfies the following
assumptions:

(K0) The function h : J→ R is continuous.
(K1) The function f : J×R→ R is continuous and there

is bounded function l : J → R with bound L and a positive
constant M such that

| f (t,a1)− f (t,a2) |≤
l(t) | a1−a2 |
M+ | a1−a2 |

for t ∈ J and for all a1,a2 ∈ R. Moreover assume that L≤M.
(K2) The function t 7→ f (t,0) is bounded on J with

F0 = sup{| f (t,0) |: t ∈ J}.

(K3) The function (t,s) 7→ 1
Γq (t− s)q−1 is continuous and

there is a positive real number N such that∣∣∣∣ 1
Γq

(t− s)q−1
∣∣∣∣≤ N

(K4) The function g : J×R→ R is continuous such that
there is a continuous map B : J× J such that

| g(t,a) |≤ B(t)

for t,s ∈ J. Moreover, we assume that

lim
t→∞

∫ t

0
B(s)ds = 0.

Theorem 3.1. Under the assumptions (K0)- (K4) , the FIE(1.1)
for t0 = 0 has atleast one solution in the space C(J,R). More-
over solution of FIE(1.1) are globally uniformly attractive on
J.

Let the operator K be defined on the space C(J,R) such
that

Ka(t)= h(t)+ f (t,a(t))+
1

Γq

∫ t

0
(t−s)q−1g(t,a(s))ds (3.1)

By assumptions, the function Ka(t) is continuous for any
function of a ∈C(J,R). For arbitrarily fixed t ∈ J,∣∣Ka(t)

∣∣ =

∣∣∣∣h(t)+ f (t,a(t))+
1

Γq

∫ t

0
(t− s)q−1g(t,a(s))ds

∣∣∣∣
≤ |h(t)|+

∣∣ f (t,a(t))− f (t,0)
∣∣+ ∣∣ f (t,0)∣∣

+
1

Γq

∫ t

0

∣∣(t− s)q−1∣∣∣∣g(t,a(s))∣∣ds

≤ ||h||+ L|a(t)−0|
M+ |a(t)−0|

+
∣∣ f (t,0)∣∣+N

∫ t

0
B(s)ds

≤ ||h||+
L
∣∣∣∣x∣∣∣∣

M+
∣∣∣∣x∣∣∣∣ +F0 +Nv(t)

≤ ||h||+
L
∣∣∣∣x∣∣∣∣

M+
∣∣∣∣x∣∣∣∣ +F0 +Nv(t)

≤ ||h||+L+F0 +Nv(t)∣∣∣∣K(x)
∣∣∣∣ ≤ ||h||+L+F0 +NV (3.2)

for all x ∈C(J,R). This means that the operator K transforms
the space C(J,R) into itself. From (3.2), we obtain the op-
erator K transforms continuously the space C(J,R) into the
closed ball Br(0), where r = ||h||+L+F0 +NV . Therefore
the existence of the solution for FIE(1.1) is global in nature.
We will consider the operator K : Br(0)→ Br(0). Now we
will show that the operator K is continuous on ball Br(0). Let
ε > 0 be arbitrary and take a,b∈ Br(0) such that

∣∣∣∣a−b
∣∣∣∣≤ ε ,

then∣∣(Ka)(t)− (Kb)(t)
∣∣ ≤ ∣∣ f (t,a(t))− f (t,b(t))

∣∣∫ t

0

∣∣ 1
Γq

(t,s)q−1∣∣∣∣g(t,a(s))−g(t,b(s))
∣∣ds

≤ L|a(t)−b(t)|
M+ |a(t)−b(t)|

+
∫ t

0
N2B(s)ds

≤ L||a−b||
M+ ||x− y||

+2Nv(t)

≤ ε +2Nv(t)
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from assumption (K3), there exists T > 0 such that v(t)≤ ε

for t ≥ T. Thus for t ≥ T , we have

∣∣(Ka)(t)− (Kb)(t)
∣∣≤ 3ε. (3.3)

Let us assume that t ∈ [0,T ]. Then

∣∣(Ka)(t) − (Kb)(t)
∣∣≤ ε +

∫ t

0

∣∣∣∣ 1
Γq

(t− s)q−1
∣∣∣∣∣∣∣∣g(t,a(s))−g(t,b(s))

∣∣∣∣ds

≤ ε +N
∫ t

0
ω

T
r (g,ε)ds

≤ ε +NT ω
T
r (g,ε) (3.4)

where

ω
T
r (g,ε) = sup{|g(t,a)−g(t,b)| : t ∈ [0,T ],

a,b ∈ [−r,r], |a−b| ≤ ε}. (3.5)

By uniform continuity of the functions g(t,a) on the set
[0,T ]× [−r,r], we have ωT

r (g,ε)→ 0 as ε → 0. Now, by
(3.4), (3.5) and above established facts we conclude that the
operator K maps continuously the closed ball Br(0) into itself.
Further, let us take a nonempty subset X1 of the ball Br(0).
Next, fix arbitrarily T > 0 and ε > 0. Let us choose a ∈ X1
and t1, t2 ∈ [0,T ] with |t2− t1| ≤ ε . Without loss of generality

we may assume that t1 < t2. Then

|(K a)(t2)− (Ka)(t1)| ≤ |h(t2)−h(t1)|
+| f (t2,a(t2))− f (t1,a(t1))|

+

∣∣∣∣∫ t2

0

1
Γq

(t2− s)q−1g(t2,a(s))ds (3.6)

+
∫ t1

0

1
Γq

(t1− s)q−1g(t1,a(s))
∣∣∣∣

≤ ω
T (h,ε)+ | f (t2,a(t2))− f (t2,a(t1)| (3.7)

+| f (t2,a(t1))− f (t1,a(t1))|

+

∣∣∣∣∫ t2

0

1
Γq

(t2− s)q−1g(t2,a(s))ds (3.8)

−
∫ t2

0

1
Γq

(t2− s)q−1g(t1,a(s))ds

+
∫ t2

0

1
Γq

(t2− s)q−1g(t1,a(s))ds (3.9)

−
∫ t1

0

1
Γq

(t1− s)q−1g(t1,a(s))ds
∣∣∣∣

≤ ω
T (h,ε)+

L|a(t2)−a(t1)|
M+ |x(a2)−a(t1)|

+ω
T
r ( f ,ε)

+
∫ t2

0

∣∣∣∣ 1
Γq

(t2− s)q−1
∣∣∣∣∣∣∣∣g(t2,a(s))−g(t1,s,a(s))

∣∣∣∣ds

+

∣∣∣∣∫ t2

0

1
Γq

(t2− s)q−1g(t1,a(s))ds (3.10)

−
∫ t2

0

1
Γq

(t1− s)q−1g(t1,a(s))ds

+
∫ t2

0

1
Γq

(t1− s)q−1g(t1,a(s))ds (3.11)

−
∫ t1

0

1
Γq

(t1− s)q−1g(t1,a(s))ds
∣∣∣∣

≤ ω
T (h,ε)+

LωT (x,ε)
M+ωT (a,ε)

+ω
T
r ( f ,ε) (3.12)

+N
∫ T

0
ω

T
r (g,ε)ds

+
∫ t2

0

∣∣∣∣ 1
Γq

(t2− s)q−1− 1
Γq

(t1− s)q−1
∣∣∣∣∣∣∣∣g(t1,a(s))∣∣∣∣ds

+
∫ t2

t1

∣∣∣∣ 1
Γq

(t1− s)q−1
∣∣∣∣∣∣∣∣g(t1,a(s))∣∣∣∣ds

≤ ω
T (h,ε)+

LωT (a,ε)
M+ωT (a,ε)

+ω
T
r ( f ,ε) (3.13)

+N
∫ T

0
ω

T
r (g,ε)ds

+
∫ T

0
ω

T (
1

Γq
(t− s)q−1,ε)V ds+N

∫ t2

t1
Gr

T ds

ω
T (KX1,ε) ≤ ω

T (h,ε)+
LωT (a,ε)

M+ωT (a,ε)
+ω

T
r ( f ,ε) (3.14)

+N
∫ T

0
ω

T
r (g,ε)ds

+
∫ T

0
ω

T (
1

Γq
(t− s)q−1,ε)V ds+NεGr

T
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where

ω
T (h,ε) = sup{|h(t2)−h(t1)| : t1, t2 ∈ [0,T ],

|t2− t1| ≤ ε},

ω
T
r ( f ,ε) = sup{| f (t2,a)− f (t1,a)| : t1, t2 ∈ [0,T ],

|t2− t1| ≤ ε,x,y ∈ [−r,r]},

ω
T
r

(
1

Γq
(t− s)q−1,ε

)
= sup

{∣∣∣∣ 1
Γq

(t2− s)q−1

− 1
Γq

(t1− s)q−1
∣∣∣∣ : t1, t2,s ∈ [0,T ], |t2− t1| ≤ ε

}
,

ω
T
r (g,ε) = sup{|g(t2,a)−g(t1,b)| : t1, t2,s ∈ [0,T ],

|t2− t1| ≤ ε,a,b ∈ [−r,r]},

GT
r = sup{|g(t,a)| : t,s ∈ [0,T ],x ∈ [−r,r]}.

Thus from the above estimate, we have

ω
T (KX1,ε)≤ ω

T (h,ε)+
LωT (X ,ε)

M+ωT (X ,ε)
+ω

T
r ( f ,ε)

+N
∫ T

0
ω

T
r (g,ε)ds+

∫ T

0
ω

T (
1

Γq
(t− s)q−1,ε)V ds

+NεGr
T (3.15)

By the uniform continuity of the functions f and g on the sets
[0,T ]×[−r,r], [0,T ]×[−r,r], respectively, we have ωT (h,ε)→
0, ωT ( f ,ε)→ 0, ωT ( 1

Γq (t−s)q−1,ε)→ 0 and ωT (g,ε)→ 0.
It is obvious that Gr

T is finite. Thus,

ω
T
0 ≤

LωT
0 (X)

M+ωT
0 (X)

(3.16)

Let t ∈ J be arbitrarily fixed. Then

|(Ka)(t)− (Kb)(t)| ≤ | f (t,a(t))− f (t,b(t))| (3.17)

+
∫ t

0

∣∣∣∣1q (t− s)q−1
∣∣∣∣∣∣∣∣g(t,a(s))−g(t,b(s))
∣∣∣∣ds

≤ L|a(t)−b(t)|
M+ |a(t)−b(t)|

+

∣∣∣∣1q (t− s)q−1
∣∣∣∣∣∣∣∣g(t,a(s))−g(t,b(s))

∣∣∣∣ds

≤ L|a(t)−b(t)|
M+ |a(t)−b(t)|

+2v(t)N

diam(KX)(t) ≤ LdiamX(t)
M+diamX(t)

+2v(t)N

limsup
t→∞

diam(KX)(t) ≤ L limsupt→∞ diamX(t)
M+ limsupt→∞ diamX(t)

(3.18)

Using measure of noncompactness µa,

µa(KX1) = max{ω0(KX1), limsup
t→∞

KX1(t)}

≤ max
{

Lω0(X1)

M+ω0(X1)
,

L limsupt→∞ X1(t)
M+ limsupt→∞ X1(t)

}
≤ Lmax{ω0(X1), limsupt→∞ X1(t)}

M+max{ω0(X1), limsupt→∞ X1(t)}

≤ Lµa(X1)

M+µa(X1)

(3.19)

since L≤M,
µa(KX1) = φ(µa(X1)),

where Lr
M+r for r > 0. Now we apply Theorem 2.7 to deduce

that operator K has a fixed point a in the ball Br(0). Thus x
is solution of the FIE (1.1). The image of the space C(J,R)
under the operator K is contained in the ball Br(0) because
the set Fix(K) of all fixed points of K is contained Br(0).
The set Fix(K) contain all solutions of the FIE (1.1) and
from Remark 2.8 we conclude that the set Fix(K) belongs to
the family kerµa. Now, taking account the description of sets
belonging to kerµa, we have that all solutions for the FIE (1.1)
are globally uniformly attractive on J. In order to prove next
result concerning the asymptotic positivity of the attractive
solutions, we need following hypotheses.

(K6) The functions f satisfies

lim
t→∞

[| f (t,a)|− f (t,a)] = 0

for all a ∈ R.
Theorem 3.2. If the FIE (3.1) satisfies the hypotheses of
Theorem 3.1 and (K6). Then the FIE (1.1) has atleast one
solution on J and solutions of the FIE( 1.1) are uniformly
globally attractive and ultimately positive on J.

Proof. Let Br(0) be a closed ball in the Banach space C(J,R),
where the real number r is given as in the proof of Theorem
3.1 and define a map K : C(J,R) → C(J,R) by (1.1). In
proof of Theorem 3.1, we have shown that K is a continuous
mapping from the space C(J,R) from the space Br(0). In
particular, K maps Br(0) into itself. Now we will prove that
K is a nonlinear-set-contraction with respect to measure µad
of noncompactness in C(J,R). For any a,b ∈ R, we have

|a|+ |b| ≥ |a+b| ≥ a+b,

therefore

||a+b|− (a+b)| ≤ ||a|+ |b|− (a+b)| ≤ ||a|−a|+ ||b|−b|

for all a,b ∈ R. For any a ∈ Br(0), we have∣∣∣∣|Ka(t)| − Ka(t)
∣∣∣∣≤ ∣∣| f (t,a(t))|− f (t,a(t))

∣∣
+

∣∣∣∣∣∣∫ t

0

1
Γ
(t− s)q−1g(t,a(s))ds

∣∣−∫ t

0

1
Γ

g(t,a(s))ds
∣∣∣∣

≤ δT ( f )+2Nv(t)

≤ δT ( f )+2NVT ,
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where VT = supt≥T v(t). Thus we have

δT (X1)≤ δT ( f )+2NVT

for all closed X ⊂ Br(0). On taking the limit superior as T →
∞, we have

limsup
T→∞

δT (X1)≤ limsup
T→∞

δT ( f )+2limsup
T→∞

NVT = 0 (3.20)

for all closed X1 ⊂ Br(0). Hence,

δ (KX1) = lim
T→∞

δT (X1) = 0

for all closed X1 ⊂ Br(0). By the measure of noncompactness
µa, we have

µad(KX1) = max{µad(KX1),δ (KX1)}

≤ max{ Lµa(X)

M+µa(X1)
,0}

=
Lµa(X1)

M+µa(X1)

≤ Lµad(X1)

M+µad(X1)
(3.21)

Since L≤M, therefore we have

µad(KX1)≤ φ(µad(X1)),

where φ(r) = Lr
M+r for r > 0. By Theorem (2.7), the operator

K has a fixed point a in the ball Br(0) and x is a solution of FIE
(1.1). The image of the space C(J,R) is contained in Br(0)
under the operator K because the set Fix(K) of all fixed points
of K is contained Br(0). The set Fix(K) contain all solutions
of the FIE (1.1) and from Remark 2.8 we conclude that the
set Fix(K) belongs to the family kerµad . Now, taking account
the description of sets belonging to kerµad , we have that all
solutions for the FIE (1.1) are globally uniformly attractive
and ultimately positive on J.

4. Conclusion
The uniformly global attractivity and utimately posivity are
the main qualitative behaviour of solution of the nonlinear
integral equations and we have shown existence and the above
qualitative behaviour of solution of hybrid fractional integral
equation with linear perturbation of second kind with the help
of measure of noncompactness in our recent paper.
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