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1. Introduction
Norman Levine [3] introduced the concept of generalized

closed sets in topological spaces. Recently, the concept of π

generalized regular star beta closed sets in topological spaces
was introduced by Devika et. al.,[2]. Nakaoka and Oda [4,5,6]
have introduced minimal open sets and maximal open sets,
which are subclasses of open sets. Later on many authors con-
centrated in this direction and defined many different types of
minimal and maximal open sets. Inspired with these develop-
ments, we further study a new type of closed and open sets
namely minimal πg∗β -closed sets, maximal πg∗β -open sets,
minimal πg∗β -open sets, maximal πg∗β -closed sets and their
respective continuous and irresolute functions.

Throughout this paper a space X means a topological
space (X ,τ). The class of πg∗β -closed sets is denoted by

ΠG∗β C(X). For any subset A of X its complement, interior,
closure, πg∗β -interior, πg∗β -closure are denoted respec-
tively by the symbols Ac, int(A), cl(A), πg∗β -int(A), πg∗β
-cl(A).

2. Preliminaries
Definition 2.1. A subset A of a topological space (X ,τ), is
called

1. a generalized closed set (briefly, g-closed) [3] if cl(A)⊆
U whenever A⊆U and U is open in X.

2. a generalized regular star closed set (briefly πg∗β -
closed) [2] if βcl(A) ⊆ U whenever A ⊆ U and U is
πg-open subset of X.

Definition 2.2. [1] A proper nonempty open subset U of X is
said to be a minimal open set if any open set contained in U
is φ or U.

Definition 2.3. [1] A proper nonempty open subset U of X is
said to be a maximal open set if any open set containing in U
is X or U.

Definition 2.4. [1] A proper nonempty closed subset F of X
is said to be a minimal closed set if any closed set contained
in F is φ or F.
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Definition 2.5. [1] A proper nonempty closed subset F of X
is said to be a maximal closed set if any closed set contained
in F is X or F.

Theorem 2.6. [1] Let X be a topological space and F ⊂ X.
F is a minimal closed set iff X−F is a maximal open set.

Theorem 2.7. [1] Let X be a topological space and U ⊂ X.
U is a minimal open set iff X−U is a maximal closed set.

Definition 2.8. [1] Let X and Y be the topological spaces. A
function f : X −→ Y is called

1. minimal continuous (briefly, min-continuous) if f−1(A)
is an open set in X for every minimal open set A in Y .

2. maximal continuous (briefly, max-continuous) if f−1(A)
is an open set in X for every maximal open set A in Y .

3. minimal irresolute (briefly, min-irresolute) if f−1(A) is
minimal open set in X for every minimal open set A in
Y .

4. maximal irresolute (briefly, max-irresolute) if f−1(A)
is maximal open set in X for every maximal open set A
in Y .

5. minimal-maximal continuous (briefly, min-max-continuous)
if f−1(A) is maximal open set in X for every minimal
open set A in Y .

6. maximal-minimal continuous (briefly, max-min-continuous)
if f−1(A) is minimal open set in X for every maximal
open set A in Y .

We now introduce minimal πg∗β -open sets and maximal
πg∗β -closed sets in topological spaces as follows.

Definition 2.9. A proper nonempty πg∗β -open subset U of X
is said to be a minimal πg∗β -open set if any πg∗β -open set
contained in U is ϕ or U.

Remark 2.10. Every minimal open set is minimal πg∗β -open
but not converserly.

Example 2.11. Let X = {a,b,c} and τ = {ϕ,{c},{a,b},X}.
Since {a} is minimal πg∗β -open set but not minimal open set.

Remark 2.12. Every minimal πg∗β -open set is minimal πg−
open but not conversely.

Example 2.13. Let X = {a,b,c} and τ = {ϕ,{c},{b,c},X}.
Since {a} is minimal πg-open set but not a minimal πg∗β -
open set.

Theorem 2.14. Every minimal open set is πg∗β -open set but
not converserly.

Example 2.15. X = {a,b,c} and τ = {ϕ,{c},{a,c},X} Then
the subset {a,b} is πg∗β -open set but not minimal open set.

Theorem 2.16. Every minimal πg-open set is πg∗β -open set
but not conversely.

Example 2.17. In Example 2.15, the subset {a,b} is πg∗β -
open set but not minimal πg-open set.

Theorem 2.18. 1. Let U be a minimal πg∗β -open set and
W be a πg∗β -open set. Then U ∩W = ϕ or U ⊂W.

2. Let U and V be minimal πg∗β -open sets. Then U∩V =
ϕ or U =V .

Proof:

1. Let U be a minimal πg∗β -open set and W be a πg∗β -
open set. If U ∩W = ϕ , then there is nothing to prove.
If U ∩W 6= ϕ . Then U ∩W ⊂U. Since U is a minimal
πg∗β -open set, we have U ∩W =U. Therefore U ⊂W.

2. Let U and V be minimal πg∗β -open set. If U ∩V 6= ϕ ,
then U ⊂V and V ⊂U by (i). Therefore U =V .

Theorem 2.19. Let U be a minimal πg∗β -open set. If x ∈U,
then U ⊂W for any regular open neighborhood W of x.
Proof: Let U be a minimal πg∗β -open set and x be an element
of U. Suppose there exists a regular open neighborhood W
of x such that U 6⊂W. Then U ∩W is a πg∗β -open set such
that U ∩W ⊂U and U ∩W 6= ϕ . Since U is a minimal πg∗β -
open set, we have U ∩W = U. That is U ⊂W, which is a
contradiction for U 6⊂W. Therefore U ⊂W for any regular
open neighborhood W of x.

Theorem 2.20. Let U be a minimal πg∗β -open set. If x ∈U,
then U ⊂W for any πg∗β -open set W containing x.

Theorem 2.21. Let U be a minimal πg∗β -open set. Then
U = ∩{W : W ∈ΠG∗βO(X ,x)} for any element x of U.
Proof: By Theorems[2.18-2.20] and U is πg∗β -open set con-
taining x, we have U ⊂ ∩{W : W ∈ΠG∗βO(X ,x)} ⊂U

Theorem 2.22. Let U be a nonempty πg∗β -open set. Then
the following three conditions are equivalent.

1. U is a minimal πg∗β -open set

2. U ⊂ πg∗β -cl(S) for any nonempty subset S of U

3. πg∗β -cl(U) = πg∗β -cl(S) for any nonempty subset S
of U.

Proof: (1)⇒ (2) Let x ∈U; U be minimal πg∗β -open set
and S(6= ϕ)⊂U. By Theorem[2.18-2.20], for any πg∗β -open
set W containing x, S⊂U ⊂W ⇒ S⊂W. Now S = S∩U ⊂
S∩W. Since S 6=ϕ , S∩W 6=ϕ . Since W is any πg∗β -open set
containing x, then x∈ πg∗β -cl(S). That is x∈U⇒ x∈ πg∗β -
cl(S)⇒U ⊂ πg∗β -cl(S) for any nonempty subset Sof U
(2)⇒ (3) Let S be a nonempty subset of U. That is S⊂U ⇒
πg∗β -cl(S)⊂ πg∗β -cl(U)−→ (i). Again from (2) U ⊂ πg∗β -
cl(S) for any S(6= ϕ) ⊂U ⇒ πg∗β -cl(U) ⊂ πg∗β -cl(πg∗β -
cl(S)) = πg∗β -cl(S). That is πg∗β -cl(U)⊂ πg∗β -cl(s)−→
(ii). From (i) and (ii), we have πg∗β -cl(U) = πg∗β -cl(S)
for any nonempty subset S of U.
(3)⇒ (1) From (3) we have πg∗β -cl(U) = πg∗β -cl(S) for
any nonempty subset S of U. Suppose U is not a minimal
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πg∗β -open set. Then ∃ a nonempty πg∗β -open set V such
that V ⊂U and V 6=U. Now ∃ an element a in U such that
a /∈ V ⇒ a ∈ V c. That is πg∗β -cl({a}) ⊂ πg∗β -cl(V c) =
V c, as V c is πg∗β -closed set in X. It follows that πg∗β -
cl({a}) 6= πg∗β -cl(U). This is a contradiction for πg∗β -
cl({a}) = πg∗β - cl(U) for any {a}(6= φ)⊂U. Therefore U
is minimal πg∗β -open set.

Theorem 2.23. Let V be a nonempty finite πg∗β -open set.
Then there exists at least one (finite) minimal πg∗β -open set
U such that U ⊂V .
Proof: Let V be a nonempty finite πg∗β -open set. If V is
a minimal πg∗β -open set, we may set U = V . If V is not
a minimal πg∗β -open set, then ∃ (finite) πg∗β -open set V1
such that ϕ 6= V1 ⊂ V . If V1 is a minimal πg∗β -open set,
we may set U = V1. If V1 is not a minimal πg∗β -open set,
then there exists (finite) πg∗β -open set V2 such that ϕ 6=V2 ⊂
V1.Continuing this process, we have a sequence of πg∗β -open
set V ⊃V1 ⊃V2 ⊃V3 ⊃ .......⊃Vk ⊃ ........ Since V is a finite
set, this process repeats only finitely. Then finally we get a
minimal πg∗β -open set U =Vn for some positive integer n.
A topological space X is said to be locally finite space if each
of its elements is contained in a finite open set.

Corollary 2.24. Let X be a locally finite space and V be a
nonempty πg∗β -open set. Then ∃ at least one (finite) minimal
πg∗β -open set U such that U ⊂V .
Proof: Let X be a locally finite space and V be a nonempty
πg∗β -open set. Let x in V . Since X is locally finite space, we
have a finite open set Vx such that x in Vx. Then V ∩Vx is a
finite πg∗β -open set. By Theorem 2.22 there exists at least
one (finite) minimal πg∗β -open set U such that U ⊂ V ∩Vx.
That is U ⊂V ∩Vx ⊂V . Hence there exists at least one (finite)
minimal πg∗β -open set U such that U ⊂V .

Corollary 2.25. Let V be a finite minimal open set. Then
there exists at least one (finite) minimal πg∗β -open set U
such that U ⊂V .
Proof: Let V be a finite minimal open set. Then V is a
nonempty finite πg∗β -open set. By Theorem 2.23, there ex-
ists at least one (finite) minimal πg∗β -open set U such that
U ⊂V .

Theorem 2.26. Let U and Uλ be minimal πg∗β -open sets
for any element λ ∈ Γ. If U ⊂ ∪λ∈Γ Uλ , then there exists an
element λ ∈ Γ such that U =Uλ .
Proof: Let U ⊂ ∪λ∈ΓUλ . Then U ∩ (∪λ∈ΓUλ ) =U. That is
∪λ∈Γ(U ∩Uλ ) =U. Also by Theorem [2.22] (2), U ∩Uλ = ϕ

or U =Uλ for any λ ∈ Γ. It follows that ∃ an element λ ∈ Γ

such that U =Uλ .

Theorem 2.27. Let U and Uλ be minimal πg∗β -open sets for
any λ ∈ Γ. If U =Uλ for any λ ∈ Γ, then (∪λ∈ΓUλ )∩U = ϕ .
Proof: Suppose (∪λ∈ΓUλ )∩U 6= ϕ . That is ∪λ∈Γ(Uλ ∩U) 6=
ϕ . Then there exists an element λ ∈ Γ such that U ∩Uλ 6= ϕ .
By Theorem 2.22(2), we have U =Uλ , which contradicts the
fact that U 6=Uλ for any λ ∈ Γ. Hence (∪λ∈ΓUλ )∩U = ϕ .

We now introduce Maximal πg∗β -closed sets in topologi-
cal spaces as follows.

Definition 2.28. A proper nonempty πg∗β -closed F ⊂ X is
said to be maximal πg∗β -closed set if any πg∗β -closed set
containing F is either X or F.

Remark 2.29. Every maximal πg∗β -closed set is maximal
πg-closed but not conversely.

Theorem 2.30. A proper nonempty subset F of X is maximal
πg∗β -closed set iff X−F is a minimal πg∗β -open set.
Proof: Let F be a maximal πg∗β -closed set. Suppose X−F
is not a minimal πg∗β -open set. Then there exists πg∗β -open
set U 6= X−F such that ϕ 6=U ⊂ X−F. That is F ⊂ X−U
and X−U is a πg∗β -closed set which is a contradiction for
F is a maximal πg∗β -closed set.
Conversely let X −F be a minimal πg∗β -open set. Suppose
F is not a maximal πg∗β -closed set, then there exists πg∗β -
closed set E 6= F such that F ⊂ E 6= X. That is ϕ 6= X−E ⊂
X−F and X−E is a πg∗β -open set which is a contradiction
for X − F is a minimal πg∗β -open set. Therefore F is a
maximal πg∗β -closed set.

Theorem 2.31. Let F be a maximal πg∗β -closed set. If x is
an element of F, then for any πg∗β -closed set S containing x,
F ∪S = X or S⊂ F.
Proof: Let F be a maximal πg∗β -closed set and x is an ele-
ment of F. Suppose there exists πg∗β -closed set S containing
x such that F ∪ S 6= X. Then F ⊂ F ∪ S and let F ∪ S is a
πg∗β -closed set. Since F is a πg∗β -closed set, we F ∪S = F.
Therefore S⊂ F.

Theorem 2.32. Let F be a proper nonempty cofinite πg∗β -
closed set. Then there exists (cofinite) maximal πg∗β -closed
set E such that F ⊂ E.
Proof: If F is maximal πg∗β -closed set, we may set E = F. If
F is not a maximal πg∗β -closed set, then there exists (cofinite)
πg∗β -closed set F1 such that F ⊂ F1 6= X. If F1 is a maximal
πg∗β -closed set, we may set E = F1. If F1 is not a maximal
πg∗β -closed set, then there exists a (cofinite) πg∗β -closed set
F2 such that F ⊂ F1 ⊂ F2 6= X. Continuing this process, we
have a sequence of πg∗β -closed, F ⊂F1⊂F2⊂−−−−−⊂
Fk −−−−−−−. Since F is a cofinite set, this process
repeats only finitely. Then, finally we get a maximal πg∗β -
closed set E = En for some positive integer n.

3. Minimal πg∗β -closed set and maximal
πg∗β -open set

We now introduce minimal πg∗β -closed sets and maximal
πg∗β -open sets in topological spaces as follows.

Definition 3.1. A proper nonempty πg∗β -closed subset F of
X is said to be a minimal πg∗β -closed set if any πg∗β -closed
set contained in F is ϕ or F.

Remark 3.2. Every minimal closed set is minimal πg∗β -
closed but not conversely.
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Definition 3.3. A proper nonempty πg∗β -open subset U ⊂ X
is said to be a maximal πg∗β -open set if any πg∗β -open set
containing U is either X or U.

Remark 3.4. Every maximal open set is maximal πg∗β -open
but not conversely.

Theorem 3.5. A proper nonempty subset U of X is maximal
πg∗β -open set iff X−U is a minimal πg∗β -closed set.
Proof: Let U be a maximal πg∗β -open set. Suppose X−U is
not a minimal πg∗β -closed set. Then there exists πg∗β -closed
set V 6= X−U such that ϕ 6=V ⊂ X−U. That is U ⊂ X−V
and X −V is a πg∗β -open set which is a contradiction for
U is a minimal πg∗β -closed set. Conversely let X −U be a
minimal πg∗β -closed set. Suppose U is not a maximal πg∗β -
open set. Then there exists a πg∗β -open set E 6=U such that
U ⊂ E 6= X. That is ϕ 6= X−E ⊂ X−U and X−E is a πg∗β -
closed set which is a contradiction for X −U is a minimal
πg∗β -closed set. Therefore U is a maximal πg∗β -closed set.

Theorem 3.6. (i) Let F be a maximal πg∗β -open set and W
be a πg∗β -open set. Then F∪W = X or W∪F.
(ii) Let F and S be maximal πg∗β -open set. Then F∪S = X or
F=S.
proof: (i) Let F be a maximal πg∗β -open set and W be a
πg∗β -open set. If F∪W=X, then there is nothing to prove.
Suppose F∪W 6=X. Then F⊆F∪W. Therefore F∩W=F as F is
a maximal πg∗β -open set in X. Hence W∪F.
(ii) Let F and S be maximal πg∗β -open sets. If F∪S 6=X, then
we have F⊆S and S⊆F by (i). Therefore F=S.

Theorem 3.7. Let Fα ,Fβ ,Fδ be maximal πg∗β -open sets
such that Fα 6= Fβ . If Fα ∩ Fβ ⊂ Fδ , then either Fα = Fδ

or Fβ = Fδ

Proof: Given that Fα ∩Fβ ⊂ Fδ . If Fα = Fδ then there is
nothing to prove.
If Fα 6= Fδ then we have to prove Fβ = Fδ . Now Fβ ∩Fδ =
Fβ ∩ (Fδ ∩X) = Fβ ∩ (Fδ ∩ (Fα ∪Fβ )(by T heorem3.6(ii)) =
Fβ ∩ ((Fδ ∩Fα)∪ (Fδ ∩Fβ )) = (Fβ ∩Fδ ∩Fα)∪ (Fβ ∩Fδ ∩
Fβ ) = (Fα ∩Fβ )∪ (Fδ ∩Fβ )(by Fα ∩Fβ ⊂ Fδ ) = (Fα ∪Fδ )∩
Fβ = X ∩Fβ (Since Fα and Fδ are maximal πg∗β -open sets
by Theorem[3.6](ii), Fα ∪Fδ = X) = Fβ . That is Fβ ∩Fδ =
Fβ ⇒ Fβ ⊂ Fδ . Since Fβ and Fδ are maximal πg∗β -open sets,
we have Fβ = Fδ . Therefore Fβ = Fδ .

Theorem 3.8. Let Fα ,Fβ and Fδ be different maximal πg∗β -
open sets to each other. Then (Fα ∩Fβ ) 6⊂ (Fα ∩Fδ ).
Proof: Let (Fα ∩Fβ )⊂ (Fα ∩Fδ )⇒ (Fα ∩Fβ )∪ (Fδ ∩Fβ )⊂
(Fα ∩ Fδ ) ∪ (Fδ ∩ Fβ ) ⇒ (Fα ∪ Fδ ) ∩ Fβ ⊂ Fδ ∩ (Fα ∪ Fβ ).
Since by Theorem 3.6(ii), Fα ∪Fδ = X and Fα ∪Fβ = X ⇒
X ∩Fβ ⊂ Fδ ∩X ⇒ Fβ ⊂ Fδ From the definition of maximal
πg∗β -open set it follows that Fβ = Fδ , which is a contradic-
tion to the fact that Fα ,Fβ and Fδ are different to each other.
Therefore (Fα ∩Fβ ) 6⊂ (Fα ∩Fδ ).

Theorem 3.9. Let F be a maximal πg∗β -open set and x be
an element of F. Then F = ∪ { S : S is a πg∗β -open set con-
taining x such that F ∪S 6= X}.

Proof: By Theorem 3.7 and fact that F is a πg∗β -open set
containing x, we have F ⊂ {S : S is a πg∗β -open set con-
taining x such that F ∪S 6= X} ⊂ F. Therefore we have the
result.

Theorem 3.10. Let F be a proper nonempty cofinite πg∗β -
open set. Then there exists (cofinite) maximal πg∗β -open set
E such that F ⊂ E.
Proof: If F is maximal πg∗β -open set, we may set E =F. If F
is not a maximal πg∗β -open set, then ∃ (cofinite) πg∗β -open
set F1 such that F ⊂ F1 6= X. If F1 is a maximal πg∗β -open set,
we may set E = F1. If F1 is not a maximal πg∗β -open set, then
∃ a (cofinite) πg∗β -open set F2 such that F ⊂ F1 ⊂ F2 6= X.
Continuing this process, we have a sequence of πg∗β -open,
F ⊂ F1 ⊂ F2 ⊂ ........Fk........... Since F is a cofinite set, this
process repeats only finitely. Then, finally we get a maximal
πg∗β -open set E = En for some positive integer n.

4. Minimal πg∗β -continuous functions and
maximal

πg∗β -continuous functions
Definition 4.1. Let X and Y be the topological spaces. A
function f : X −→ Y is called

1. minimal πg∗β -continuous (briefly, min-πg∗β -continuous)
if f−1(A) is πg∗β - open set in X for every minimal open
set A in Y .

2. maximal πg∗β -continuous (briefly, max-πg∗β -continuous)
if f−1(A) is πg∗β - open set in X for every maximal
open set A in Y .

3. minimal πg∗β -irresolute (briefly, min-πg∗β -irresolute)
if f−1(A) is minimal πg∗β -open set in X for every min-
imal open set A in Y .

4. maximal πg∗β -irresolute (briefly, max-πg∗β -irresolute)
if f−1(A) is maximal πg∗β -open set in X for every max-
imal open set A in Y .

5. minimal-maximal πg∗β -continuous (briefly, min-max-
πg∗β -continuous) if f−1(A) is maximal πg∗β -open set
in X for every minimal open set A in Y .

6. maximal-minimal πg∗β -continuous (briefly, max-min-
πg∗β -continuous) if f−1(A) is minimal πg∗β -open set
in X for every maximal open set A in Y .

Theorem 4.2. Every continuous function is minimal πg∗β -
continuous function but not conversely.
Proof: Let f : X −→ Y be a continuous function. To prove
that f is minimal πg∗β -continuous. Let N be any minimal
open set in Y . Since every minimal open set is an open set
and every open set is πg∗β -open set, N is a πg∗β -open set
in Y . Since f is continuous, f−1(N) is a πg∗β -open set in Y .
Hence f is a minimal πg∗β -continuous.

533



Min-Max πg∗β -continuous and Max-Min πg∗β -continuous functions in topological spaces — 534/535

Example 4.3. Let X = Y = {a,b,c} be with
τ = {ϕ,{a},{a,b},X} and µ = {ϕ,{b},{b,c},Y}. Let f :
X −→ Y be an identity function. Then f is a minimal πg∗β -
continuous function but it is not a continuous function, since
for the open set {b,c} in Y , f−1({b,c}) = {b,c} which is not
a πg∗β -open set in X.

Theorem 4.4. Let X and Y be the topological spaces. A
function f : X −→ Y is minimal πg∗β -continuous if and only
if the inverse image of each maximal closed set in Y is a πg∗β -
closed set in X.
Proof: The proof follows from the definition and fact that
the complement of minimal πg∗β -open set is maximal πg∗β -
closed set.

Theorem 4.5. If f : X −→ Y is continuous function and g :
Y −→ Z is minimal πg∗β -continuous functions. Then g◦ f :
X −→ Z is a minimal πg∗β -continuous.
Proof: Let N be any minimal open set in Z. Since g is minimal
πg∗β -continuous, g−1(N) is a πg∗β -open set in Y . Again
since f is continuous, f−1(g−1(N)) = (g◦ f )−1(N) is a πg∗β -
open set in X. Hence g◦ f is a minimal πg∗β -continuous.

Theorem 4.6. Let X and Y be the topological spaces. A
function f : X −→ Y is maximal πg∗β -continuous if and only
if the inverse image of each minimal closed set in Y is a πg∗β -
closed set in X.
Proof: The proof follows from the definition and fact that
the complement of maximal πg∗β -open set is minimal πg∗β -
closed set.

Theorem 4.7. If f : X −→ Y is continuous function and g :
Y −→ Z is maximal πg∗β -continuous functions, then g◦ f :
X −→ Z is a maximal πg∗β -continuous.
Proof: Similar to that of Theorem 4.5.

Theorem 4.8. Let X and Y be the topological spaces. A
function f : X −→Y is minimal πg∗β -irresolute if and only if
the inverse image of each maximal πg∗β - closed set in Y is a
maximal πg∗β -closed set in X.
Proof: The proof follows from the definition and fact that
the complement of minimal πg∗β -open set is maximal πg∗β -
closed set.

Theorem 4.9. If f : X −→ Y and g : Y −→ Z are minimal
πg∗β -irresolute functions. Then g◦ f : X −→ Z is a minimal
πg∗β -irresolute function.
Proof: Let N be any minimal πg∗β -open set in Z. Since
g is minimal πg∗β -irresolute, g−1(N) is a minimal πg∗β -
open set in Y . Again since f is minimal πg∗β -irresolute,
f−1(g−1(N)) = (g◦ f )−1(N) is minimal πg∗β -open set in X.
Therefore g◦ f is minimal πg∗β -irresolute.

Theorem 4.10. If f : X −→ Y and g : Y −→ Z are maximal
πg∗β -irresolute functions, then g◦ f : X −→ Z is a maximal
πg∗β -irresolute function.
Proof: Similar to that of Theorem 4.9.

Theorem 4.11. Every min-max πg∗β -continuous function is
minimal πg∗β -continuous function but not conversely.
Proof: Let f : X −→ Y be a min-max πg∗β -continuous func-
tion. Let N be any minimal open set in Y . Since f is min-max
πg∗β -continuous, f−1(N) is a maximal πg∗β open set in
X. Since every maximal πg∗β open set is a πg∗β -open set,
f−1(N) is a πg∗β -open set in X. Hence f is a minimal πg∗β -
continuous.

Example 4.12. Let X = Y = {a,b,c} be with
τ = {ϕ,{a},{a,b},X} and µ = {ϕ,{b},Y}. Let f : X −→Y
be an identity function. Then f is a minimal πg∗β -continuous
function but it is not a min-max πg∗β -continuous, since for
the minimal open set {b} in Y , f−1({b}) = {b} which is not
a maximal πg∗β -open set in X.

Theorem 4.13. Every max-min πg∗β -continuous function is
maximal πg∗β -continuous function but not conversely.
Proof: Similar to that of Theorem 4.11.

Example 4.14. Let X = Y = {a,b,c} be with
τ = {ϕ,{b},{b,c},X} and µ = {ϕ,{a,b},Y}. Let f : X −→
Y be an identity function. Then f is a maximal πg∗β -continuous
function but it is not a max-min πg∗β -continuous, since for
the maximal open set {a,b} in Y , f−1({a,b}) = {a,b} which
is not a minimal πg∗β -open set in X.

Theorem 4.15. If f : X −→ Y is maximal πg∗β -irresolute
and g : Y −→ Z is min-max πg∗β -continuous functions, then
g◦ f : X −→ Z is a min-max πg∗β -continuous function.
Proof: Let N be any minimal πg∗β -open set in Z. Since g
is min-max πg∗β -continuous, g−1(N) is a maximal πg∗β -
open set in Y . Again since f is maximal πg∗β -irresolute,
f−1(g−1(N)) = (g◦ f )−1(N) is a maximal πg∗β -open set in
X. Hence g◦ f is a min-max πg∗β -continuous.

Theorem 4.16. If f : X −→ Y is maximal πg∗β -continuous
(resp. πg∗β -continuous) and g : Y −→ Z is min-max πg∗β -
continuous functions, then g◦ f : X −→ Z is a minimal πg∗β -
continuous.
Proof: Let N be any minimal πg∗β -open set in Z. Since g is
min-max πg∗β -continuous, g−1(N) is a maximal πg∗β -open
set in Y . (resp. since every maximal πg∗β -open set in πg∗β -
open, g−1(N) is πg∗β -open set in Y ). Again since f is maxi-
mal πg∗β -continuous (resp. πg∗β -continuous), f−1(g−1(N))=
(g◦ f )−1(N) is a πg∗β -open set in X. Hence g◦ f is a minimal
πg∗β -continuous.
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