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Interior ideals in Γ-semirings
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Abstract
The concepts of an interior ideal, minimal interior ideal and an interior-simple Γ-semiring are defined. Various
properties of an interior ideal and minimal interior ideal of a Γ-semiring are studied. Some characterizations of a
minimal interior ideal and an interior-simple Γ-semiring are discussed.
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1. Introduction
Γ-semiring is a generalization of a semiring. Rao [7]

defined and studied Γ-semiring. Dutta and Sardar [1] studied
different types of ideals in a Γ-semiring. Quasi-ideals and
bi-ideals in a Γ-semiring were studied by Author [2–4]. Lajos
[6] defined the concept of an interior ideal in a semigroup.
Interior ideal in a semigroup was studied by Szasz [8, 9].
Interior ideals in ordered semigroups and the interior ideal
elements in poe-semigroups were discussed by Kehayopulu
[5].

The concepts of an interior ideal and minimal interior ideal
in a Γ-semiring are introduced in this paper. Some properties
of an interior ideal and minimal interior ideal of a Γ-semiring
are proved. Some characterizations of a minimal interior
ideal are studied. Also the notion of an interior-simple Γ-
semiring is defined. Some properties and characterizations of
an interior-simple Γ-semiring are furnished. For the concepts
in a Γ-semiring see Dutta and Sardar [1] and Jagatap and
Pawar [2, 4].

Now onwards S denotes a Γ-semiring with absorbing zero
unless otherwise stated.

2. Interior Ideals
Here we define the notion of an interior ideal of a Γ-

semiring S.

Definition 2.1. A non-empty subset I of a Γ-semiring S is an
interior ideal of S if I is an additive subsemigroup of S and
SΓIΓS⊆ I.

Example : Let S = {0,1,2,3,4}. Define two binary opera-
tions + and · on S as follows:

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 2
2 2 3 4 2 3
3 3 4 2 3 4
4 4 3 2 4 2

. 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 3 2
3 0 3 3 3 3
4 0 4 2 3 4

For Γ = S , both S and Γ are additive commutative semigroups.
A mapping S×Γ×S→ S is defined as aαb= usual product of
a,α,b; for all a,b ∈ S and α ∈ Γ . Then S forms a Γ-semiring.
{0}, {0,3}, {0,2,3,4} and S are interior ideals of S.

Remark 2.2. Every ideal is an interior ideal of S but not
conversely.
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For this consider the following example.
Example : Let S = {a,b,c,d}. Two binary operations + and
· are defined on S such as

+ a b c d
a a c b d
b c d d d
c b d d d
d d d d d

. a b c d
a a c b d
b c d d d
c b d d d
d d d d d

For Γ = S , both S and Γ are additive commutative semi-
groups. A mapping S×Γ×S→ S is defined as xαy = usual
product of x,α,y; for all x,y ∈ S and α ∈ Γ . Then S forms
a Γ-semiring. Here {b,d} and {c,d} are interior ideals of S.
But {b,d} and {c,d} are neither left ideals nor right ideals of
S .

Theorem 2.3. Let X be any non-empty subset of S. Then
SΓXΓS is an interior ideal of S.

Corollary 2.4. If a ∈ S, then SΓaΓS is an interior ideal of S.

Theorem 2.5. Let X be any non-empty subset of S. Then
(X)i = N0X + SΓXΓS, where N0 is the set of non-negative
integers.

Proof. Let T = N0X +SΓXΓS. For any x ∈ X , x = 1x+0 ∈
N0X +SΓXΓS = T . Therefore X ⊆ T . Let a,b ∈ T = N0X +
SΓXΓS. Hence we have a = a1 + a2, b = b1 + b2 ; a1,b1 ∈
N0X ,a2,b2 ∈ SΓXΓS. Therefore a1 = ∑

p
i=1 nixi,ni ∈ N0,xi ∈

X and b1 = ∑
q
j=1 m jy j,m j ∈ N0,y j ∈ X . Hence a1 + b1 =

∑
p
i=1 nixi+∑

q
j=1 m jy j. This shows that a1+b1 ∈N0X . Clearly

a2 + b2 ∈ SΓXΓS. Now a + b = (a1 + a2) + (b1 + b2) =
(a1 + b1)+ (a2 + b2) ∈ N0X + SΓXΓS = T . Therefore T is
an additive subsemigroup of S. Then SΓT ΓS = SΓ(N0X +
SΓXΓS)ΓS ⊆ N0(SΓXΓS)+ SΓXΓS ⊆ SΓXΓS ⊆ T . There-
fore T is an interior ideal of S. Let M be an interior ideal
of S containing X . Then we have N0X ⊆ M, SΓXΓS ⊆ M.
Therefore T = N0X + SΓXΓS ⊆ M. This shows that T is
the smallest ideal of S containing X . Hence T = (X)i =
N0X +SΓXΓS.

Corollary 2.6. If a ∈ S, then (a)i = N0a+SΓaΓS.

Theorem 2.7. Arbitrary Intersection of interior ideals of S is
an interior ideal of S provided it is non-empty.

Proof. Let {Ai}i∈∆
(∆ denotes any indexing set) be the family

of interior ideals of S and T =
⋂

i∈∆ Ai be a non-empty set.
Clearly T is a subsemigroup of (S,+). Therefore SΓT ΓS =
SΓ(

⋂
i∈∆ Ai)ΓS⊆ SΓAiΓS⊆Ai, for all i∈∆. Hence SΓT ΓS⊆⋂

i∈∆ Ai. Therefore T =
⋂

i∈∆ Ai is an interior ideal of S.

Corollary 2.8. The set of all interior ideals of S forms a
Moore family.

Theorem 2.9. If I is an interior ideal and T is a sub-Γ-
semiring of S , then I∩T is an interior ideal of T .

Proof. Let I be an interior ideal and T be a sub-Γ-semiring of
S. Then clearly I∩T is a subsemigroup of (T,+). Therefore
T Γ(I∩T )ΓT ⊆ T ΓIΓT ⊆ I. Also T Γ(I∩T )ΓT ⊆ T ΓT ΓT ⊆
T . Hence T Γ(I ∩T )ΓT ⊆ I ∩T . Hence I ∩T is an interior
ideal of T .

Theorem 2.10. If S is regular, then I = SΓIΓS , for every
interior ideal I of S.

Proof. Let S be regular and I be an interior-ideal of S. Take
any a ∈ I. Therefore a ∈ aΓSΓa. Hence
aΓSΓa ⊆ (aΓSΓa)ΓSΓa ⊆ SΓIΓS. Thus I ⊆ SΓIΓS. But
SΓIΓS⊆ I always. Therefore I = SΓIΓS.

Theorem 2.11. Following statements are equivalent in S.
1) S is regular.
2) For a quasi ideal Q and an ideal J of S, Q∩ J = QΓJΓQ.
3) For a quasi ideal Q and an interior ideal I of S, Q∩ I =
QΓIΓQ.

Proof. (1)⇒ (2) Let Q be a quasi-ideal and J be an ideal
of S. Now QΓJΓQ ⊆ QΓSΓQ ⊆ Q and QΓJΓQ ⊆ J. Hence
QΓJΓQ⊆ Q∩ J. Take any a ∈ Q∩ J. Therefore a ∈ aΓSΓa.
Hence aΓSΓa ⊆ (aΓSΓa)ΓSΓ(aΓSΓa) ⊆
(QΓSΓQ)Γ(SΓJΓS)ΓQ ⊆ QΓJΓQ. Thus we get
Q∩ J ⊆ QΓJΓQ. Therefore QΓJΓQ = Q∩ J.
(2)⇒ (3) Implication holds, since every ideal is an interior
ideal, .
(3)⇒ (1) Take Q be any quasi-ideal of S. Therefore by (3),
QΓSΓQ = Q∩S. Hence QΓSΓQ = Q. Therefore S is regular
(see Theorem 3.2 in [3]).

Theorem 2.12. Following conditions are equivalent in S.
1) S is regular.
2) For an interior ideal I and a bi-ideal B of S , I∩B= BΓIΓB.
3) For an interior ideal I and a quasi-ideal Q of S , I∩Q =
QΓIΓQ.

Proof. (1)⇒ (2) Let B be a bi-ideal and I be an interior
ideal of S. Now BΓIΓB⊆ BΓSΓB⊆ B. Therefore BΓIΓB⊆
SΓIΓS ⊆ I . Hence we get BΓIΓB ⊆ B∩ I. Let a ∈ B∩ I.
Hence a ∈ aΓSΓa. Therefore aΓSΓa⊆ (aΓSΓa)ΓSΓ(aΓSΓa)
⊆ (BΓSΓB)Γ(SΓIΓS)ΓB ⊆ BΓIΓB. Thus B ∩ I ⊆ BΓSΓB.
Hence BΓSΓB = B∩ I.
(2)⇒ (3) As every quasi-ideal is a bi-ideal, implication holds.
(3)⇒ (1) Let Q be a quasi-ideal of S. By (3), QΓSΓQ =
Q∩S, since S itself is an interior ideal. Hence QΓSΓQ = Q.
Therefore S is regular (see Theorem 3.2 in [3]).

Theorem 2.13. Following statements in S are equivalent.
1) S is regular.
2) B∩ I∩L⊆ BΓIΓL, for a bi-ideal B, left ideal L and interior
ideal I of S.
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3) Q∩ I ∩L ⊆ QΓIΓL, for a quasi-ideal Q, left ideal L and
interior ideal I of S,.
4) B∩ I ∩ R ⊆ RΓIΓB, for a bi-ideal B, right ideal R and
interior ideal I of S.
5) Q∩ I∩R⊆ RΓIΓQ, for a quasi-ideal Q, right ideal R and
interior ideal I of S.

Proof. (1)⇒ (2) Take any a∈B∩I∩L. Therefore a∈ aΓSΓa
. Hence

aΓSΓa⊆ (aΓSΓa)ΓSΓ(aΓSΓa)⊆ (BΓSΓB)Γ(SΓIΓS)ΓL⊆
BΓIΓL. Thus we get B∩ I∩L⊆ BΓIΓL.
(2)⇒ (3) Clearly implication holds.
(3)⇒ (1) For a right ideal R and a left ideal L of S, by (3)
we have R∩S∩L⊆ RΓSΓL . Hence R∩L⊆ RΓSΓL⊆ RΓL.
But always RΓL ⊆ R∩L holds. Thus we get RΓL = R∩L .
Therefore S is a regular Γ-semiring (see Theorem 3.2 in [3]).
(1)⇒ (4) Let a ∈ B∩ I ∩R. Hence a ∈ aΓSΓa. Therefore
aΓSΓa ⊆ (aΓSΓa)ΓSΓ(aΓSΓa) ⊆ RΓ(SΓIΓS)Γ(BΓSΓB) ⊆
RΓIΓB. Hence B∩ I∩R⊆ RΓIΓB.
(4)⇒ (5) Clearly implication follows.
(5)⇒ (1) For a right ideal R and a left ideal L of S, by (5) we
have L∩S∩R⊆ RΓSΓL . Hence R∩L⊆ RΓSΓL⊆ RΓL. But
always RΓL ⊆ R∩L. Therefore R∩L = RΓL. Hence S is a
regular Γ-semiring (see Theorem 3.2 in [3]).

Theorem 2.14. In an intra-regular Γ-semiring an ideal and
an interior ideal coincide.

Proof. Let S be an intra-regular Γ-semiring. If a non-empty
subset I of S is an ideal of S, then clearly I is an interior ideal
of S. Suppose that a non-empty subset I of S is an interior ideal
of S. Hence I ⊆ SΓIΓIΓS. Therefore SΓI ⊆ SΓ(SΓIΓIΓS)⊆
SΓIΓS⊆ I and IΓS⊆ (SΓIΓIΓS)ΓS⊆ SΓIΓS⊆ I. Hence I is
an ideal of S.

Definition 2.15. An interior ideal I of S is semiprime if for
any interior ideal A of S, A2 = AΓA⊆ I implies A⊆ I.

Definition 2.16. An interior ideal I of S is completely semiprime
if for any a ∈ S, aΓa⊆ I implies a ∈ I.

Theorem 2.17. In an intra-regular Γ-semiring a proper inte-
rior ideal is semiprime.

Proof. Let S be an intra-regular Γ-semiring and P be a proper
interior ideal of S. Take A is any interior ideal of S such
that AΓA⊆ P. For any a ∈ A, we have a ∈ SΓaΓaΓS. Hence
SΓaΓaΓS⊆ SΓAΓAΓS⊆ SΓPΓS⊆ P. Thus A⊆ P. Therefore
P is a semiprime interior ideal of S.

Theorem 2.18. S is intra-regular if and only if each interior
ideal of S is completely semiprime.

Proof. Suppose that S is intra-regular. Let P be a proper
interior ideal of S. For any element a of S , aΓa ⊆ P. Then
we have a ∈ SΓaΓaΓS. Therefore SΓaΓaΓS ⊆ SΓPΓS ⊆ P.
Hence a ∈ P. Therefore P is a completely semiprime interior
ideal of S. Conversely, assume that each interior ideal of S is
completely semiprime. Take any a ∈ S. We have SΓaΓaΓS

is an interior ideal of S. Therefore by assumption SΓaΓaΓS
is completely semiprime. Hence (aΓa)Γ(aΓa) ⊆ SΓaΓaΓS
implies aΓa ⊆ SΓaΓaΓS . Hence a ∈ SΓaΓaΓS. Hence S is
intra-regular.

Theorem 2.19. If S is regular, then S is duo if and only if
every bi-ideal of S is an ideal of S.

Theorem 2.20. If S is regular, then a non-empty subset of S
is an ideal if and only if it is an interior ideal.

Proof. Let S be regular. If a non-empty subset I of S is an
ideal of S, then I is an interior ideal of S. Conversely, suppose
that a non-empty subset I of S is an interior ideal of S. Hence
I ⊆ IΓSΓI. Therefore SΓI ⊆ SΓ(IΓSΓI) ⊆ SΓIΓS ⊆ I and
IΓS ⊆ (IΓSΓI)ΓS ⊆ SΓIΓS ⊆ I. Therefore I is an ideal of
S.

From Theorems 2.19 and 2.20 we have,

Theorem 2.21. If S is regular and duo, then a non-empty
subset of S is a bi-ideal if and only if it is an interior ideal.

Corollary 2.22. If S is regular and duo, then a non-empty
subset of S is a quasi-ideal if and only if it is an interior ideal.

3. Interior-Simple Γ-semiring
Definition 3.1. S is said to be an interior-simple Γ-semiring
if S has no non zero proper interior ideal.

That is S is an interior-simple Γ-semiring if S and {0} are
the only interior ideal of S.

Theorem 3.2. In S following statements are equivalent.
1) S is an interior-simple Γ-semiring.
2) SΓaΓS = S, for all 0 6= a ∈ S.
3) (a)i = S, for all 0 6= a ∈ S.

Proof. (1)⇒ (2) Suppose that S is an interior-simple Γ-semiring.
For any 0 6= a∈ S, SΓaΓS is an interior ideal of S and SΓaΓS⊆
S. Hence S = SΓaΓS.
(2)⇒ (1) suppose that S = SΓaΓS, for 0 6= a ∈ S. Let I be
an interior ideal of S. For any 0 6= b ∈ I, S = SΓbΓS by (2).
Hence SΓbΓS ⊆ SΓIΓS ⊆ I. Therefore S ⊆ I. Thus S = I.
Hence S is an interior-simple Γ-semiring.
(1)⇒ (3) Suppose that S be an interior-simple Γ-semiring.
For any 0 6= a ∈ S, (a)i = N0a+ SΓaΓS. But SΓaΓS = S.
Therefore (a)i = N0a+S⊆ S. By (1), we have (a)i = S.
(3)⇒ (1) let I be an interior ideal of S. Then for any 0 6= a∈ I,
(a)i = S by (3). Hence S = (a)i ⊆ I. Therefore I = S. Hence
S is an interior-simple Γ-semiring.

Theorem 3.3. Let I be an interior ideal and T be a sub-Γ-
semiring of S. If T is interior-simple with T\{0}∩ I 6= φ , then
T ⊆ I.

Proof. Let T be an interior-simple Γ-semiring with T\{0}∩
I 6= φ and a ∈ T\{0}∩ I. Hence T ΓaΓT = T by Theorem
3.2. Therefore T = T ΓaΓT ⊆ T ΓIΓT ⊆ SΓIΓS ⊆ I. Thus
T ⊆ I.
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4. Minimal Interior Ideals
Definition 4.1. An interior ideal I of S is said to be a minimal
interior ideal of S if I does not contain any other proper non
zero interior ideal of S.

Theorem 4.2. If I is an interior ideal of S , then following
statements are equivalent.
(1) I is a minimal interior ideal of S.
(2) I = SΓaΓS, for all 0 6= a ∈ I.
(3) I = (a)i, for all 0 6= a ∈ I.

Proof. Let I be an interior ideal of S.
(1)⇒ (2) Let 0 6= a ∈ I. Therefore SΓaΓS⊆ SΓIΓS⊆ I. But
SΓaΓS is an interior ideal of S. Therefore we have, I = SΓaΓS.
(2)⇒ (1) Let J be any interior ideal of S contained in I. For
any 0 6= a∈ J, I = SΓaΓS. I = SΓaΓS⊆ SΓJΓS⊆ J.Therefore
we have I = J. Hence I is a minimal interior ideal of S.
(1)⇒ (3) Take any 0 6= a ∈ I. Then (a)i ⊆ I. But I is a
minimal interior ideal of S. Hence we have I = (a)i.
(3)⇒ (1) Let J be any interior ideal of S contained in I. For
any 0 6= x ∈ J, I = (x)i. I = (x)i ⊆ J. Therefore I = J. Hence
I is a minimal interior ideal of S.

Theorem 4.3. A proper interior ideal of S is minimal if and
only if the intersection of any two distinct proper interior
ideals is empty.

Proof. Assume that any proper interior ideal of S is minimal.
Let A and B be any two distinct proper interior ideals of S.
Suppose that A∩B 6= φ . Therefore A∩B is an interior ideal of
S. Then we have A∩B⊆ A and A∩B⊆ B. But by hypothesis
A and B are minimal interior ideals of S. Therefore A∩B = A
and A∩B = B. Thus we get A = B, which is a contradiction.
Therefore A∩B = φ . Conversely, assume that the intersection
of any two distinct proper interior ideals is empty. Then no
any proper interior ideal of S is contained in any other proper
interior ideal. That is each proper interior ideal of S is a
minimal interior ideal of S.

Theorem 4.4. Let R be a minimal right ideal and L be a
minimal left ideal of a duo Γ-semiring S , then LΓR is a
minimal interior ideal of S.

Proof. Let R be a minimal right ideal and L be a minimal
left ideal of a duo Γ-semiring S. Take I = LΓR. Therefore
SΓ(LΓR)ΓS ⊆ LΓR. Hence I = LΓR is an interior ideal of
S. Let J be an interior ideal of S such that J ⊆ I. Since,
SΓJ is a left ideal and JΓS is a right ideal of S. Then SΓJ ⊆
SΓI = SΓLΓR ⊆ L. Similarly we can show that JΓS ⊆ R.
But L is a minimal left ideal and R is a minimal right ideal
of S . Therefore SΓJ = L and JΓS = R. Hence I = LΓR =
SΓJΓJΓS ⊆ SΓJΓS ⊆ J. Thus we get I = J. Therefore I =
LΓR is a minimal interior ideal of S.

Theorem 4.5. If I is an interior ideal of S , then I is a minimal
interior ideal of S if and only if (a)i = (b)i, for all 0 6= a,0 6=
b ∈ I.

Proof. Assume that I is a minimal interior ideal of S. Take any
0 6= a,0 6= b∈ I. Hence by Theorem 4.2, I = (a)i and I = (b)i.
Therefore (a)i = (b)i, for all 0 6= a,0 6= b ∈ I. Conversely
assume that (a)i = (b)i, for all 0 6= a,0 6= b ∈ I. Let J be any
interior ideal of S such that J ⊆ I. Let 0 6= x ∈ J. For any
0 6= y ∈ I, we have (x)i = (y)i. Since y ∈ (y)i always. Hence
y ∈ (x)i ⊆ J. Therefore I ⊆ J. Thus we get I = J. Hence I is
a minimal interior ideal of S.

Definition 4.6. The Green’s relation L R, and H on S are
defined as follows
(1) aLb if and only if (a)l = (b)l .
(2) aRb if and only if (a)r = (b)r.
(3) H= L∩R.

Definition 4.7. A Green’s relation T on S is defined as for
any a,b ∈ S, aTb if and only if (a) = (b).

Definition 4.8. A relation I on S is defined as for any a,b∈ S,
aIb if and only if (a)i = (b)i.

Remark 4.9. T⊆ I

Theorem 4.10. If I is an interior ideal of S, then I is a minimal
interior ideal of S if and only if I is a I-class.

Proof. Let I be an interior ideal of S. Assume that I is a
minimal interior ideal of S. Take any 0 6= a,0 6= b ∈ I. Hence
by Theorem 4.2, I = (a)i and I = (b)i. Therefore (a)i =
(b)i.This shows that aIb. Thus I is a I class. Conversely
assume that I is a I class. Then we have, (a)i = (b)i, for all
a,b ∈ I. Therefore (a)i = (b)i, for all 0 6= a,0 6= b ∈ I. Hence
by the Theorem 4.5, I is a minimal interior ideal of S.

Theorem 4.11. If S is regular, then T= I.

Proof. Let S be a regular Γ-semiring. For any a,b ∈ S,aIb.
Therefore (a)i = (b)i. Hence by Theorem 2.20, (a) = (b).
Therefore aTb. Hence I⊆ T. But T⊆ I always. Thus we get
T= I.

Proof of following theorem follows from proof of Theorem
4.11

Theorem 4.12. If S is intra-regular, then T= I.

From Theorem 4.10 and Theorem 4.11 we have

Theorem 4.13. If S is regular and I is an interior ideal of S,
then I is a minimal interior ideal of S if and only if I is a T
class.
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