

https://doi.org/10.26637/MJM0604/0005

Interior ideals in Γ-semirings

R.D. Jagatap^{1*}

Abstract

The concepts of an interior ideal, minimal interior ideal and an interior-simple Γ -semiring are defined. Various properties of an interior ideal and minimal interior ideal of a Γ -semiring are studied. Some characterizations of a minimal interior ideal and an interior-simple Γ -semiring are discussed.

Keywords

Interior ideal, minimal interior ideal, interior-simple Γ -semiring, regular Γ -semiring, intra-regular Γ -semiring.

AMS Subject Classification

16Y60, 16Y99.

¹Department of Mathematics, Y.C.College of Science, Karad-415124, Maharashtra, India. *Corresponding author: jagatapravindra@gmail.com Article History: Received 24 July 2018; Accepted 17 September 2018

©2018 MJM.

Contents

1	Introduction
2	Interior Ideals731
3	Interior-Simple Γ -semiring
4	Minimal Interior Ideals734
	References

1. Introduction

Γ-semiring is a generalization of a semiring. Rao [7] defined and studied Γ-semiring. Dutta and Sardar [1] studied different types of ideals in a Γ-semiring. Quasi-ideals and bi-ideals in a Γ-semiring were studied by Author [2–4]. Lajos [6] defined the concept of an interior ideal in a semigroup. Interior ideal in a semigroup was studied by Szasz [8, 9]. Interior ideals in ordered semigroups and the interior ideal elements in poe-semigroups were discussed by Kehayopulu [5].

The concepts of an interior ideal and minimal interior ideal in a Γ -semiring are introduced in this paper. Some properties of an interior ideal and minimal interior ideal of a Γ -semiring are proved. Some characterizations of a minimal interior ideal are studied. Also the notion of an interior-simple Γ semiring is defined. Some properties and characterizations of an interior-simple Γ -semiring are furnished. For the concepts in a Γ -semiring see Dutta and Sardar [1] and Jagatap and Pawar [2, 4].

Now onwards *S* denotes a Γ -semiring with absorbing zero unless otherwise stated.

2. Interior Ideals

Here we define the notion of an interior ideal of a Γ -semiring *S*.

Definition 2.1. A non-empty subset I of a Γ -semiring S is an interior ideal of S if I is an additive subsemigroup of S and $S\Gamma I\Gamma S \subseteq I$.

Example : Let $S = \{0, 1, 2, 3, 4\}$. Define two binary operations + and \cdot on *S* as follows:

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	2
2	2	3	4	2	3
3	3	4	2	3	4
4	4	3	2	4	2

•	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	3	2
3	0	3	3	3	3
4	0	4	2	3	4

For $\Gamma = S$, both *S* and Γ are additive commutative semigroups. A mapping $S \times \Gamma \times S \to S$ is defined as $a\alpha b =$ usual product of a, α, b ; for all $a, b \in S$ and $\alpha \in \Gamma$. Then *S* forms a Γ -semiring. {0}, {0,3}, {0,2,3,4} and *S* are interior ideals of *S*.

Remark 2.2. *Every ideal is an interior ideal of S but not conversely.*

For this consider the following example.

Example : Let $S = \{a, b, c, d\}$. Two binary operations + and \cdot are defined on *S* such as

+	а	b	c	d
a	а	c	b	d
b	c	d	d	d
c	b	d	d	d
d	d	d	d	d
	а	b	c	d
a	а	c	b	d
b	c	d	d	d
c	b	d	d	d
d	d	d	d	d

For $\Gamma = S$, both *S* and Γ are additive commutative semigroups. A mapping $S \times \Gamma \times S \to S$ is defined as $x\alpha y =$ usual product of x, α, y ; for all $x, y \in S$ and $\alpha \in \Gamma$. Then *S* forms a Γ -semiring. Here $\{b, d\}$ and $\{c, d\}$ are interior ideals of *S*. But $\{b, d\}$ and $\{c, d\}$ are neither left ideals nor right ideals of *S*.

Theorem 2.3. Let X be any non-empty subset of S. Then $S\Gamma X\Gamma S$ is an interior ideal of S.

Corollary 2.4. If $a \in S$, then $S\Gamma a\Gamma S$ is an interior ideal of S.

Theorem 2.5. Let X be any non-empty subset of S. Then $(X)_i = N_0 X + S\Gamma X\Gamma S$, where N_0 is the set of non-negative integers.

Proof. Let $T = N_0 X + S \Gamma X \Gamma S$. For any $x \in X$, $x = 1x + 0 \in$ $N_0X + S\Gamma X\Gamma S = T$. Therefore $X \subseteq T$. Let $a, b \in T = N_0X + C$ STXTS. Hence we have $a = a_1 + a_2$, $b = b_1 + b_2$; $a_1, b_1 \in$ $N_0X, a_2, b_2 \in S\Gamma X \Gamma S$. Therefore $a_1 = \sum_{i=1}^p n_i x_i, n_i \in N_0, x_i \in N_0$ X and $b_1 = \sum_{j=1}^q m_j y_j, m_j \in N_0, y_j \in X$. Hence $a_1 + b_1 =$ $\sum_{i=1}^{p} n_i x_i + \sum_{j=1}^{q} m_j y_j$. This shows that $a_1 + b_1 \in N_0 X$. Clearly $a_2 + b_2 \in S\Gamma X\Gamma S$. Now $a + b = (a_1 + a_2) + (b_1 + b_2) =$ $(a_1+b_1)+(a_2+b_2) \in N_0X+S\Gamma X\Gamma S=T$. Therefore T is an additive subsemigroup of S. Then $S\Gamma T\Gamma S = S\Gamma (N_0 X +$ $S\Gamma X\Gamma S$) $\Gamma S \subseteq N_0(S\Gamma X\Gamma S) + S\Gamma X\Gamma S \subseteq S\Gamma X\Gamma S \subseteq T$. Therefore T is an interior ideal of S. Let M be an interior ideal of *S* containing *X*. Then we have $N_0X \subseteq M$, $S\Gamma X \Gamma S \subseteq M$. Therefore $T = N_0 X + S \Gamma X \Gamma S \subseteq M$. This shows that T is the smallest ideal of S containing X. Hence $T = (X)_i =$ $N_0X + S\Gamma X\Gamma S.$

Corollary 2.6. If $a \in S$, then $(a)_i = N_0 a + S \Gamma a \Gamma S$.

Theorem 2.7. Arbitrary Intersection of interior ideals of *S* is an interior ideal of *S* provided it is non-empty.

Proof. Let $\{A_i\}_{i \in \Delta}$ (Δ denotes any indexing set) be the family of interior ideals of *S* and $T = \bigcap_{i \in \Delta} A_i$ be a non-empty set. Clearly *T* is a subsemigroup of (S,+). Therefore $S\Gamma T\Gamma S = S\Gamma(\bigcap_{i \in \Delta} A_i) \Gamma S \subseteq S\Gamma A_i \Gamma S \subseteq A_i$, for all $i \in \Delta$. Hence $S\Gamma T\Gamma S \subseteq \bigcap_{i \in \Delta} A_i$. Therefore $T = \bigcap_{i \in \Delta} A_i$ is an interior ideal of *S*. \Box

Corollary 2.8. The set of all interior ideals of S forms a Moore family.

Theorem 2.9. If I is an interior ideal and T is a sub- Γ -semiring of S, then $I \cap T$ is an interior ideal of T.

Proof. Let *I* be an interior ideal and *T* be a sub- Γ -semiring of *S*. Then clearly $I \cap T$ is a subsemigroup of (T, +). Therefore $T\Gamma(I \cap T)\Gamma T \subseteq T\Gamma I\Gamma T \subseteq I$. Also $T\Gamma(I \cap T)\Gamma T \subseteq T\Gamma T\Gamma T \subseteq T$. Hence $T\Gamma(I \cap T)\Gamma T \subseteq I \cap T$. Hence $I \cap T$ is an interior ideal of *T*.

Theorem 2.10. If S is regular, then $I = S\Gamma I\Gamma S$, for every interior ideal I of S.

Proof. Let *S* be regular and *I* be an interior-ideal of *S*. Take any $a \in I$. Therefore $a \in a\Gamma S\Gamma a$. Hence $a\Gamma S\Gamma a \subseteq (a\Gamma S\Gamma a)\Gamma S\Gamma a \subseteq S\Gamma I\Gamma S$. Thus $I \subseteq S\Gamma I\Gamma S$. But $S\Gamma I\Gamma S \subseteq I$ always. Therefore $I = S\Gamma I\Gamma S$. \Box

Theorem 2.11. Following statements are equivalent in *S*. *1*) *S* is regular.

2) For a quasi ideal Q and an ideal J of S, $Q \cap J = Q\Gamma J\Gamma Q$. 3) For a quasi ideal Q and an interior ideal I of S, $Q \cap I = Q\Gamma I\Gamma Q$.

Proof. (1) \Rightarrow (2) Let Q be a quasi-ideal and J be an ideal of S. Now $Q\Gamma J\Gamma Q \subseteq Q\Gamma S\Gamma Q \subseteq Q$ and $Q\Gamma J\Gamma Q \subseteq J$. Hence $Q\Gamma J\Gamma Q \subseteq Q \cap J$. Take any $a \in Q \cap J$. Therefore $a \in a\Gamma S\Gamma a$. Hence $a\Gamma S\Gamma a \subseteq (a\Gamma S\Gamma a)\Gamma S\Gamma (a\Gamma S\Gamma a) \subseteq (Q\Gamma S\Gamma Q)\Gamma (S\Gamma J\Gamma S)\Gamma Q \subseteq Q\Gamma J\Gamma Q$. Thus we get $Q \cap J \subseteq Q\Gamma J\Gamma Q$. Therefore $Q\Gamma J\Gamma Q = Q \cap J$.

 $(2) \Rightarrow (3)$ Implication holds, since every ideal is an interior ideal, .

(3) \Rightarrow (1) Take *Q* be any quasi-ideal of *S*. Therefore by (3), $Q\Gamma S\Gamma Q = Q \cap S$. Hence $Q\Gamma S\Gamma Q = Q$. Therefore *S* is regular (see Theorem 3.2 in [3]).

Theorem 2.12. Following conditions are equivalent in *S*. *1*) *S* is regular.

2) For an interior ideal I and a bi-ideal B of S, $I \cap B = B\Gamma I\Gamma B$. 3) For an interior ideal I and a quasi-ideal Q of S, $I \cap Q = Q\Gamma I\Gamma Q$.

Proof. (1) \Rightarrow (2) Let *B* be a bi-ideal and *I* be an interior ideal of *S*. Now $B\Gamma I\Gamma B \subseteq B\Gamma S\Gamma B \subseteq B$. Therefore $B\Gamma I\Gamma B \subseteq S\Gamma I\Gamma S \subseteq I$. Hence we get $B\Gamma I\Gamma B \subseteq B \cap I$. Let $a \in B \cap I$. Hence $a \in a\Gamma S\Gamma a$. Therefore $a\Gamma S\Gamma a \subseteq (a\Gamma S\Gamma a)\Gamma S\Gamma (a\Gamma S\Gamma a) \subseteq (B\Gamma S\Gamma B)\Gamma (S\Gamma I\Gamma S)\Gamma B \subseteq B\Gamma I\Gamma B$. Thus $B \cap I \subseteq B\Gamma S\Gamma B$. Hence $B\Gamma S\Gamma B = B \cap I$.

(2) \Rightarrow (3) As every quasi-ideal is a bi-ideal, implication holds. (3) \Rightarrow (1) Let *Q* be a quasi-ideal of *S*. By (3), $Q\Gamma S\Gamma Q = Q \cap S$, since *S* itself is an interior ideal. Hence $Q\Gamma S\Gamma Q = Q$. Therefore *S* is regular (see Theorem 3.2 in [3]).

Theorem 2.13. Following statements in S are equivalent. 1) S is regular.

2) $B \cap I \cap L \subseteq B \cap I \cap L$, for a bi-ideal B, left ideal L and interior ideal I of S.

3) $Q \cap I \cap L \subseteq Q \cap I \cap L$, for a quasi-ideal Q, left ideal L and interior ideal I of S,.

4) $B \cap I \cap R \subseteq R\Gamma I\Gamma B$, for a bi-ideal B, right ideal R and interior ideal I of S.

5) $Q \cap I \cap R \subseteq R \cap I \cap Q$, for a quasi-ideal Q, right ideal R and interior ideal I of S.

Proof. (1) \Rightarrow (2) Take any $a \in B \cap I \cap L$. Therefore $a \in a \Gamma S \Gamma a$. Hence

 $a\Gamma S\Gamma a \subseteq (a\Gamma S\Gamma a)\Gamma S\Gamma (a\Gamma S\Gamma a) \subseteq (B\Gamma S\Gamma B)\Gamma (S\Gamma I\Gamma S)\Gamma L \subseteq B\Gamma I\Gamma L$. Thus we get $B \cap I \cap L \subseteq B\Gamma I\Gamma L$.

 $(2) \Rightarrow (3)$ Clearly implication holds.

 $(3) \Rightarrow (1)$ For a right ideal *R* and a left ideal *L* of *S*, by (3) we have $R \cap S \cap L \subseteq R\Gamma S\Gamma L$. Hence $R \cap L \subseteq R\Gamma S\Gamma L \subseteq R\Gamma L$. But always $R\Gamma L \subseteq R \cap L$ holds. Thus we get $R\Gamma L = R \cap L$. Therefore *S* is a regular Γ -semiring (see Theorem 3.2 in [3]). $(1) \Rightarrow (4)$ Let $a \in B \cap I \cap R$. Hence $a \in a\Gamma S\Gamma a$. Therefore $a\Gamma S\Gamma a \subseteq (a\Gamma S\Gamma a)\Gamma S\Gamma (a\Gamma S\Gamma a) \subseteq R\Gamma (S\Gamma I\Gamma S)\Gamma (B\Gamma S\Gamma B) \subseteq$ $R\Gamma I\Gamma B$. Hence $B \cap I \cap R \subseteq R\Gamma I\Gamma B$.

 $(4) \Rightarrow (5)$ Clearly implication follows.

(5) \Rightarrow (1) For a right ideal *R* and a left ideal *L* of *S*, by (5) we have $L \cap S \cap R \subseteq R \Gamma S \Gamma L$. Hence $R \cap L \subseteq R \Gamma S \Gamma L \subseteq R \Gamma L$. But always $R \Gamma L \subseteq R \cap L$. Therefore $R \cap L = R \Gamma L$. Hence *S* is a regular Γ -semiring (see Theorem 3.2 in [3]).

Theorem 2.14. In an intra-regular Γ -semiring an ideal and an interior ideal coincide.

Proof. Let *S* be an intra-regular Γ -semiring. If a non-empty subset *I* of *S* is an ideal of *S*, then clearly *I* is an interior ideal of *S*. Suppose that a non-empty subset *I* of *S* is an interior ideal of *S*. Hence $I \subseteq S\Gamma I\Gamma I\Gamma S$. Therefore $S\Gamma I \subseteq S\Gamma (S\Gamma I\Gamma I\Gamma S) \subseteq S\Gamma I\Gamma S \subseteq I$ and $I\Gamma S \subseteq (S\Gamma I\Gamma I\Gamma S)\Gamma S \subseteq S\Gamma I\Gamma S \subseteq I$. Hence *I* is an ideal of *S*.

Definition 2.15. An interior ideal I of S is semiprime if for any interior ideal A of S, $A^2 = A\Gamma A \subseteq I$ implies $A \subseteq I$.

Definition 2.16. An interior ideal *I* of *S* is completely semiprime if for any $a \in S$, $a\Gamma a \subseteq I$ implies $a \in I$.

Theorem 2.17. In an intra-regular Γ -semiring a proper interior ideal is semiprime.

Proof. Let *S* be an intra-regular Γ -semiring and *P* be a proper interior ideal of *S*. Take *A* is any interior ideal of *S* such that $A\Gamma A \subseteq P$. For any $a \in A$, we have $a \in S\Gamma a\Gamma a\Gamma S$. Hence $S\Gamma a\Gamma a\Gamma S \subseteq S\Gamma A\Gamma A\Gamma S \subseteq S\Gamma P\Gamma S \subseteq P$. Thus $A \subseteq P$. Therefore *P* is a semiprime interior ideal of *S*.

Theorem 2.18. *S* is intra-regular if and only if each interior ideal of S is completely semiprime.

Proof. Suppose that *S* is intra-regular. Let *P* be a proper interior ideal of *S*. For any element *a* of *S*, $a\Gamma a \subseteq P$. Then we have $a \in S\Gamma a\Gamma a\Gamma S$. Therefore $S\Gamma a\Gamma a\Gamma S \subseteq S\Gamma P\Gamma S \subseteq P$. Hence $a \in P$. Therefore *P* is a completely semiprime interior ideal of *S*. Conversely, assume that each interior ideal of *S* is completely semiprime. Take any $a \in S$. We have $S\Gamma a\Gamma a\Gamma S$

is an interior ideal of *S*. Therefore by assumption $S\Gamma a\Gamma a\Gamma S$ is completely semiprime. Hence $(a\Gamma a)\Gamma(a\Gamma a) \subseteq S\Gamma a\Gamma a\Gamma S$ implies $a\Gamma a \subseteq S\Gamma a\Gamma a\Gamma S$. Hence $a \in S\Gamma a\Gamma a\Gamma S$. Hence *S* is intra-regular.

Theorem 2.19. If S is regular, then S is duo if and only if every bi-ideal of S is an ideal of S.

Theorem 2.20. If *S* is regular, then a non-empty subset of *S* is an ideal if and only if it is an interior ideal.

Proof. Let *S* be regular. If a non-empty subset *I* of *S* is an ideal of *S*, then *I* is an interior ideal of *S*. Conversely, suppose that a non-empty subset *I* of *S* is an interior ideal of *S*. Hence $I \subseteq I\Gamma S\Gamma I$. Therefore $S\Gamma I \subseteq S\Gamma(I\Gamma S\Gamma I) \subseteq S\Gamma I\Gamma S \subseteq I$ and $I\Gamma S \subseteq (I\Gamma S\Gamma I)\Gamma S \subseteq S\Gamma I\Gamma S \subseteq I$. Therefore *I* is an ideal of *S*.

From Theorems 2.19 and 2.20 we have,

Theorem 2.21. *If S is regular and duo, then a non-empty subset of S is a bi-ideal if and only if it is an interior ideal.*

Corollary 2.22. If *S* is regular and duo, then a non-empty subset of *S* is a quasi-ideal if and only if it is an interior ideal.

3. Interior-Simple Γ-semiring

Definition 3.1. *S* is said to be an interior-simple Γ -semiring if *S* has no non zero proper interior ideal.

That is *S* is an interior-simple Γ -semiring if *S* and $\{0\}$ are the only interior ideal of *S*.

Theorem 3.2. In S following statements are equivalent.

1) *S* is an interior-simple Γ -semiring. 2) $S\Gamma a\Gamma S = S$, for all $0 \neq a \in S$.

3) $(a)_i = S$, for all $0 \neq a \in S$.

Proof. (1) \Rightarrow (2) Suppose that *S* is an interior-simple Γ -semiring. For any $0 \neq a \in S$, $S\Gamma a\Gamma S$ is an interior ideal of *S* and $S\Gamma a\Gamma S \subseteq S$. Hence $S = S\Gamma a\Gamma S$.

(2) \Rightarrow (1) suppose that $S = S\Gamma a\Gamma S$, for $0 \neq a \in S$. Let *I* be an interior ideal of *S*. For any $0 \neq b \in I$, $S = S\Gamma b\Gamma S$ by (2). Hence $S\Gamma b\Gamma S \subseteq S\Gamma I\Gamma S \subseteq I$. Therefore $S \subseteq I$. Thus S = I. Hence *S* is an interior-simple Γ -semiring.

(1) \Rightarrow (3) Suppose that *S* be an interior-simple Γ -semiring. For any $0 \neq a \in S$, $(a)_i = N_0 a + S\Gamma a\Gamma S$. But $S\Gamma a\Gamma S = S$. Therefore $(a)_i = N_0 a + S \subseteq S$. By (1), we have $(a)_i = S$. (3) \Rightarrow (1) let *I* be an interior ideal of *S*. Then for any $0 \neq a \in I$, $(a)_i = S$ by (3). Hence $S = (a)_i \subseteq I$. Therefore I = S. Hence

 $(a)_i = 5$ by (5). Hence $S = (a)_i \subseteq T$. Therefore T = S. Hence S is an interior-simple Γ -semiring.

Theorem 3.3. Let *I* be an interior ideal and *T* be a sub- Γ -semiring of *S*. If *T* is interior-simple with $T \setminus \{0\} \cap I \neq \phi$, then $T \subseteq I$.

Proof. Let *T* be an interior-simple Γ -semiring with $T \setminus \{0\} \cap I \neq \phi$ and $a \in T \setminus \{0\} \cap I$. Hence $T\Gamma a\Gamma T = T$ by Theorem 3.2. Therefore $T = T\Gamma a\Gamma T \subseteq T\Gamma I\Gamma T \subseteq S\Gamma I\Gamma S \subseteq I$. Thus $T \subseteq I$.

4. Minimal Interior Ideals

Definition 4.1. An interior ideal I of S is said to be a minimal interior ideal of S if I does not contain any other proper non zero interior ideal of S.

Theorem 4.2. If I is an interior ideal of S, then following statements are equivalent.

(1) I is a minimal interior ideal of S. (2) $I = S\Gamma a\Gamma S$, for all $0 \neq a \in I$.

(3) $I = (a)_i$, for all $0 \neq a \in I$.

Proof. Let *I* be an interior ideal of *S*.

(1) \Rightarrow (2) Let $0 \neq a \in I$. Therefore $S\Gamma a\Gamma S \subseteq S\Gamma I\Gamma S \subseteq I$. But $S\Gamma a\Gamma S$ is an interior ideal of *S*. Therefore we have, $I = S\Gamma a\Gamma S$. (2) \Rightarrow (1) Let *J* be any interior ideal of *S* contained in *I*. For any $0 \neq a \in J$, $I = S\Gamma a\Gamma S$. $I = S\Gamma a\Gamma S \subseteq S\Gamma J\Gamma S \subseteq J$. Therefore we have I = J. Hence *I* is a minimal interior ideal of *S*.

(1) \Rightarrow (3) Take any $0 \neq a \in I$. Then $(a)_i \subseteq I$. But *I* is a minimal interior ideal of *S*. Hence we have $I = (a)_i$.

 $(3) \Rightarrow (1)$ Let *J* be any interior ideal of *S* contained in *I*. For any $0 \neq x \in J$, $I = (x)_i$. $I = (x)_i \subseteq J$. Therefore I = J. Hence *I* is a minimal interior ideal of *S*.

Theorem 4.3. A proper interior ideal of *S* is minimal if and only if the intersection of any two distinct proper interior ideals is empty.

Proof. Assume that any proper interior ideal of *S* is minimal. Let *A* and *B* be any two distinct proper interior ideals of *S*. Suppose that $A \cap B \neq \phi$. Therefore $A \cap B$ is an interior ideal of *S*. Then we have $A \cap B \subseteq A$ and $A \cap B \subseteq B$. But by hypothesis *A* and *B* are minimal interior ideals of *S*. Therefore $A \cap B = A$ and $A \cap B = B$. Thus we get A = B, which is a contradiction. Therefore $A \cap B = \phi$. Conversely, assume that the intersection of any two distinct proper interior ideals is empty. Then no any proper interior ideal of *S* is contained in any other proper interior ideal. That is each proper interior ideal of *S* is a minimal interior ideal of *S*.

Theorem 4.4. Let *R* be a minimal right ideal and *L* be a minimal left ideal of a duo Γ -semiring *S*, then $L\Gamma R$ is a minimal interior ideal of *S*.

Proof. Let *R* be a minimal right ideal and *L* be a minimal left ideal of a duo Γ -semiring *S*. Take $I = L\Gamma R$. Therefore $S\Gamma(L\Gamma R)\Gamma S \subseteq L\Gamma R$. Hence $I = L\Gamma R$ is an interior ideal of *S*. Let *J* be an interior ideal of *S* such that $J \subseteq I$. Since, $S\Gamma J$ is a left ideal and $J\Gamma S$ is a right ideal of *S*. Then $S\Gamma J \subseteq S\Gamma I = S\Gamma L\Gamma R \subseteq L$. Similarly we can show that $J\Gamma S \subseteq R$. But *L* is a minimal left ideal and R is a minimal right ideal of *S*. Therefore $S\Gamma J = L$ and $J\Gamma S = R$. Hence $I = L\Gamma R = S\Gamma J\Gamma J\Gamma S \subseteq S\Gamma J\Gamma S \subseteq J$. Thus we get I = J. Therefore $I = L\Gamma R$ is a minimal interior ideal of *S*.

Theorem 4.5. If *I* is an interior ideal of *S*, then *I* is a minimal interior ideal of *S* if and only if $(a)_i = (b)_i$, for all $0 \neq a, 0 \neq b \in I$.

Proof. Assume that *I* is a minimal interior ideal of *S*. Take any $0 \neq a, 0 \neq b \in I$. Hence by Theorem 4.2, $I = (a)_i$ and $I = (b)_i$. Therefore $(a)_i = (b)_i$, for all $0 \neq a, 0 \neq b \in I$. Conversely assume that $(a)_i = (b)_i$, for all $0 \neq a, 0 \neq b \in I$. Let *J* be any interior ideal of *S* such that $J \subseteq I$. Let $0 \neq x \in J$. For any $0 \neq y \in I$, we have $(x)_i = (y)_i$. Since $y \in (y)_i$ always. Hence $y \in (x)_i \subseteq J$. Therefore $I \subseteq J$. Thus we get I = J. Hence *I* is a minimal interior ideal of *S*.

Definition 4.6. The Green's relation \mathfrak{L} \mathfrak{R} , and \mathfrak{H} on S are defined as follows

(1) a𝔅b if and only if (a)_l = (b)_l.
(2) a𝔅b if and only if (a)_r = (b)_r.
(3) 𝔅 = 𝔅 ∩ 𝔅.

Definition 4.7. A Green's relation \mathfrak{T} on S is defined as for any $a, b \in S$, $a\mathfrak{T}b$ if and only if (a) = (b).

Definition 4.8. A relation \Im on S is defined as for any $a, b \in S$, $a\Im b$ if and only if $(a)_i = (b)_i$.

Remark 4.9. $\mathfrak{T} \subseteq \mathfrak{I}$

Theorem 4.10. If *I* is an interior ideal of *S*, then *I* is a minimal interior ideal of *S* if and only if *I* is a \Im -class.

Proof. Let *I* be an interior ideal of *S*. Assume that *I* is a minimal interior ideal of *S*. Take any $0 \neq a, 0 \neq b \in I$. Hence by Theorem 4.2, $I = (a)_i$ and $I = (b)_i$. Therefore $(a)_i = (b)_i$. This shows that $a\Im b$. Thus *I* is a \Im class. Conversely assume that *I* is a \Im class. Then we have, $(a)_i = (b)_i$, for all $a, b \in I$. Therefore $(a)_i = (b)_i$, for all $0 \neq a, 0 \neq b \in I$. Hence by the Theorem 4.5, *I* is a minimal interior ideal of *S*.

Theorem 4.11. If S is regular, then $\mathfrak{T} = \mathfrak{I}$.

Proof. Let *S* be a regular Γ -semiring. For any $a, b \in S, a\Im b$. Therefore $(a)_i = (b)_i$. Hence by Theorem 2.20, (a) = (b). Therefore $a\Im b$. Hence $\Im \subseteq \Im$. But $\Im \subseteq \Im$ always. Thus we get $\Im = \Im$.

Proof of following theorem follows from proof of Theorem 4.11

Theorem 4.12. If S is intra-regular, then $\mathfrak{T} = \mathfrak{I}$.

From Theorem 4.10 and Theorem 4.11 we have

Theorem 4.13. If S is regular and I is an interior ideal of S, then I is a minimal interior ideal of S if and only if I is a \mathfrak{T} class.

References

T.K. Dutta and S.K. Sardar, Semi-prime ideals and irreducible ideals of Γ-semiring, *Novi Sad Jour. Math.*, 30(1)(2000), 97–108.

- [2] R.D. Jagatap and Y.S. Pawar, Quasi-ideals and Minimal Quasi-ideals in Γ-semirings, *Novi Sad Jour. of Math.*, 39(2)(2009), 79–87.
- [3] R.D. Jagatap and Y.S. Pawar ,Quasi-ideals in Regular Γsemirings, Bull. Kerala Math. Asso., 6(2)(2010), 51–61.
- [4] R.D. Jagatap and Y.S. Pawar, Bi-ideals in Γ-semirings, Bulletin of the International Mathematical Virtual Institute, 6(2016), 169–179.
- [5] N. Kehayopulu, Interior ideals and interior ideal elements in ordered semigroups, *Pure Math. and Appl.*, 2(3)(1999), 407–409.
- [6] S. Lajos, (m;k;n)-ideals in semigroups. In: Notes on Semigroups II, Karl Marx Univ. Econ., Dept. Math. Budapest, 1(1976), 12–19.
- [7] M. M. K. Rao, Γ-semirings 1, Southeast Asian Bull. of Math., 19(1995), 49–54.
- [8] G.Szasz, Interior ideals in semigroups, In: Notes on semigroups IV, Karl Marx Univ. Econ., Dept. Math. Budapest, 5(1977), 1–7.
- [9] G.Szasz, Remark on interior ideals of semigroups, *Studia Scient. Math. Hung.*, 16(1981), 61–63.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********

