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Existence of mild solutions to partial neutral
differential equations with non-instantaneous
impulses
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Abstract
In this article, we study the existence of PC -mild solutions for the initial value problems for a class of semilinear
neutral equations. These equations have non-instantaneous impulses in Banach space and the corresponding
solution semigroup is noncompact. We assume that the nonlinear terms satisfies certain local growth condition
and a noncompactness measure condition. Also we assume the non-instantaneous impulsive functions satisfy
some Lipschitz conditions.
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1. Introduction
In this article, we study the existence of PC -mild so-

lutions for a class of partial neutral functional differential
equations with non-instantaneous impulses described by the
form

d
dt

[
x(t)−g(t,x(t))

]
= −Ax(t)+ f (t,x(t)),

t ∈ ∪n
k=0 (sk, tk+1],

x(t) = γk(t,x(t)),

t ∈ ∪n
k=1(tk,sk],

x(0) = x0, (1.1)

where A : D(A) ⊂ E → E is a closed linear operator, −A is
the infinitesimal generator of a strong continuous semigroup

(C0-semigroup) U(t)(t ≥ 0) on a Banach space E, 0 < t1 <
t2 < · · ·< tn < tn+1 := a, a > 0 is a constant, s0 := 0 and sk ∈
(tk, tk+1) for each k = 1,2, · · · ,n, f ,g : [0,a]×E→ E are ap-
propriate functions, γk : (tk,sk]×E→ E is non-instantaneous
impulsive neutral function for all k = 1,2, · · · ,n, x0 ∈ E.

In mathematical models for both physical sciences and
social sciences impulsive differential equations have became
more important in recent years. There are several process and
phenomena in the real world, which are subjected during their
development to the short-term external influences. At definite
points in time, many dynamic phenomena experience unfore-
seen instantaneous, quick healing exhibited by a jump in their
states. Their duration is negligible compared with the total
duration of the studies phenomena and process. Therefore, it
can be assumed that these external effects are “instantaneous”.
For more facts on the results and applications of impulsive
differential systems, one can refer to the books of Laksmikan-
tham [15] the papers [1, 2, 4, 5-7, 10, 12, 17, 18, 22, 24, 25]
and the references cited therein.

Neutral Differential Equations arise in many areas of sci-
ence and engineering have received much attention in the last
ten years. These models turned out to be very serviceable in
the situation where the system depends not only on the present
states but also on the past states. See the monograph of [11,
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19, 21, 22] and the references therein.
In 2013, Pierri et al [20] studied the existence of mild

solution for a class of semi-linear abstract differential equa-
tion with non-instantaneous impulses by using the theory of
analytic semigroup. By a compactness criterion a certain
class of functions, Colao et al [8] investigated the existence of
solutions for a second-order differential equations with non-
instantaneous impulses and delay on an unbounded interval.
Using the theory of semigroup and fixed point methods, Yu
and Wang [25] discussed the existence of solution to periodic
boundary value problems for nonlinear evolution equation
with non-instantaneous impulses on Banach space. The moti-
vation of this article is as follows: to the best of the authors
knowledge, (see, for example [5, 8, 11, 20, 23]) used various
fixed point theorems to study the existence results of evo-
lution equations with non-instantaneous impulses when the
corresponding semigroup U(t)(t ≥ 0) is compact, this is con-
venient to the equations with compact resolvent. But for this
occurrence that the corresponding semigroup U(t)(t ≥ 0) is
noncompact. Therefore, we study the existence of PC -mild
solution for (1.1) under the assumption that the corresponding
solution semigroup is noncompact by using the properties of
Kuratowski measure of noncompactness, k-set-contraction
mapping fixed point theorem and the measure of noncompact-
ness.

Section 2 provides the definitions and preliminary results
to be used in this article. In section 3, the existence of PC -
mild solution of partial neutral differential equations with
non-instantaneous impulses is established.

2. Preliminaries
Let E be a Banach space with the norm ‖ · ‖. We use θ to

present the zero element in E. For any costant a > 0, denote
D = [0,a]. Let C(D,E) be the Banach space of all continuous
functions from D into E endowed with the supremum-norm
‖x‖C = supt∈D ‖x(t)‖ for every x ∈C(D,E). From the asso-
ciate literature, we consider the following space of piecewise
continuous functions,

PC (D,E) = {x : D→ E : x is continuous for t 6= tk,
left continuous at t = tk and x(t+k ) exists for k = 1,2, · · · ,n}.

It is easy to see that PC (D,E) is Banach space endowed
with PC -norms

‖x‖PC =max
{

sup
t∈D
‖x(t+)‖, sup

t∈D
‖x(t−)‖

}
, x∈PC (D,E),

where x(t+) and x(t−) represent respectively the right and left
limits of x(t) at t ∈ D. For each finite constant r > 0, let

Ωr = {x ∈PC (D,E) : ‖x(t)‖ ≤ r, t ∈ D},

then Ωr is a bounded closed and convex set in PC (D,E).
Let L (E) be the Banach space of all linear and bounded

operators on E. Since the semigroup U(t)(t ≥ 0) generated

by −A is a C0-semigroup in E, denote

M := sup
t∈D
‖U(t)‖L (E) (2.1)

then M ≥ 1 is a finite number.

Definition 2.1. ([3, 9]). The Kuratowski measure of noncom-
pactness α(·) defined on bounded set S of Banach space E is

α(S) := inf
{

δ > 0 : S = ∪n
i=1Siwith; diam(Si)≤ δ

}
for i = 1,2, · · · ,n.

The following properties about the Kuratowski measure
of noncompactness are well known.

Lemma 2.2. ([3, 9]) Let E be a Banach space and S,T ⊂ E
be bounded. The following properties are satisfied:

(i) α(T ) = 0 if and only if T is compact, where T means
the closure hull of T;

(ii) α(T ) = α(T ) = α(convT ), where convT means the
convex hull of T;

(iii) α(λT ) = |λ |α(T ) for any λ ∈ R;

(iv) T ⊂ S implies α(T )≤ α(S);

(v) α(T ∪S) = max{α(T ),α(S)};

(vi) α(T +S)≤ α(T )+α(S),where
T +S = {u|u = v+w,v ∈ T,w ∈ S};

(vii) If the map F : D(Q) ⊂ E → X is Lipschitz continu-
ous with constant k, then α(F(Y )) ≤ kα(Y ) for any
bounded subset Y ⊂ D(Q), where X is another Banach
space.

In this article, we denote by α(·), αc(·) and αPC (·) the
Kuratowski measure of noncompactness on the bounded set
of E, C(D,E) and PC (D,E), respectively. For any D ⊂
C(D,E) and t ∈ D, set D(t) = {x(t) |x ∈ D} then D(t) ⊂ E.
If D ⊂ C(D,E) is bounded, then D(t) is bounded in E and
α(D(t)) ≤ αC(D). For more details about the properties of
the Kuratowski measure of noncompactness, we refer to [3, 9].

Definition 2.3. ([9]). Let E be a Banach space and T be
a nonempty subset of E. A continuous mapping F : T → E
is called to be k-set-contraction if there exists a constant
k ∈ [0,1) such that, for every bounded set Ω⊂ T ,

α(F(Ω))≤ kα(Ω).

Lemma 2.4. ([7, 16]). Let E be a Banach space, and let
D⊂ E be bounded. Then there exists a countable set D0 ⊂ D,
such that

α(D)≤ 2α(D0).
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Lemma 2.5. ([9]). Let E be a Banach space. Assume that
Ω⊂ E is a bounded closed and convex set on E, the operator
F : Ω→Ω is k-set-contractive. Then F has at least one fixed
point in Ω.

Lemma 2.6. ([13]). Let E be a Banach space, and let D=
{xn} ⊂PC ([b1,b2],E) be a bounded and countable set for
constants −∞ < b1 < b2 < +∞. Then α(D(t)) is Lebesgue
integral on [b1,b2], and

α

({∫ b2

b1

xn(t)dt : n ∈ N
})
≤ 2

∫ b2

b1

α(D(t))dt.

Lemma 2.7. ([3]). Let E Banach space, and let
D ⊂ C([b1,b2],E) be bounded and equicontinuous. Then
α(D(t)) is continuous on [b1,b2], and

αC(D) = max
t∈[b1,b2]

α(D(t)).

we give the definition of mild solution for (1.1) according
to the developments of Hernández and O’Regan [14].

Definition 2.8. A function x ∈PC (D,E) is called a mild
solution of (1.1) if x satisfies

x(t)=



g(t,x(t))+U(t)[x0−g(0,x0)]+
∫ t

0 U(t− s)
f (s,x(s))ds−

∫ t
0 AU(t− s)g(s,x(s))ds,

t ∈ [0, t1],
γk(t,x(t)), t ∈ (tk,sk], k = 1,2, · · · ,n.
g(t,x(t))+U(t− sk)[γk(sk,x(sk))

−g(sk,γk(sk,x(sk)))]+
∫ t

sk
U(t− s) f (s,x(s))ds

−
∫ t

sk
AU(t− s)g(s,x(s))ds, t ∈ (sk, tk+1],

k = 1,2, · · · ,n.

.

3. Main Results
To obtain the existence of PC -mild solution for (1.1), we

introduce the following hypotheses:

(H1) The nonlinear function f : D×E → E is continuous,
for some r > 0 there exists a constant ρ > 0, Lebesgue
integral function ϕ : D → [0,+∞) and a nondecreasing
continuous function Ψ : [0,+∞)→ (0,+∞) such that
for all t ∈ D and x ∈ E satisfying ‖x‖ ≤ r,

‖ f (t,x)‖ ≤ ϕ(t) Ψ(‖x‖)

and

lim inf
r→ +∞

Ψ(r)
r

= ρ < +∞.

(H2) The function g : D×E→ E satisfies:

(i) If x : [·, a] → E be such that x0 = φ and x ∈PC
then the function t→ g(t,x) belongs to PC and
t→ g(t,x) is strong measurable function.

(ii) The function g : D×E → E is continuous and
there exists a constant c1 > 0 such that,

‖g(t,x)‖E ≤ c1‖x‖E , ∀ (t,x) ∈ D×E.

(iii) The function g : D×E → E is continuous and
there exists a positive constant L > 0 such that,

‖g(t,x)−g(t,y)‖E ≤ L‖x− y‖E ,

∀ (t,x),(t,y) ∈ D×E.

(iv) There exists positive constant Pk (k = 0,1, · · · ,n)
such that for any countable set D⊂ E,

α(g(t,D))≤ Pk α(D), t ∈ (sk, tk+1],

k = 0,1, · · · ,n.

(H3) The impulsive function γk : [tk,sk]×E→ E is continu-
ous and there exists a constant Kγk > 0, k = 1,2 · · · ,n,
such that for all x,y ∈ E

‖γk(t,x)− γk(t,y)‖ ≤ Kγk‖x− y‖, ∀ t ∈ (tk,sk].

(H4) For every x ∈ E, the function t→U(t)x is continuous
from [0,∞) into E. Moreover, U(t)(E)⊂ D(A) for ev-
ery t > 0 and there exists a positive continuous function
γ ∈ L1([0,a]) such that,

‖AU(t)‖L (E) ≤ γ(t), for every t ∈ D.

(H5) There exists positive constant Qk (k = 0,1, · · · ,n) such
that for any countable set D⊂ E,

α( f (t,D))≤Qkα(D), t ∈ (sk, tk+1], k= 0,1, · · · ,n.

For concision of notation, we denote

K := max
k=1,2,··· ,n

Kγk , Λ := max
k=1,2,··· ,n

‖ϕ‖L [sk, tk+1],

Γ := max
k=1,2,··· ,n

‖m‖L [sk, tk+1] Q := max
k=1,2,··· ,n

Qk

(3.1)

b :=
∫ a

0
γ(s)ds P := max

k=1,2,··· ,n
Pk.

Remark 3.1. Let us report that the hypothesis (H2), (H4) are
linked to the integrability of the function s→ AU(t− s)g(s,x).
In general, expect for the inconsiderable case in which A is
a bounded linear operator, the operator function t→ AU(t)
is not integrable over [0,a]. However, if condition (H4) holds
and g satisfies either assumption (H2) and Bochner’s criterion
then the estimate,

‖AU(t− s)g(s,x)‖ ≤ ‖AU(t− s)‖L (E)‖g(s,x)‖E ,

≤ γ(t− s)sup
s∈a
‖g(s,x)‖E ,

that s→ AU(t− s)g(s,x) is integrable over [0, t), for every
t ∈ [0,a].
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Theorem 3.2. Assume that the semigroup U(t)(t ≥ 0) gener-
ated by−A is equicontinuous, the function γk(·,θ) is bounded
for k = 1,2, · · · ,n. If the conditions (H1)− (H5) are satisfied,
then (1.1) has at least one PC -mild solution x ∈PC (D,E)
provided that

max
(

2c1(1+b)+K +M(Kc1 +K +ρΛ),

2P+4MaQ−4bP+MK(1+ c1)
)
< 1. (3.2)

Proof. Define the operator G on PC (D,E) by

Gx(t) = G1x(t)+G2x(t), (3.3)

where

G1x(t) =



U(t)[x0−g(0,x0)], t ∈ [0, t1],
γk(t,x(t)), t ∈ (tk,sk] ,

k = 1,2, · · · ,n,
U(t− sk)[γk(sk,x(sk))
−g(sk, γk(sk,x(sk))], t ∈ (sk, tk+1],

k = 1,2, · · · ,n,
(3.4)

and

G2x(t) =


g(t,x(t))+

∫ t
sk

U(t− s) f (s,x(s))ds
−
∫ t

sk
AU(t− s)g(s,x(s))ds, t ∈ (sk, tk+1],

k = 1,2, · · · ,n,
0 otherwise.

(3.5)

The operator G is well defined on PC (D,E) by direct
calculation. The PC -mild solution of (1.1) is equivalent to
the fixed point of operator G defined by (3.3). Next, we will
prove that the operator G has atleast one fixed point.

Firstly, we exhibit that Gx ∈ PC (D,E)
for all x ∈ PC (D,E) for 0 ≤ τ < t ≤ t1 by the strong conti-
nuity of the semigroup U(t)(t ≥ 0) and g(t,x) is continuous,
we know that

‖Gx(t)−Gx(τ)‖ ≤
∥∥g(t,x(t))−g(τ,x(τ))

∥∥+∥∥U(t)−U(τ)
∥∥[x0−g(0,x0)]

+
∫ t

τ

∥∥AU(t− s)g(s,x(s))
∥∥ds+∫ t

τ

∥∥U(t− s) f (s,x(s))
∥∥ds

+
∫

τ

0

∥∥AU(t− s)−AU(τ− s)
∥∥∥∥g(s,x(s))

∥∥ds

+
∫

τ

0

∥∥U(t− s)−U(τ− s)
∥∥∥∥ f (s,x(s))

∥∥ds

(3.6)

→ 0 as t→ τ.

From the above inequality it follows that Gx ∈ C([0, t1], E)
and from (3.4) and the continuity of the non-instantaneous

impulsive functions γk(t,x(t)), k = 1,2, · · · ,n, it is easy to
know that Gx ∈ C((tk, sk], E) for every k = 1,2, · · · ,n. As
similar with the proof for the continuity of Gx(t) with re-
spect to t on [0, t1], we can prove that Gx ∈ C((sk, tk+1], E)
for k = 1,2, · · · ,n. Therefore, we have proved that Gx ∈
PC (D,E) for x ∈PC (D,E), namely, G maps PC (D,E)
to PC (D,E), that is

G : PC (D,E)→PC (D,E).

Next, we prove that there exists a constant r > 0, such
that G(Ωr) ⊂ Ωr. If it is false, then for each r > 0, there
would exist xr ∈Ωr and tr ∈ D such that ‖(Gxr)(tr)‖> r. If
tr ∈ [0, t1], then by (2.1), (3.3), remark 3.1 and the assumption
(H1), (H2) and (H4), we have

‖(Gxr)(tr)‖ ≤ ‖g(tr,x(tr))‖+‖U(tr)[x0−g(0,x0)]‖+∫ tr

0
‖U(tr− s) f (s,xr(s))‖ds

+
∫ tr

0
‖AU(tr− s)g(s,xr(s))‖ds

≤ c1‖xr‖+M[φ −g(0,φ)]+MΨ(r)
∫ t

0
ϕ(s)ds+∫ tr

0
γ(tr− s)‖g(s,xr(s))ds‖

≤ c1r(1+b)+M[φ −g(0,φ)]+MΨ(r)‖ϕ‖L[0,t1].

(3.7)

If tr ∈ (tk, sk], k = 1,2, · · · ,n, then by (2.1), (3.3) and assump-
tions (H3), we obtain

‖(Gxr)(tr)‖= ‖γk(tr,xr(tr))‖
≤ Kγk‖xr‖+‖γk(tr,0)‖
≤ Kγk‖xr‖+N

≤ Kγk r+N, (3.8)

where
N = max

k=1,2,··· ,n
sup
t∈D
‖γk(tr,0)‖.

If tr ∈ (sk, tk+1] , k = 1,2, · · · ,n, then by (2.1), (3.3), remark
3.1 and assumptions (H1), (H2), (H4), we obtain

‖(Gxr)(tr)‖ ≤ ‖U(tr− sk)‖‖[γk(sk,xr(sk))−
g(sk, γk(sk,xr(sk)))]‖+‖g(tr,xr(tr))‖

+
∫ t

sk

‖U(tr− s)‖‖ f (s,xr(s))‖ds+∫ tr

sk

‖AU(tr− s)g(s,xr(s))‖ds

≤M
[
[Kγkr+N]+ c1‖γk(sk,xr(sk))‖

]
+

(c1r)+MΨ(r)‖ϕ‖L[sk,tk+1]

+(c1r)
∫ tr

sk

γ(tr− s)ds

≤M[Kγkr+N](1+ c1)+(c1r)(1+b)+

MΨ(r)‖ϕ‖L[sk,tk+1]. (3.9)
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Combining (3.7)-(3.9), (2.1), (3.1), (3,3) and with the fact
r < ‖(Gxr)(tr)‖, we obtain

r < M[φ −g(0,φ)]+ [M(1+ c1)+1](Kr+N)

+2(c1r)(1+b)+MΨ(r)Λ. (3.10)

Dividing (3.10) by r and taking the limit as r→+∞ on both
side, we have

1 < 2c1(1+b)+K +M(Kc1 +K +ρΛ),

which is contradicts to (3.2).
Next, we prove that the operator G1 : Ωr→Ωr is Lipschitz

continuous. For t ∈ (tk, sk], k = 1,2, · · · ,n and x,y ∈ ΩR, by
(3.4) and assumption (H4), we have

‖(G1x)(t)− (G1y)(t)‖= ‖γk(t,x(t))− γk(t,y(t))‖,
≤ Kγk‖x− y‖PC. (3.11)

For t ∈ (sk, tk+1], k = 1,2, · · · ,n and x,y ∈ΩR, by (2.1), (3.4)
and assumption (H4), we have

‖(G1x)(t)− (G1y)(t)‖ ≤

M

{∥∥∥γk(sk,x(sk))− γk(sk,y(sk))
∥∥∥

+
∥∥∥g(sk,γk(sk,x(sk))−g(sk,γk(sk,y(sk))

∥∥∥}
≤M

[
Kγk‖x− y‖PC +LKγk‖x− y‖PC

]
≤MKγk(1+L)‖x− y‖PC. (3.12)

From (2.1), (3.1), (3.11) and (3.12), we have

‖(G1x)(t)− (G1y)(t)‖ ≤ (1+M+ML)K‖x− y‖PC.
(3.13)

Next we prove that G2 is continuous in Ωr. Let xn ∈Ωr be
a sequence such that limn→+∞ xn = x in Ωr. By the continuity
of nonlinear term f and g with respect to the second variable
for each s ∈ D, we have

lim
n→+∞

f (s,xn(s)) = f (s,x(s)) and

lim
n→+∞

g(s,xn(s)) = g(s,x(s)) (3.14)

From the hypotheses (H1) we have,

‖ f (s,xn(s))− f (s,x(s))‖= 2ϕ(s)Ψ(r). (3.15)

Then by the function s→ 2ϕ(s)Ψ(r) is Lebesgue inte-
grable for s ∈ [sk, t] and t ∈ (sk, tk+1], k = 1,2, · · · ,n. Then
by (2.1), (3.1), (3.5), (3.14), (3.15), remark 3.1, assumption
(H2), (H5) and the Lebesgue dominated converges theorem,

we have,

‖G2xn(t)−G2x(t)‖ ≤ ‖g(t,xn(t))−g(t,x(t))‖+∫ t

sk

‖U(t− s)‖
[
‖ f (s,xn(s))− f (s,x(s))‖

]
ds

+
∫ t

sk

‖AU(t− s)‖
[
‖g(s,xn(s))−

g(s,x(s))‖
]
ds

≤ ‖g(t,xn(t))−g(t,x(t))‖+

M
∫ t

sk

‖ f (s,xn(s))− f (s,x(s))‖ds

+
∫ t

sk

γ(t− s)‖g(s,xn(s))−

g(s,x(s))‖ds

→ 0 as n→+∞.
(3.16)

Then we infer,

‖G2xn−G2x‖PC→ 0 as n→+∞.

Thus G2 is continuous in Ωr.
Now, the operator G2 : Ωr→Ωr is equicontinuous. For any
x ∈Ωr and sk < t

′
< t

′′ ≤ tk+1 for k = 0,1,2, · · · ,n, we obtain
that,

‖G2x(t
′′
)−G2x(t

′
)‖ ≤

∥∥∥∥g(t
′′
,x(t

′′
))−g(t

′
,x(t

′
))

∥∥∥∥
+

∥∥∥∥∫ t
′

sk
[U(t

′′ − s)−U(t
′ − s)] f (s,x(s))ds

∥∥∥∥
+

∥∥∥∥∫ t
′

sk
[AU(t

′′ − s)−AU(t
′ − s)]g(s,x(s))ds

∥∥∥∥
+

∥∥∥∥∫ t
′′

t ′ U(t
′′−s) f (s,x(s))ds

∥∥∥∥+∥∥∥∥∫ t
′′

t ′ AU(t
′′−s)g(s,x(s))ds

∥∥∥∥
= I1 + I2 + I3,
where

I1 =

∥∥∥∥g(t
′′
,x(t

′′
))−g(t

′
,x(t

′
))

∥∥∥∥
I2 =

∥∥∥∥∫ t
′

sk

[U(t
′′ − s)−U(t

′ − s)] f (s,x(s))ds
∥∥∥∥

+

∥∥∥∥∫ t
′

sk

[AU(t
′′ − s)−AU(t

′ − s)]g(s,x(s))ds
∥∥∥∥

I3 =

∥∥∥∥∫ t
′′

t ′
U(t

′′ − s) f (s,x(s))ds
∥∥∥∥+∥∥∥∥∫ t

′′

t ′
AU(t

′′ − s) f (s,x(s))ds
∥∥∥∥.

Therefore, we need to check I1, I2 and I3 tends to 0 indepen-
dently of x ∈ Ωr when t

′′ → t
′
. For I1, g(t,x) is continuous,

we have,
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I1 =

∥∥∥∥g(t
′′
,x(t

′′
))−g(t

′
,x(t

′
))

∥∥∥∥
→ 0 as t

′′ − t ′→ 0.

Now for I2, by assumption (H1), (H2) and (H4), we have,

I2 ≤Ψ(r)
∫ t
′

sk

‖ [U(t
′′ − s)−U(t

′ − s)]‖ϕ(s)ds+

(c1r)
∫ t
′

sk

‖[AU(t
′′ − s)−AU(t

′ − s)]‖ds

→ 0 as t
′′ → t ′.

For I3, by (2.1), assumption (H1), (H2) and (H4), we have,

I3 ≤MΨ(r)
∫ t
′′

t ′
ϕ(s)ds+(c1r)

∫ t
′′

t ′
γ(t− s)ds

→ 0 as t
′′ → t ′.

As a result ‖G2x(t
′′
)−G2x(t

′
)‖ → 0 independently of

x ∈ Ωr as (t
′′ − t ′)→ 0. Which means that G2 : Ωr → Ωr is

equicontinuous.
For any bounded D⊂Ωr then we know that there exists a

countable set D0 = {xn} ⊂ D such that,

α(G2(D))PC ≤ 2α(G2(D0))PC . (3.17)

Since G2(D0)⊂ G2(Ωr) is bounded and equicontinuous,

α(G2(D0))PC = max
t∈[sk,tk+1],k=0,1,··· ,n

α(G2(D0)(t)).

(3.18)

For every t ∈ [sk, tk+1],k = 0,1, · · · ,n. From the Lemma 2.2
(vi)(vii), (2.1), (3.2) and hypotheses (H2), (H5), we have,

α(G2(D0)(t))≤ Pkα(D0)+2MaQkα(D0)PC+

2bPkα(D0)PC

≤
(
Pk +2MaQk +2bPk

)
α(D0)PC .

Therefore, from (3.2), (3.17)-(3.18) we know that,

α(G2(D))PC ≤ (2P+4MaQ−4bP)α(D)PC .
(3.19)

For bounded D⊂Ωr and from Lemma 2.2 (vii) we have

α(G1(D))PC ≤M
{

Kα(D)PC + c1Kα(D)PC

}
≤MK(1+ c1)α(D)PC (3.20)

From (3.19), (3.20)

(G(D))PC ≤ (2P+4MaQ−4bP)α(D)PC+

MK(1+ c1)α(D)PC

‘≤
(

2P+4MaQ−4bP+MK(1+ c1)
)

α(D)PC .

(3.21)

Combaining (3.21) and (3.2) and Definition 2.3 we know
that, the operator
G : Ωr→Ωr is k-set-contractive.

Thus G has atleast one fixed point x ∈Ωr which is just a
PC -mild solution of (1.1).
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