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Abstract
In the present paper, an impulsive differential system is investigated for uniform eventual practical stability.
Sufficient criteria have been obtained for the uniform eventual practical stability of the impulsive differential
system in terms of two measures by using Lyapunov-like function. The results that are obtained to investigate
the stability are significantly dependent on the impulse moments. The results have been verified with the help of
an example.
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1. Introduction
The theory of impulsive differential equations has been

developing as an important area of investigation due to its
wide applications in the area of control theory, population
dynamics, disease control etc. and a significant progress has
been made in this theory in the past [4, 9, 13]. As stability
is one of the major hurdle in the theory of differential sys-
tems, there are several concepts of stabilities (e.g. exponential
stability, asymptotic stability, practical stability etc.) studied
in literature [1, 7, 14, 15]. To combine all various concepts
of stability and to have a common framework to explore the
stability theory, the potential of stability concepts in terms of
two measures has been successfully demonstrated [5, 8].

In many real world applications, it is necessarily required
that the state of a system may not be stable, yet, the system

may fluctuate closely to this desired state and its outcome is
reasonably good. Consider an example of a projectile, which
may fluctuate about an unstable trajectory, yet its final path
may be acceptable. Similarly, the problem in a chemical
reaction where temperature has to be kept within some spe-
cific bounds without compromising with the final outcome.
Likewise, the effectiveness of vaccines in certain infectious
diseases may not give complete results but it is practically
acceptable etc. In these cases, it is appropriate to use the prac-
tical stability which stabilizes a system into certain subsets
of the phase space. However, sometimes we only need to
study the ultimate state of the stability of the solutions, this
kind of stability is called eventual stability. The concept of
eventual stability was introduced by La Salle and Rath [6]
for ordinary differential systems to study the stabilities which
are not equilibrium states but nevertheless act more and more
like equilibrium states as time passes. For example, the stabil-
ity of a damaged ship, in short, is its ability to survive after
flooding. Both the theories of practical stability as well as
eventual stability have been developing intensively and are
investigated by many researchers [3, 10, 12]. The eventual
stability for a nonlinear differential systems without impulses
is investigated by Weijie Feng and Xilin Fu [1]. The concept
of eventual stability for impulsive differential system has been
discussed by various authors [11, 17]. Yu Zhang and Jitao Sun
investigated the practical stabilty for impulsive differential
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systems in terms of two measures[15]. A new kind of stability-
’eventual practical stabilty’ is investigated by Yu Zhang and
Jitao Sun for impulsive differential system with delay in terms
of two measures [16]. Johnny Henderson and Snezhana Hris-
tova investigated the same stability for differential equations
with maxima [2].

In this paper, the main motive is to study the uniform even-
tual practical stability for a more general impulsive differential
system in terms of two measures. We deduced the results by
using Lyapunov-like function. The paper is arranged into
three sections: In preliminaries, we have introduced some ba-
sic definitions and notations where as in main results, we have
obtained some criteria to bring the uniform eventual practical
stability of an impulsive differential system in terms of two
measures. Finally the derived results are illustrated with the
help of an example.

2. Preliminaries
Let Rn denotes n dimensional Euclidean space and let

R+ = [0,∞),
Considering the impulse effect on the differential system:{

x′ = f (t,x)+g(t,y), t 6= ti; ∆x = Pt(x)+Qt(y), t = ti
y′ = p(t,x,y), t 6= ti; ∆y = St(x,y), t = ti

(1)

where the inter-relationship on their differentials are governed
by different functions f ,g : R+×Rn→ Rn and p : R+×Rn×
Rn→ Rn such that t ∈ R+,x,y ∈ Rn,Pt ,Qt : Rn→ Rn and St :
Rn×Rn→ Rn. Here i = 1,2,3....
Let us define,

∆x = x(ti)− x(t−i ), t = ti ;

∆y = y(ti)− x(t−i ), t = ti

Let t0 ∈ R+ and x0,y0 ∈ Rn. Let us consider the solutions of
the above mentioned differential system (1) as x(t; t0,x0,y0)
and y(t; t0,x0,y0) which satisfy the following conditions:

x(t+0 ; t0,x0,y0) = x0 and y(t+0 ; t0,x0,y0) = y0

Throughout this paper, we will use the following assumptions:

(a) The functions f ,g, and p are continuous functions such
that at x = 0 both f (t,x) = g(t,y) = 0 and at x = 0 = y,
p(t,x,y) = 0 for t0 ∈ R+;

(b) The functions Pt ,Qt and St are also continuous such that
at x = 0 = y both Pt(x) = 0,Qt(y) = 0 and St(x,y) = 0;

(c) ‖x+Pt(x)+Qt(y)‖≤‖x‖ and ‖y+St(x,y)‖≤‖y‖ holds
for x,y ∈ Rn;

(d) 0 < t1 < t2 < t3 < ...ti < ti+1 < ... and ti→+∞ as i→
+∞;

(e) Both the solutions x(t+0 ; t0,x0,y0) and y(t+0 ; t0,x0,y0)
for (t0,x0,y0) ∈ R+×Rn×Rn, of the system (1) are
unique.

In order to investigate the stability behaviour of the impulsive
differential system (1), firstly we define the following:

Definition 2.1. The set K, K1 and Γ be defined as the class
of continuous functions:

K =
{

φ : φ ∈C(R+,R+) is strictly increasing and φ(0) = 0
}

K1 =
{

ψ : ψ ∈C(R+,R+) is increasing and ψ(s)< s for s > 0
}

Γ=
{

h : h ∈C(R+×Rn×Rn,R+) where inf h(t,x,y) = 0.
}

Definition 2.2. [17]. Consider the function V : R+×Rn×
Rn→ Rn which belongs to the class v0, if it satisfies the fol-
lowing conditions:

(i) V (t,x,y) is piecewise continuous for (t,x,y)∈ [ti−1, ti)×
Rn × Rn for i ∈ N, and lim(t,x,y)→(t+i ,x0,y0)

V (t,x,y) =

V (t+i ,x0,y0) exists;

(ii) V is Lipschitz in the local neighborhood of x and y;

(iii) V (t,0,0) = 0 ∀ t ∈ R+.

Definition 2.3. [5]. Let h0,h ∈ Γ, then

(i) h0 is finer than h, iff h(t,x,y)≤ ϕ(h0(t,x,y)) whenever
h0(t,x,y)< δ holds, for a function ϕ ∈ K where δ > 0;

(ii) h-positive definite, iff β (h(t,x,y))≤V (t,x,y) whenever
h(t,x,y)< ρ holds, for a function β ∈ K where ρ > 0;

(iii) h0-decrescent, iff V (t,x,y)) ≤ α(h0(t,x,y)) whenever
h0(t,x,y)< δ holds, for a function α ∈ K where δ > 0;

(iv) S(h,ρ) = {(t,x,y) ∈ R+×Rn×Rn,h(t,x,y)< ρ} .

Definition 2.4. [17]. The right hand derivative of V ∈ vo is
defined as:

V ′(t,x,y) = lim
s→0+

sup
1
s

[
V (t + s,x+ s f (t,x)+ sg(t,y),y

+ p(t,x,y))−V (t,x,y)
]

Definition 2.5. [16]. The stability of system (1) in terms of
two measures - (h0,h) about equilibrium point is:

(i) eventual practical if for a given (A,B) with 0 < A < B,
and for t0 ∈ R+, there exists a τ(A,B) > 0 such that
h(t,x,y) < B whenever h0(t0,x0,y0) < A for some t ≥
t0 ≥ τ(A,B);

(ii) uniform eventual practical if the above definition holds
for all t0 ∈ R+.
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3. Main Results
In this section, we study the uniform eventual practical

stability of the system (1) in terms of two measures by using
Lyapunov method with the following theorems.

Theorem 3.1. Assume the following conditions:

(I.1) given 0 < A < B;

(I.2) Let h,h0 ∈ Γ such that h0 is finer than h for ϕ ∈ K
whenever h0(t,x,y)< A;

(I.3) Let function V ∈ v0 exists such that β (h(t,x,y)) ≤
V (t,x,y)≤ α(h0(t,x,y)) for α,β ∈ K;

(I.4) V ′(t,x,y)≤ 0, where (t,x,y) ∈ R+×Rn×Rn;

(I.5) For all i ∈ N,
V (ti,x(ti),y(ti))≤ (1+ ci)

(
V (t−i ,x(t−i ),y(t−i )

)
where ci ≥ 0 and

∞

∑
i=1

ci < ∞;

(I.6) ϕ(A)< B and Mα(A)< β (B),

where M =
∞

∏
i=1

(1+ ci).

Then, the stability of the system (1) in terms of two measures -
(h0,h) is uniform eventual practical.

Proof. Let us consider the two solutions of the impulsive
differential system (1) as x(t; t0,x0,y0) and y(t; t0,x0,y0).
Let us assume, for a given (A,B) with 0 < A < B, there exists
a τ(A,B)> 0.
Let h0(t0,x0,y0)< A for (t0,x0,y0) ∈ R+×Rn×Rn and
t ≥ t0 ≥ τ(A,B).

As
∞

∑
i=1

ci < ∞, it follows that 1≤M < ∞.

In order to prove uniform eventual practical stability, we need
to verify that

V (t,x,y)≤Mα(A), t ≥ t0 > τ(A,B) (2)

To obtain inequality (2), firstly we will prove that

V (t,x,y)≤ α(A), t ∈ [t0, t1) (3)

From condition (I.3), V is h0 - decrescent, therefore we have
V (t0,x0,y0)≤ α((h0(t0,x0,y0))< α(A).
Hence, inequality (3) holds for t = t0.
Let, if possible (3) doesn’t hold for t ∈ (t0, t1).
Then, there exists an ŝ ∈ (t0, t1) such that

V (ŝ,x(ŝ),y(ŝ))> α(A).

Consider s̄ = in f {t : V (t,x(t),y(t))> α(A), t ∈ (t0, t1)}
This means, V (s̄,x(s̄),y(s̄)) = α(A) which implies

V ′(s̄,x(s̄),y(s̄))≥ 0

But, from condition (I.4), we get V ′(t,x,y)≤ 0.
Hence, we get a contradictory results, so eq.(3) holds.
Consider

V (t1,x(t1),y(t1)) =V (t1,x(t−1 )+Pt(x)+Qt(y),y(t−1 )

+St(x,y))

≤ (1+ c1)α(A)

Next, we will verify that

V (t,x,y)≤ (1+ c1)α(A), t1 < t < t2 (4)

Let if possible, inequality (4) doesn’t hold. Then, there exists
a û ∈ (t1, t2) such that

V (û,x(û),y(û))> (1+ c1)α(A).

Let ū = in f {t : V (t,x(t),y(t))> (1+ c1)α(A), t ∈ (t1, t2)}
This means, V (ū,x(ū),y(ū)) = (1+ c1)α(A) which implies

V ′(ū,x(ū),y(ū))≥ 0.
Hence, again we get a contradiction as V ′(t,x,y) ≤ 0, so in-
equality (4) holds.
Now Consider,

V (t2,x(t2),y(t2)) =V (t2,x(t−2 )+Pt(x)+Qt(y),y(t−2 )

+St(x,y))

≤ (1+ c1)(1+ c2)α(A)

Continuing this induction process, we have

V (ti,x(ti),y(ti))≤ (1+ c1)(1+ c2)...(1+ ci)α(A) (5)

where ti ≤ t < ti+1, i ∈ N

As M =
∞

∏
i=1

(1+ ci), the above inequality becomes

V (t,x,y)≤Mα(A), t ≥ t0 ≥ τ(A,B)

Also by using condition (I.6), it follows that

V (t,x,y)≤Mα(A)< β (B), t ≥ t0 ≥ τ(A,B)

From condition (I.3), as V (t,x,y) is h-positive definite, there-
fore we have

h(t,x(t),y(t))≤ β
−1(V (t,x(t),y(t))< β

−1(β (B))< B

where t ≥ t0 ≥ τ(A,B)
Hence, the system (1) is uniformly eventual practically stable.

Now, we prove the same kind of stability as proved in
Theorem 3.1 for the impulsive differential system (1) with
more stronger criteria in the following theorem.

Theorem 3.2. Let the following conditions hold:

(II.1) same as condition (I.1);

(II.2) same as condition (I.2);
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(II.3) same as condition (I.3);

(II.4) V ′(t,x,y)≤ γ(t)λ (V (t,x,y)), where (t,x,y)∈ [ti−1, ti)×
Rn×Rn for i ∈ N such that γ,λ : R+→ R+ are locally
integrable;

(II.5) For all i ∈ N, and (t,x,y) ∈ R+×Rn×Rn, there exists
a ψ ∈ K1 such that
V (ti,x(ti),y(ti))≤ ψ

(
V (t−i ,x(t−i ),y(t−i )

)
;

(II.6)
∫ ti

ti−1
γ(s)ds < L and

∫
ψ−1(µ)
µ

ds
λ (s) ≥ L, holds for a con-

stant L > 0 such that µ > 0 where i ∈ N;

(II.7) ϕ(A)< B and α(A)< ψ(β (B)).

Then the stability of the system (1) in terms of two measures -
(h0,h) is uniform eventual practical.

Proof. Let for a given (A,B) with 0 < A < B, there exists a
τ(A,B)> 0. Also, let the solutions of impulsive differential
system (1) as x(t; t0,x0,y0) and y(t; t0,x0,y0).
Then for (t0,x0,y0) ∈ R+×Rn×Rn, let h0(t0,x0,y0)< A for
t ≥ t0 ≥ τ(A,B).
As h is finer than h0, we have
h(t0,x0,y0)< ϕ(h0(t0,x0,y0))< ϕ(A)< B.
In order to prove uniform eventual practical stability, firstly
we will prove that

V (t,x,y)≤ ψ
−1(α(A)), t ≥ t0 > τ(A,B) (6)

In order to prove inequality (6), first of all we will claim that

V (t,x,y)≤ ψ
−1(α(A)), t ∈ [t0, tm) (7)

As, V is h0- decrescent.
We have, V (t0,x0,y0)≤α(h0(t0,x0,y0))<α(A)<ψ−1(α(A)).
Let, if possible, (7) doesn’t hold for t ∈ (t0, tm), then there
must be a l̂ ∈ (t0, tm) for which

V (l̂,x(l̂),y(l̂))> ψ
−1(α(A))> α(A)>V (t0,x0,y0)

Since V (t,x,y) is continuous in [tm−1, tm), there must exists a
l1 ∈ (t0, l̂) for which

V (l1,x(l1),y(l1)) = ψ
−1(α(A)),

V (t,x(t),y(t))> ψ
−1(α(A)), l1 < t < l̂,

V (t,x(t),y(t))≤ ψ
−1(α(A)), t0 < t < l1

(8)

Also, there exists a l2 ∈ (t0, l1) such that

V (l2,x(l2),y(l2)) = α(A),

V (t,x(t),y(t))≥ α(A), l2 < t < l1
(9)

From condition (II.4), we have

V ′(t,x,y)≤ γ(t)λ (V (t,x,y))

Integrate the above inequality in [l2, l1], then by using condi-
tion (II.6), we have

∫ (V (l1,x(l1),y(l1))

V (l2,x(l2),y(l2))

du
λ (u)

≤
∫ l1

l2
γ(t)dt ≤

∫ tm

tm−1

γ(t)dt < L (10)

On the other hand, by using (8), (9) and condition (II.6), we
have ∫ (V (l1,x(l1),y(l1))

V (l2,x(l2),y(l2))

du
λ (u)

=
∫

ψ−1(α(A))

α(A)

du
λ (u)

≥ L (11)

On comparing (10) and (11), there is a contradiction.
Hence inequality (7) holds.
By using (II.5), we have

V (tm,x(tm),y(tm)) =V (tm,x(t−m )+Pt(x)

+Qt(y),y(t−m )+St(x,y))

≤ ψ
(
V (t−m ,x(t−m ),y(t−m )

)
≤ ψ(ψ−1(α(A)))

= α(A)

(12)

Also, as ψ ∈ K1, hence V (tm,x(tm),y(tm))≤ ψ−1(α(A)).
Now, we will claim that

V (t,x,y)≤ ψ
−1(α(A)), t ∈ (tm, tm+1) (13)

Let, if possible, inequality (13) doesn’t exists, then there must
exists a q̂ ∈ (tm, tm+1) for which

V (q̂,x(q̂),y(q̂))>ψ
−1(α(A))>α(A)>V (tm,x(tm),y(tm))

As V (t,x,y) is continuous in [tm, tm+1), there must holds a
q1 ∈ (tm, q̂) such that

V (q1,x(q1),y(q1)) = ψ
−1(α(A)),

V (t,x(t),y(t))> ψ
−1(α(A)), q1 < t < q̂,

V (t,x(t),y(t))≤ ψ
−1(α(A)), t0 < t < q1

(14)

Also, there must holds a q2 ∈ (tm,q1) for which

V (q2,x(q2),y(q2)) = α(A),

V (t,x(t),y(t))≥ α(A), q2 < t < q1
(15)

On integrating the inequality V ′(t,x,y)≤ γ(t)λ (V (t,x,y)) in
[q2,q1] and by using (14), (15) and condition (II.6), again
we will get a contradiction as obtained in first case. Hence
inequality (13) holds.
Now consider

V (tm+1,x(tm+1),y(tm+1) =V (tm+1,x(t−m+1)+Pt(x)

+Qt(y),y(t−m+1)+St(x,y))

≤ ψ
(
V (t−m+1,x(tm+1),y(t−m+1)

)
≤ ψ(ψ−1(α(A)))

= α(A)
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(16)

Therefore, by following the simple induction process, we have

V (t,x(t),y(t))≤ ψ
−1(α(A)), tm+i ≤ t < tm+i+1

and

V (tm+i+1,x(tm+i+1),y(tm+i+1)≤ α(A)

As α(A)< ψ−1(α(A)), by condition (II.7), we have

V (t,x(t),y(t))≤ ψ
−1(α(A))< β (B) (17)

Hence, by using condition (II.3) and (17) we have

h(t,x,y)≤ β
−1(V (t,x,y))< β

−1(β (B))< B,

where t ≥ t0 ≥ τ(A,B).
Thus, the system (1) is uniform eventually practically stable.

4. Example

Following is an illustrative example to verify the above
obtained results for uniform eventual practical stability.
Consider the following system:

Example 4.1.{
x′ = lx(t)+my(t), t 6= ti; x(ti) = ux(t−i )+ vy(t−i )

y′ = qy(t), t 6= ti; y(ti) = wy(t−i ), i = 1,2,3, ...
(18)

where 0< t1 < t2 < t3 < ...ti < ti+1 < ... and ti→∞ as i→+∞,
l > 0,m > 0,q > 0,u > 0,v > 0,w > 0. Let the following
conditions be satisfied:

(1) l > q,v2 +w2 < u2,3u2 + v2 < 2;

(2) ti− ti−1 <
−ln(3u2+v2)+ln2

2l+m .

Then, the differential system (18) under consideration is (h0,h)
- uniform eventually practically stable.

Proof. Let us define the functions as follows:

V (t,x,y) =
1
2
(x2 +y2), h0(t,x,y) = h(t,x,y) = x2 +y2,

α(s) = ns, β (s) =
1
n

s, n > 1, ϕ(s) = s

ψ(s) =
3u2 + v2

2
s, λ (s) = s, γ(s) = 2l +m

Now, we will investigate the conditions of Theorem II as
follows:
(1). For a given 0 < A < 3u2+v2

2
1
n2 B, if h0(t,x,y) < A, then

clearly h(t,x,y)≤ ϕ(h0(t,x,y))

(2). Also, β (h(t,x,y))≤V (t,x,y)≤ α(h0(t,x,y)) is satisfied.

(3).V ′(t,x,y) = xx′+ yy′

≤ l(x2(t)+ y2(t))+m
(

x2(t)+ y2(t)
2

)
= (2l +m)

(
x2(t)+ y2(t)

2

)
= γ(t)λ (V (t,x,y)).

.

(4).V (ti,x(ti),y(ti)) =V (ti,x(t−i )+Pt(x)+Qt(y),y(t−i )

+St(x,y))

=
1
2
[
(ux(t−i )+ vy(t−i ))2 +(wy(t−i ))2]

=
1
2
[u2x2(t−i )+ v2y2(t−i )+2uvx(t−i )y(t−i )

+w2y2(t−i )]

≤ 1
2
[u2(x2(t−i )+ y2(t−i ))

+uv(x2(t−i )+ y2(t−i ))]

=
1
2
(u2 +uv)

[
x2(t−i )+ y2(t−i )

]
≤ 1

2
[
x2(t−i )+ y2(t−i )

] 3u2 + v2

2
= ψ

(
V (t−i ,x(t−i ),y(t−i )

)
(5). Let L = ln 2

3u2+v2 , clearly L > 0
Now∫ ti

ti−1

γ(s)ds< (2l+m)
−ln(3u2 + v2)+ ln2

2l +m
= ln

2
3u2 + v2 =L.

Also, for any value of ν > 0, we have

∫
ψ−1(ν)

ν

ds
λ (s)

=
∫ 2

3u2+v2 ν

ν

ds
s

= ln
2

3u2 + v2 = L.

(6). As 0 < A < 3u2+v2

2
1
n2 B.

It is clear that ϕ(A) = A < B and

α(A) = nA < n
3u2 + v2

2
1
n2 B =

3u2 + v2

2
1
n

B = ψ(β (B))

Here all the conditions as mentioned in the Theorem 3.2 are
well satisfied. Therefore, the impulsive differential system
(18) is (h0,h) - uniform eventually practically stable.

5. Conclusion
In this paper, the uniform eventual practical stability of

an impulsive differential system has been studied. Earlier,
the authors [2, 16] investigated the stability for impulsive
differential systems with comparison principle in terms of
two measures. Here in the present investigation same kind
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of stability is derived for an impulsive differential system
by using Lyapunov- like functions in terms of two measures.
The results obtained above indicate that the impulses also
significantly contribute towards the system’s eventual practical
stability. An example is also given to illustrate the results
proved in Theorem II.
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