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Coincidence points for a pair of ordered
F-contraction mappings in ordered partial metric
spaces
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Abstract
The concept of ordered F-contraction in an ordered metric space was introduced by Durmaz et al. [9] and
became a very important result in the existing metric fixed point theory. In this paper, we prove a fixed point
theorem for a pair of compatible F-contraction maps in an ordered complete partial metric spaces. In particular,
the main results generalize a fixed point theorem due to Durmaz et. al. [9] to partial metric spaces. An illustrative
example is provided to support the theorem.
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1. Introduction
In 2012, Wardowski introduced a new type of contrac-

tion known as F-contraction which generalizes the Banach
Contraction Principle. In the results Wardowski defined an
F-contraction map as follows:

Definition 1.1. [15] Let (M,d) be a metric space, a mapping
T : M −→ M is said to be an F-contraction on M if there
exists τ > 0 such that, for all x,y ∈M,

d(T x,Ty)> 0⇒ τ +F(d(T x,Ty))≤ F(d(x,y)).
(1.1)

and F : R+ −→ R, a mapping satisfying the following condi-
tions:

F1: F is strictly increasing, that is for all x,y ∈ R+ such
that x < y⇒ F(x)< F(y).

F2: For each sequence {αn}n≥1 of positive numbers lim
n→∞

αn =

0, if and only if lim
n→∞

F(αn) =−∞.

F3: There exists k ∈ (0,1) such that lim
α→0+

αkF(α) = 0.

We denote by ∆F the set of all functions satisfying the
conditions (F1)− (F3).

Moreover, Wardowski proved that every F-contraction
mapping on a complete metric space has a unique fixed point.
Futhermore, several contractions in the literature can be de-
duced by varying suitable elements of ∆F .

The following example shows an F-contraction in metric
spaces.

Example 1.2. [15] Let F : R+ −→ R be defined by F(α) =
ln(α). It is clear that F satisfies (F1)− (F3) for any k ∈
(0,1). Each mapping T : M −→ M satisfying d(T x,Ty) >
0⇒ τ +F(d(T x,Ty))≤ F(d(x,y)) is an F-contraction such
that d(T x,Ty) ≤ e−τ d(x,y) for all x,y ∈ M,T x 6= Ty. Ob-
viously, for all x,y ∈ M such that T x = Ty, the inequality
d(T x,Ty)≤ e−τ d(x,y) holds and T is a Banach contraction.
One can find more examples in [15].
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Recently, several researchers have shown interest in map-
pings satisfying the F-contraction condition. There exist nu-
merous literatures on and around the notion of F-contractions;
see ([3–5, 9, 13]).

In 1992, Matthews [11], introduced the notion of partial
metric spaces and proved an analogue of Banach Contraction
Principle on partial metric spaces. Matthews [11] provided
the following definition:

Definition 1.3. [11] Let X be a non-empty set. A partial
metric space is a pair (X , p), where p is a function p : X ×
X → R+, called the partial metric, such that for all x,y,z ∈ X
the following axioms hold:

(P1) x = y⇔ p(x,y) = p(x,x) = p(y,y);

(P2) p(x,x)≤ p(x,y);

(P3) p(x,y) = p(y,x); and

(P4) p(x,y)≤ p(x,z)+ p(z,y)− p(z,z).

Clearly, by (P1)-(P3), if p(x,y) = 0, then x = y. But, the
converse is in general not true.

The most common example of partial metric spaces is a
pair ([0,∞), p) where p(x,y) = max{x,y} for all x,y ∈ [0,∞).
More examples of partial metric spaces may be found in [7].

Each partial metric p on X generates a T0 topology τp on
X whose basis is the collection of all open p-balls {Bp(x,ε) :
x ∈ X ,ε > 0} where
Bp(x,ε) = {y ∈ X : p(x,y)< p(x,x)+ ε} for all x ∈ X , and ε

is a positive real number.

Definition 1.4. [2, 11] Let (X , p) be a partial metric space.
Then:

(i) a sequence {xn} in (X , p) is said to be convergent to
x ∈ X if and only if p(x,x) = limn→∞ p(x,xn).

(ii) a sequence {xn} in (X , p) is a Cauchy sequence if and
only if
limn,m→∞ p(xn,xm) exists and is finite.

(iii) a partial metric space (X , p) is said to be complete
if every Cauchy sequence {xn} in X converges with
respect to the topology τp to a point x ∈ X such that
p(x,x) = limn,m→∞ p(xn,xm).

(iv) a mapping f : X→ X is said to be continuous at x0 ∈ X
if for every ε > 0, there exists δ > 0 such that
f (Bp(x0,δ ))⊂ Bp( f (x0),ε).

2. Preliminaries
In this section, we recall some definitions and basic results of
ordered partial metric spaces which will be used throughout
the paper.

Following lemma was proved by Bukatin et al. [7] and
will be useful in this paper.

Lemma 2.1. [7] Let (X , p) be a partial metric space. Then
the mapping ps : X×X → [0,∞) given by

ps(x,y) = 2p(x,y)− p(x,x)− p(y,y),

for all x,y ∈ X defines a metric on X.

Bukatin et al. [7] also proved the following lemma:

Lemma 2.2. [7] Let (X , p) be a partial metric space. Then:

(i) a sequence {xn} is a Cauchy sequence in (X , p) if and
only if it is a Cauchy sequence in the metric space
(X , ps).

(ii) a partial metric space (X , p) is complete if and only if
the metric space (X , ps) is complete.

Paesano and Vetro [13] provided the following definitions
regarding partially ordered set, ordered partial metric space
and regularity:

Definition 2.3. [13] Let (X ,�) be a partially ordered set. Let
A and B be two non- empty subset of X. Two relations between
A and B are denoted and defined as follows;
(r1) A ≺1 B if for each a ∈ A there exists b ∈ B such that
a� b.
(r2) A≺2 B if for each a ∈ A and b ∈ B, we have a� b.

Definition 2.4. [13] If (X , p) be a partial metric space and
(X ,�) is partially ordered set, then (X , p,�) is called an or-
dered partial metric. We say that x,y ∈ X are comparable if
x� y or y� x holds. Further a self map T : X → X is called
non-decreasing if T x � Ty whenever x � y for all x,y ∈ X
and an ordered partial metric space (X , p,�) is regular if the
following holds:
For every non-decreasing sequence {xn} in X converging to
some x ∈ X, we have xn � x for all n ∈ N∪{0}.

First results on fixed point problems in partially ordered
metric spaces were obtained by Ran and Reurings [14] and
followed by Nieto and Rodriguez [12]. Abbas et al. [1] used
the notion of the F-contraction to establish order-theoretic
common fixed point results. Recently, Durmaz et al. [9] in-
troduced the concept of ordered F-contraction in an ordered
metric space using the results of Ran and Reurings [14] and
proved the following fixed point theorem.

Theorem 2.5. [9] Let (X ,d,�) be an ordered complete metric
space and T : X → X be an ordered F-contraction. Let T
be a non-decreasing map and there exists x0 ∈ X such that
x0 � T x0. If T is continuous or X is regular then T has a fixed
point.

Durmaz et al. [9] generalized their results by fixing f =
I : X → X in Theorem 2 given by Abbas et al. [1]. Moreover,
they provided a condition that every pair of elements of X
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should have a lower and upper bound to posses a unique fixed
point. Following the results of Wardowski [15] and Durmaz et
al. [9] this paper intends to prove a fixed point theorem for a
pair of compatible F-contraction maps in an ordered complete
partial metric spaces.

One can define a coincident point as follows:

Definition 2.6. Let X be a non empty set, T and g are self
maps of X. A point x ∈ X is called a coincident point of T and
g if T x = gx.

Kessy et al. [10] provided the following definition con-
cerning a pair of compatible self maps in partial metric spaces:

Definition 2.7. [10] Let (X ,�) be partially ordered set and
f ,g : X → X be two mappings. A pair ( f ,g) are compatible
if lim

n→∞
p( f gxn,g f xn) = 0, whenever {xn} is a sequence in X

such that lim
n→∞

f xn = lim
n→∞

gxn = z for some z ∈ X.

Ćirić et al. [8] provided the following definition:

Definition 2.8. [8] Let (X ,�) be a partially ordered set and
F,g : X → X be mappings of X into itself. F is g-non decreas-
ing if for x,y ∈ X, we have g(x)� g(y)⇒ F(x)� F(y).

Aryani et al. [6] proved the following theorem (see Theo-
rem 2) for nonself mappings in partial metric spaces:

Theorem 2.9. [6] Let (S1, p) and(S2, p) be partial metric
spaces with A ⊆ S2, c ∈ A and function f : A→ S2. The
following statements are equivalent:

(i) f continous at c

(ii) For any sequence {xn} at A convergent to c ∈ A, then
the sequence{ f (xn)} converges to f (c).

If in Theorem 2.9 we assume that f : X → X is a self
mapping then we get the following lemma:

Lemma 2.10. If (X , p) is a partial metric space, c ∈ X and a
function T : X → X, then the following statements are equiva-
lent:

(i) T is continuous

(ii) For any sequence xn converging to c ∈ X, then T xn
converges to f (c).

Durmaz et al. [9] provided the following definition regard-
ing an ordered F-contraction map:

Definition 2.11. [9] Let (X ,�,d) be an ordered metric space
and T : X → X be a mapping. Let Y = {(x,y) ∈ X ×X : x�
y,d(T x,Ty)> 0} we say that T is an ordered F-contraction
if F ∈ ∆F and there exists τ > 0 such that for all (x,y) ∈ Y ,
we have

τ +F(d(T x,Ty))≤ F(d(x,y)). (2.1)

Durmaz et al. [9] proved the following theorem:

Theorem 2.12. [9] Let (X ,d,�) be an ordered complete met-
ric space and T : X → X be an ordered F-contraction. Let
T be a non-decreasing map and there exists x0 ∈ X such that
x0 � T x0. If T is continuous or X is regular then T has a fixed
point.

The purpose of this paper is to extend Theorem 2.12 to an
ordered partial metric space in order to obtain a fixed point
theorem for an ordered F-contraction map.

3. Main Results
In this section, we deal with the existence and uniqueness of
fixed point of a F-contraction map in an ordered partial metric
space. First we will provide the extension of Definition 2.11
in an ordered partial metric space which is as follows:

Definition 3.1. Let (X ,�, p) be an ordered partial metric
space and T : X → X be a mapping. Also let Y = {(x,y) ∈
X ×X : x � y, p(T x,Ty) > 0}. We say that T is an ordered
F-contraction if F ∈ ∆F and there exists τ > 0 such that for
all (x,y) ∈ Y , we have

τ +F(p(T x,Ty))≤ F(p(x,y)). (3.1)

Next, we prove a fixed point theorem for a pair of com-
partible ordered F-contraction mappings.

Theorem 3.2. Let (X ,�) be a partially ordered set and sup-
pose that there exists a partial metric space on X such that
(X , p) is a complete partial metric space. Suppose T and g are
continuous self F-contraction mappings on X, T (X)⊆ g(X),
T is a monotone g-non decreasing map and

τ +F(p(T x,Ty))≤ F(M(x,y)) (3.2)

where

M(x,y)=max
{

p(gx,gy), p(gx,T x), p(gy,Ty), 1
2

[
p(gx,Ty)+

p(gy,T x)
]}

for all x,y ∈ X for which gx and gy are compa-

rable and τ > 0. If there exists x0 ∈ X such that gx0 � T x0
and T and g are compatible, then T and g have a coincident
point.

Proof. Let x0 be such that gx0 � T x0 since T (X) ⊆ g(X),
we can choose x1 ∈ X so that gx1 = T x0. Since T x1 ∈ g(X),
there exists x2 ∈ X such that gx2 = T x1. By induction, we
can construct a sequence {xn} in X such that gxn+1 = T xn for
every n≥ 0. Since T is a monotone g-non decreasing mapping,
gx0 � T x0 = gx1 implies T x0 � T x1. Similarly, since gx1 �
gx2 we obtain T x1 � T x2 and gx2 � gx3. Continuing with this
process we obtain

T x0 � T x1 � T x2 � ...� T xn � T xn+1 � ...

Suppose that p(T xn,T xn+1) > 0 for all n = 0,1,2, ... If not
then T xn+1 = T xn for some n, T xn+1 = gxn+1 that is T and
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g have a coincident point xn+1 and so this will end the proof.
Consider

τ +F(p(gxn+1,gxn+2)) =τ +F(p(T xn,T xn+1))

≤F(M(xn,xn+1)).

where M(xn,xn+1)

=max
{

p(gxn,gxn+1), p(gxn,T xn), p(gxn+1,T xn+1),

p(gxn,T xn+1)+ p(gxn+1,T xn)

2

}

=max
{

p(T xn−1,T xn), p(T xn−1,T xn), p(T xn,T xn+1),

p(T xn−1,T xn+1)+ p(T xn,T xn)

2

}
=max

{
p(T xn−1,T xn), p(T xn,T xn+1),

p(T xn−1,T xn+1)+ p(T xn,T xn)

2

}
≤max

{
p(T xn−1,T xn), p(T xn,T xn+1),

p(T xn−1,T xn)+ p(T xn,T xn+1)

2

}
=max

{
p(T xn−1,T xn), p(T xn,T xn+1)

}
.

Suppose

max
{

p(T xn−1,T xn), p(T xn,T xn+1)

}
= p(T xn,T xn+1)

then

τ +F(p(gxn+1,gxn+2)) = τ +F(p(T xn,T xn+1))

≤ F(p(T xn,T xn+1)),

which is a contradiction. Hence
max{p(T xn−1,T xn), p(T xn,T xn+1)}= p(T xn−1,T xn).
Then, for all n ∈ N, we can write

F(p(T xn,T xn+1))≤ F(p(T xn−1,T xn))− τ ≤ ...

≤ F(p(T x0,T x1))−nτ. (3.3)

From (3.3), we obtain lim
n→∞

F(p(T xn,T xn+1)) = −∞. Since

F ∈ ∆F then by (F2) we have,

lim
n→∞

p(T xn,T xn+1) = 0. (3.4)

By (F3) there exists k ∈ (0,1) such that

lim
n→∞

(p(T xn,T xn+1))
kF(p(T xn,T xn+1)) = 0. (3.5)

Following (3.3), for all n ∈ N we obtain

(p(T xn,T xn+1))
k(F(p(T xn,T xn+1))−F(p(T x0,T x1)))

≤−(p(T xn,T xn+1))
knτ ≤ 0.

(3.6)

Taking into account (3.4), (3.5) and letting n→ ∞ in (3.6) we
get

lim
n→∞

n(p(T xn,T xn+1))
k = 0. (3.7)

Since (3.7) holds, there exists n1 ∈ N such that

n(p(T xn,T xn+1))
k ≤ 1,

for all n≥ n1. This implies that

(
p(T xn,T xn+1)

)k ≤ 1

n
1
k
, for all n≥ n1. (3.8)

Next, we will show that {T xn} is a Cauchy sequence. Con-
sider n,m ∈ N such that m > n≥ n1, then by (3.8) and axiom
(P3) of Definition 1.3 we have

p(T xn,T xm)≤ p(T xn,T xn+1)+ ...+ p(T xm−1,T xm)

−
m−1

∑
j=n+1

p(T x j,T x j)

≤ p(T xn,T xn+1)+ p(T xn+1,T xn+2)+ ...

+ p(T xm−1,T xm)

=
m−1

∑
i=n

p(T xi,T xi+1)

≤
∞

∑
i=n

p(T xi,T xi+1)

≤
∞

∑
i=n

1

i
1
k
.

The convergence of the series ∑
∞
i=1

1

i
1
k

implies that

lim
n→∞

p(T xn,T xm) = 0.

By Lemma 2.1 we get that, for any n,m ∈ N,

ps(T xn,T xm)≤ 2p(T xn,T xm)→ 0

as n→ ∞. This implies that, {T xn}n∈N is a Cauchy sequence
with respect to ps and hence converges by Lemma 2.2. Thus
there exists u ∈ X such that, lim

n→∞
T xn = u. By the continuity

of T , we have lim
n→∞

T (T xn) = Tu. Since gxn+1 = T xn→ u and

the pair (T,g) is compatible, we have

lim
n→∞

p(g(T xn),T (gxn)) = 0. (3.9)
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By axiom (P3) of Definition 1.3 we have

p(Tu,gu)≤ p(Tu,T (gxn))+ p(T (gxn),g(T xn))

+ p(g(T xn),gu))− p(T (gxn),T (gxn))

− p(g(T xn),g(T xn)). (3.10)

Now we apply Lemma 2.10. Letting n→ ∞ in (3.10) and
using the fact that T and g are continuous, we obtain that
p(Tu,gu) = 0 that is Tu = gu and u is a coincidence point of
T and g.

One can deduce the following corollary from Theorem
3.2:

Corollary 3.3. Let (X , p) be a complete partial metric space.
Let T,g : X → X be continuous mapping satisfying

τ +F(p(T x,Ty))≤ F(p(gx,gy))

for all x,y∈ X where F ∈ ∆F and τ > 0, If T gx = gT x and the
mappings T,g satisfy the condition T (X)⊆ g(X) of Theorem
3.2 then the mappings have a coincidence point.

4. Example

Example 4.1. Let M = [0,1] with the usual order and let
(X , p) be a complete partial metric space defined by p(x,y) =
max{x,y} for all x,y ∈ M. Let T,g : M → M be a pair of

compatible F-contraction mappings given by T x =
x3

3x+9
,

gx =
x2

x+3
.

Let F : R+→ R be defined by F(α) = ln(α) for all α ∈
R+, and also let τ = ln(3). We show that the condition (3.2) of
Theorem 3.2 is satisfied. If x,y ∈ X is such that p(T x,Ty)> 0,
this implies that

τ +F(p(T x,Ty)) = τ + ln
[

max
{

x3

3x+9
,

y3

3y+9

}]
.

Now suppose that y ≥ x, Without loss of generality, we
obtain that,

τ + ln
[

max
{

x3

3x+9
,

y3

3y+9

}]
≤ F(M(x,y)),

where
M(x,y) = gy = max{gx,gy}= p(gx,gy).
Therefore

ln(3)+ ln
[

max
{

x3

3x+9
,

y3

3y+9

}]
= ln(3)+ ln

(
y3

3y+9

)
≤ ln

(
y2

y+3

)
= F(p(x,y)).

Likewise, if y≤ x we obtain that τ+F(p(T x,Ty))≤F(p(gx,gy))

Remark 4.2. As we observe in Example 4.1, if the assumption
that every pair of elements has a lower bound and upper
bound is not satisfied then, a fixed point of T may not be
unique.

5. Conclusion
In this paper, an approach has been developed for ex-

istence and uniqueness of coincidence points for a pair of
ordered F- contraction mappings in an ordered partial metric
space. The results due to Durmaz et al. [9] are extended for a
pair of compatible ordered F-Contraction mappings.
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