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Existence results for fractional differential equations with infinite delay

and interval impulsive conditions
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Abstract

This paper is mainly concerned with the existence and uniqueness of mild solutions for nonlocal fractional
infinite delay differential equations with interval impulses. The results are obtained by using fixed point
theorem.
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1 Introduction

Fractional differential equations arise in many engineering and scientific disciplines as the mathemati-
cal modeling of systems and processes in the fields of physics, chemistry, aerodynamics, electrodynamics of
a complex medium, polymer rheology, etc., involves derivatives of fractional order. Fractional differential
equations also serve as an excellent tool for the description of hereditary properties of various materials and
processes. Though the concepts and the calculus of fractional derivative are few centuries old, it is realized
only recently that these derivatives form an excellent framework for modeling real world problems. In the
consequence, fractional differential equations have been of great interest. For details, see the monographs of
Kilbas et al. [7], Lakshmikantham et al. [8], Miller and Ross [11], Podlubny [12], Anguraj et al. [1], [2] and the
references there in.

On the other hand, the theory of impulsive differential equations is also an important area of research
which has been investigated in the last few years by great number of mathematicians. We recall that the
impulsive differential equations may better model phenomena and dynamical processes subject to a great
changes in short times issued for instance in biotechnology, automatics, population dynamics, economics and
robotics. To learn more about this kind of problems, we refer to the books [9], [13].

Recently, the study of impulsive differential equations has attracted a great deal of attention in fractional
dynamics and its theory has been treated in several works [5], [13]. Balachandran and Trujillo [3], [4] inves-
tigated the non-local cauchy poblem for non-linear fractional integro differential equations in Banach spaces.
Xianmin Zhang [14] studied the existence and uniqueness of mild solutions for impulsive fractional equations
with nonlocal conditions and infinite delay. In most of the impulsive differential equations studied so for, the
impulses occur instantaneously. But there are some situations in which the impulsive action starts abruptly
and stays active on a finite time interval. Eduardo Hernandez and Donal O’Regan [6] established on a new
class of abstract impulsive differential equations for which the impulses are not instantaneous.

Motivated by [6], we consider the following fractional infinite delay differential equations with interval
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impulsive

Dq
t x(t) = f (t, xt), t ∈ (si, ti+1], i = 0, 1, ..., N, (1.1)

x(t) = gi(t, x(t)), t ∈ (ti, si], i = 1, 2, ..., N, (1.2)

x(0) + k(x) = φ, φ ∈ Bϑ, (1.3)

where 0 < q < 1 and the state x(.) belongs to Banach space X endowed with the norm ‖ . ‖. Dq
t is the

Caputo fractional derivative and f is a suitable function. 0 = t0 = s0 < t1 ≤ s1 ≤ t2 < ...tN ≤ sN ≤ tN+1 = b
are pre-fixed numbers, gi ∈ C((ti, si]×X; X) for all i = 1, 2, ..., N. Let xt(.) denote xt(θ) = x(t + θ), θ ∈ (−∞, 0].
The impulses starts abruptly at the point ti and their action continue on the interval [ti, si].

The rest of this paper is organized as follows. In Section 2, some preliminaries are presented. In Section 3,
we study the existence and the uniqueness of solutions for the impulsive fractional system (1.1)-(1.3).

2 Preliminaries

In this section, we shall introduce some basic definitions, notations, lemmas and theorem which are used
throughout this paper.

Assume that ϑ : (−∞, 0] → (0, +∞) is a continuous function satisfying ` =
∫ 0
−∞ ϑ(t)dt < +∞. The Banach

space (Bϑ, ||.||Bϑ
) induced by the function ϑ is defined as follows

Bϑ =

{
ϕ : (−∞, 0] −→ X : f or any c > 0, ϕ(θ) is a bounded and

measurable f unction on [−c, 0] and
∫ 0
−∞ ϑ(t)supt≤θ≤0 ‖ϕ(θ)‖ dt < +∞

endowed with the norm ‖ϕ‖Bϑ
=

∫ 0
−∞ ϑ(s)sups≤θ≤0 ‖ϕ(θ)‖ ds.

Let us define the space

B′ϑ =


ϕ : (−∞, b] → X : ϕk ∈ C(Jk, X), k = 0, 1, 2, ..., N and there exist

ϕ(t−k )and ϕ(t+k ) with ϕ(tk) = ϕ(t−k ), ϕ(t) = gk(t, x(t)), t ∈ (tk, sk],

k = 1, 2, ..., N, ϕ0 = ϕ(0) + k(ϕ) = φ ∈ Bϑ

where ϕk is the restriction of ϕ to Jk, J0 = [0, t1], Jk = [sk, tk+1], k = 1, 2, ..., N.
Denote by ||.||B′ϑ , a seminorm in the space B′ϑ, which is defined by
||ϕ||B′ϑ = ||ϕ||Bϑ

+ max
{
||ϕk||Jk , k = 1, 2, ..., N

}
where ||ϕk||Jk = sups∈Jk

||ϕk(s)||.
For the impulsive conditions, we consider the space PC(X) which is formed by all the functions x : [0, b] →

X such that x(.) is continuous at t 6= ti, x(t−i ) = x(ti) and x(t+i ) exists for all i = 1, 2, ..., N, endowed with the
uniform norm on [0, b] denoted by ‖x‖PC(X). It is easy to see that PC(X) is a Banach space. For a function
x ∈ PC(X) and i ∈ {0, 1, ..., N}, we introduce the function x̃i ∈ C([ti, ti+1]; X) given by

x̃i(t) =

{
x(t), f or t ∈ (ti, ti+1]

x(t+i ), f or t = ti.
(2.1)

In addition, for B ⊆ PC(X) we use the notation B̃i for the set B̃i =
{

xi : x ∈ B
}

and i ∈ {0, 1, ..., N}.

Lemma 2.1. A set B ⊆ PC(X) is relatively compact in PC(X) if and only if each set B̃i is relatively compact in
C([ti, ti+1], X).

Theorem 2.1. (Schauder’s Theorem) Suppose that D is a closed bounded convex subset of the Banach space X and A is
completely continuous function from D into D. Then there is a point z ∈ D such that Az = z.

Definition 2.1. A function x : (−∞, b] → X is called a mild solution of the problem (1.1)− (1, 3) if x(0) + k(x) = φ ∈
Bϑ, x(t) = gi(t, x(t)) for all t ∈ (ti, si] , each i = 1, 2, ..., N, the restriction of x(.) to the interval Jk(k = 0, 1, 2, ..., N)
is continuous, and the following integral equation holds

x(t) = φ(0)− k(x) +
1

Γ(q)

∫ t

0
(t− s)q−1 f (s, xs)ds, f or all t ∈ [0, t1] and

x(t) = gi(si, x(si)) +
1

Γ(q)

∫ t

si

(t− s)q−1 f (s, xs)ds, f or all t ∈ [si, ti+1] and every i = 1, 2, ..., N.



18 M. Lathamaheswari et al. / Existence results for...

Definition 2.2. The Riemann - Liouville fractional integral operator of order q ≥ 0 of function f ∈ L1(R+) is defined
as

Iq
0+ f (t) =

1
Γ(q)

∫ t

0
(t− s)q−1 f (s)ds, t > 0

where Γ(.) is the Euler gamma function.

Definition 2.3. The Caputo fractional derivative of order q ≥ 0 , n− 1 < q < n, is defined as

Dq
0+ f (t) =

1
Γ(n− q)

∫ t

0
(t− s)(n−q−1) f (n)(s)ds, t > 0

where the function f(t) has absolutely continuous derivatives up to order (n-1).
If 0 < q < 1, then

Dq
0+ f (t) =

1
Γ(1− q)

∫ t

0
(t− s)(−q) f (1)(s)ds

where f (1)(s) = D f (s) = d f (s)
ds and f is an abstract function with values in X.

Lemma 2.2. Assume that x ∈ B′ϑ then, for t ∈ [0, b], xt ∈ Bϑ. Moreover

`||x(t)|| ≤ ||xt||Bϑ
≤ ||φ||Bϑ

+ ` sups∈[0,t]||x(s)||.

3 Main results

For φ ∈ Bϑ, we define φ̂ by

φ̂(t) =


φ(t), t ∈ (−∞, 0]

φ(0), t ∈ [0, t1]

0, t ∈ (t1, b]

then φ̂ ∈ B′ϑ.
Let x(t) = y(t) + φ̂(t), −∞ < t < b. It is evident that y satisfies y0 = 0, t ∈ (−∞, 0],

y(t) = −k(y + φ̂) +
1

Γ(q)

∫ t

0
(t− s)q−1 f (s, ys + φ̂s)ds, f orall t ∈ [0, t1],

y(t) = gi(t, (y + φ̂)(t)), f or all t ∈ (ti, si] and each i = 1, 2, ..., N,

and

y(t) = gi(si, (y + φ̂)(si)) +
1

Γ(q)

∫ t

si

(t− s)q−1 f (s, ys + φ̂s)ds,

f or all t ∈ [si, ti+1] and every i = 1, 2, ..., N

if and only if x satisfies

x(t) = φ(t), t ∈ (−∞, 0],

x(t) = φ(0)− k(x) +
1

Γ(q)

∫ t

0
(t− s)q−1 f (s, xs)ds, f or all t ∈ [0, t1],

x(t) = gi(t, x(t)), f or all t ∈ (ti, si] and each i = 1, 2, ..., N,

and

x(t) = gi(si, x(si)) +
1

Γ(q)

∫ t

si

(t− s)q−1 f (s, xs)ds,

f or all t ∈ [si, ti+1] and every i = 1, 2, ..., N.

To prove our main results, we introduce the following conditions:
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(H1) f : [0, b]× Bϑ → X is continuous and there exist two positive constants K1, K2 such that
|| f (t, φ1)− f (t, φ2)|| ≤ K1||φ1 − φ2||Bϑ

, K2 = supt∈[0,b]|| f (t, 0)||.

(H2) The functions gi : (ti, si] × X → X are continuous and there are positive constants Lgi such that
‖gi(t, x)− gi(t, y)‖ ≤ Lgi ‖x − y‖ for all x, y ∈ X, t ∈ (ti, si] and each i = 0, 1, ..., N.

(H3) k : B′ϑ → X is continuous and there exist some positive constantδ1, δ2 such that
||k(x)− k(y)|| ≤ δ1||x − y||B′ϑ and ||k(x)|| ≤ δ1||x||B′ϑ + δ2.

(H4) Ω = maxi

{
Lgi + K1`bq

Γ(q+1) + δ1

}
< 1, i = 1, 2, ..., N.

Theorem 3.1. Suppose that the conditions (H1) − (H4) are satisfied then there exists a unique mild solution of the
problem (1.1)-(1.3).

Proof. Define Θ : B′ϑ → B′ϑ by

Θy(t) = 0, t ∈ (−∞, 0]

Θy(t) = −k(y + φ̂) +
1

Γ(q)

∫ t

0
(t− s)q−1 f (s, ys + φ̂s)ds,

f or all t ∈ [0, t1],

Θy(t) = gi(t, (y + φ̂)(t)), f or all t ∈ (ti, si] and each i = 1, 2, ..., N,

and

Θy(t) = gi(si, (y + φ̂)(si)) +
1

Γ(q)

∫ t

si

(t− s)q−1 f (s, ys + φ̂s)ds,

f or all t ∈ [si, ti+1] and every i = 1, 2, ..., N.

Clearly, y is a fixed point of Θ then y + φ̂ is a solution of the system (1.1)-(1.3). We shall show that Θ satisfies
the hypotheses of Theorem 2.1.

Define the Banach space (B′′ϑ , ||.||B′ϑ ) induced by B′ϑ ,
B′′ϑ =

{
y ∈ B′ϑ : y0 = 0 ∈ Bϑ

}
with norm ||y||B′ϑ = sup

{
||y(s)|| : s ∈ [0, b]

}
, set Br =

{
y ∈ B′′ϑ : ||y||B′ϑ ≤ r

}
for some r > 0.
For any y ∈ Br, t ∈ [0, b] and by Lemma 2.2, we have

|yt + φ̂t||Bϑ
≤ ||φ||Bϑ

+ `[r + ‖φ(0)‖],
||y + φ̂||B′ϑ ≤ r + ||φ||Bϑ

+ ‖φ(0)‖ .

From the assumption it is easy to see that Θ is well defined. Moreover, for y1, y2 ∈ B′ϑ, i ∈ {1, 2, ..., N}, and t
∈ [si, ti+1] we get

||Θy1(t)−Θy2(t)|| ≤ ||gi(si, (y1 + φ̂)(si))− gi(si, (y2 + φ̂)(si))||

+
1

Γ(q)

∫ t

si

(t− s)q−1|| f (s, y1s + φ̂s)− f (s, y2s + φ̂s)||ds

≤ Lgi ||y1 − y2||B′ϑ +
1

Γ(q)

∫ t

si

(t− s)q−1k1`||y1 − y2||B′ϑ ds

≤ [Lgi +
K1`bq

Γ(q + 1)
]||y1 − y2||B′ϑ

hence

‖Θy1 −Θy2‖C([si ,ti+1];X) ≤ Ω ‖y1 − y2‖B′ϑ
, i = 1, 2, ..., N.
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proceeding the same manner for the interval [0,t1], we obtain that

||Θy1(t)−Θy2(t)|| ≤ || − k(y1 + φ̂) + k(y2 + φ̂)||

+
1

Γ(q)

∫ t

0
(t− s)q−1|| f (s, y1s + φ̂s)− f (s, y2s + φ̂s)||ds

≤ [δ1 +
K1`bq

Γ(q + 1)
]||y1 − y2||B′ϑ

hence

‖Θy1 −Θy2‖C([0,t1];X) ≤ Ω ‖y1 − y2‖B′ϑ

Moreover, for t ∈ (ti, si] we have

||Θy1(t)−Θy2(t)|| ≤ Lgi ||y1 − y2||B′ϑ

hence

‖Θy1 −Θy2‖C((ti ,si ];X) ≤ Ω ‖y1 − y2‖B′ϑ
, i = 1, 2, ..., N

From the above we have that ‖Θy1 −Θy2‖ ≤ Ω ‖y1 − y2‖B′ϑ
. Therefore Θ is a contraction and there exists a

unique mild solution of (1.1)-(1.3). This completes the proof.

Next, we establish the existence of a mild solution using a fixed point criteria for completely continuous
maps.

Theorem 3.2. Assume the hypotheses (H1)− (H4) are satisfied and the functions gi(., 0) are bounded then the system
(1.1)-(1.3) has a mild solution.

Proof. We divide the proof into five steps.
Step 1: To prove ΘBr ⊂ Br.

There exists a positive integer r such that Br is clearly a closed bounded convex set in B′ϑ. If ΘBr ⊂ Br is
not true then for each positive integer r, there exist y ∈ Br and t ∈ (−∞, b] such that ||Θ(y)(t)|| > r, where t is
depending upon r.
However, on the other hand for i ≥ 1, let y ∈ Br and t ∈ (ti, si] we have

r < ||Θy(t)||
≤ ||gi(t, (y + φ̂)(t))||
≤ Lgi ||y + φ̂||B′ϑ + ||gi(t, 0)||
≤ Lgi (r + ||φ||Bϑ

) + ||gi(., 0)||C((ti ,si ];X)

Dividing on both sides by r and taking the lower limit as r → +∞, weget 1 ≤ Lgi . This is a contradiction to
(H4). Therefore ||Θy||C((ti ,si ];X) ≤ r for i ≥ 1.
Proceeding as above for t ∈ [si, ti+1] and t ∈ [0, t1], i ≥ 1 we obtain that
1 ≤ Lgi + K1`bq

Γ(q+1) and 1 ≤ δ1 + K1`bq

Γ(q+1) , which gives a contradiction to (H4). Hence, for some positive integer r,
ΘBr ⊂ Br.

Next, we introduce the decomposition Θ = Θ1 + Θ2 = ∑N
i=0 Θ1

i + ∑N
i=0 Θ2

i where Θj
i : Br → Br, i = 1, 2, ..., N,

j = 1, 2 are given by

Θ1
i y(t) =



0, f or t ∈ (−∞, 0],

−k(y + φ̂), f or t ∈ [0, t1],

gi(t, (y + φ̂)(t)), f or t ∈ (ti, si], i ≥ 1,

gi(si, (y + φ̂)(si)), f or t ∈ (si, ti+1], i ≥ 1,

0, f or t /∈ (ti, ti+1], i ≥ 0.
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Θ2
i y(t) =


0, f or t ∈ (−∞, 0],

1
Γ(q)

∫ t
si
(t− s)q−1 f (s, ys + φ̂s)ds, f or t ∈ (si, ti+1], i ≥ 0,

0, f or t /∈ (si, ti+1], i ≥ 0.

Step 2: The map Θ1 = ∑N
i=0 Θ1

i is a contraction on Br.
Take y1, y2 ∈ Br arbitrarily. Then, for each t ∈ (−∞, b] and from (H2) to (H4), we have

||Θ1
i y1(t)−Θ1

i y2(t)|| ≤ δ1||y1 − y2||B′ϑ + Lgi ||y1 − y2||B′ϑ

Which implies that
∥∥∥∑N

i=0 Θ1
i y1 −∑N

i=0 Θ1
i y2

∥∥∥ ≤ Ω ‖y1 − y2‖B′ϑ
.

This proves that Θ1 is a contraction on Br.
Next, we use the notation Θ2

i Br(t) =
{

Θ2
i y(t) : Br

}
.

Step 3: For i = 0, 1, ..., N and si < s < t ≤ ti+1, the set ∪τ∈[s,t]Θ2
i Br(τ) is relatively compact in B′ϑ. Let

si < µ < s. For ε > 0 we choose 0 < λ <
s−µ

2 such that λq

Γ(q+1) [k1(`r + ||φ||Bϑ
) + k2] ≤ ε for all interval

I ⊂ [0, b] with Diam(I) ≤ λ.
Then, for τ ∈ [s, t] and y ∈ Br we get

Θ2
i y(τ) =

1
Γ(q)

∫ τ−λ

si

(τ − λ− s)q−1 f (s, ys + φ̂s)ds +
1

Γ(q)

∫ τ

τ−λ
(τ − s)q−1 f (s, ys + φ̂s)ds

∈ Br1 + Br1,ε,

where r1 = bq

Γ(q+1) [k1(`r + ||φ||Bϑ
) + k2], r1, ε = λq

Γ(q+1) [k1(`r + ||φ||Bϑ
) + k2], which implies that ∪θ∈[s,t]Θ2

i Br(θ) ⊂
Br1 + Br1,ε. Since Br1 is relatively compact and Diam(Bε) → 0 as ε → 0, it follows that ∪θ∈[s,t]Θ2

i Br(θ) is
relatively compact in B′ϑ.

In the next step we use the notation introduced in (2.1).
Step 4: The set of functions

{
Θ2

i B̃r

}
i
, i = 0, 1, ..., N, is a equicontinuous subset of C([ti, ti+1]; X).

It is clear that
{

Θ2
i B̃r

}
i
is right equicontinuous on [ti, si) and left equicontinuous on (ti, si]. Let t ∈ (si, ti+1),

since the set Θ2
i Br(t) is relatively compact in B′ϑ. Then, for y ∈ Br and 0 < h < λ < ti+1 − t we get∥∥∥Θ̃2

i y(t + h)− Θ̃2
i y(t)

∥∥∥ =
∥∥∥Θ2

i y(t + h)−Θ2
i y(t)

∥∥∥
= || 1

Γ(q)

∫ t+h

si

(t + h− s)q−1 f (s, ys + φ̂s)ds

− 1
Γ(q)

∫ t

si

(t− s)q−1 f (s, ys + φ̂s)ds||

≤ 1
Γ(q)

∫ t+h

t
(t + h− s)q−1|| f (s, ys + φ̂s)||ds

+
1

Γ(q)

∫ t

si

||(t + h− s)q−1 − (t− s)q−1|||| f (s, ys + φ̂s)||ds

≤ hq

Γ(q + 1)
[k1(`r + ||φ||Bϑ

) + k2]

+
1

Γ(q)

∫ t

si

||(t + h− s)q−1 − (t− s)q−1||[k1(`r + ||φ||Bϑ
) + k2]ds

The right-hand side is independent of y ∈ Br and tends to zero as h → 0. This shows that
{

Θ̃2
i Br

}
i

is right
equicontinuous at t.
In the simillar manner we proceed for t = si and h > 0 with si + h < ti+1we have that

∥∥∥Θ̃2
i y(si + h)− Θ̃2

i y(si)
∥∥∥ =

∥∥∥∥∥ 1
Γ(α)

∫ si+h

si

(t + h− s)q−1 f (s, ys + φ̂s)ds

∥∥∥∥∥
≤ hq

Γ(q + 1)
[k1(`r + ||φ||Bϑ

) + k2]
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which implies that
{

Θ̃2
i Br

}
i

is right equicontinuous at si.

Now for t ∈ (si, ti+1]. Let µ ∈ (si, t]. Since ∪s∈[µ,t]Θ2
i Br(s) is relatively compact in B′ϑ, we select 0 < λ <

t−µ
2

then for 0 < h ≤ λ and y ∈ Br we get,∥∥∥Θ̃2
i y(t− h)− Θ̃2

i y(t)
∥∥∥ =

∥∥∥Θ2
i y(t− h)−Θ2

i y(t)
∥∥∥

≤ 1
Γ(q)

∫ t

t−h
(t− s)q−1|| f (s, ys + φ̂s)||ds

+
1

Γ(q)

∫ t−h

si

||(t− s)q−1 − (t− h− s)q−1|||| f (s, ys + φ̂s)||ds

≤ hq

Γ(q + 1)
[k1(`r + ||φ||Bϑ

) + k2]

+
1

Γ(q)

∫ t

si

||(t− s)q−1 − (t− h− s)q−1||[k1(`r + ||φ||Bϑ
) + k2]ds

which shows that ˜{
Θ2

i Br
}

i is left equicontinuous at t ∈ (si, ti+1].

This completes the proof that the set ˜{
Θ2

i Br
}

i is equicontinuous.

Step 5: For i 6= j, the set ˜{
Θ2

i Br
}

j is a equicontinuous subset of C([tj, tj+1]; X).
From the above steps and Lemma 2.1 it follows that, the map Θ1 is a contraction and the maps Θ2 are

completely continuous. Thus, Θ = Θ1 + Θ2 is a condensing operator. Finally, from [[10], Theorem 4.3.2]. we
assert that there exists a mild solution of (1.1)-(1.3).
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