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Relatively prime dominating polynomial in graphs
C. Jayasekaran1* and A. Jancy Vini2

Abstract
We introduce the concept of relatively prime domination polynomial of a graph G. The relatively prime domination
polynomial of a graph G of order n is the polynomial Drpd(G,x) = ∑

n
k=γrpd(G) drpd(G,k)xk where drpd(G,k) is the

number of relatively prime dominating sets of G of size k, and γrpd(G) is the relatively prime domination number
of G. We compute this polynomial for path Pn, complete bipartite graph Km,n, star K1,n, bistar Bm,n, spider graph
K1,n,n and Helm graph Hn.
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1. Introduction
By a graph G = (V,E) we mean a finite undirected graph

without loops and multiple edges. The order and size of G are
denoted by n and m respectively. For graph theoretical terms,
we refer to Harary [5] and for terms related to domination we
refer to Haynes [6]. A subset S of V is said to be a dominating
set in G if every vertex in V − S is adjacent to at least one
vertex in S. The domination number γ(G) is the minimum
cardinality of a dominating set in G.

Berge and Ore [2, 13] formulated the concept of domina-
tion in graphs. It was further extended to define many other
domination related parameters in graphs. Let G be a non -
trivial graph. A set S ⊆ V is said to be a relatively prime
dominating set if it is a dominating set and for every pair of
vertices u and v in S such that (d(u),d(v)) = 1. The mini-
mum cardinality of a relatively prime dominating set is called
the relatively prime domination number and it is denoted by

γrpd(G) [8]. Switching in graphs was introduced by Lint and
Seidel [12]. For a finite undirected graph G(V,E) and a sub-
set σ ⊆ V , the switching of G by σ is defined as the graph
Gσ (V,E ′) which is obtained from G by removing all edges
between σ and its complement V −σ and adding as edges all
non edges between σ and V −σ . For σ = {v}, we write Gv

instead of G{v} and the corresponding switching is called as
vertex switching [7]. Bistar is the graph obtained by joining
the center of two stars K1,m and K1,n with an edge and it is
denoted by Bm,n [14]. A spider is a tree with one vertex of
degree at least 3, called the center, and all others with degree
at most 2 and it is denoted by K1,n,n [4]. A wounded spider is
the graph formed by sub dividing at most n−1 of the edges
of a star K1,n for n≥ 0 [11]. For more details about the basic
definitions which is not appear here, we refer to Harrary [5].

Graph polynomials are powerful and well-developed tools
to express graph parameters. Saeid Alikhani and Peng, Y. H.
[1], have introduced the Domination polynomial of a graph.
The Domination polynomial of a graph G of order n is the
polynomial D(G,x) = ∑

n
i=γ(G) d(G, i)xi, where d(G, i) is the

number of dominating sets of G of size i, and γ(G) is the
domination number of G. This motivated us to introduce the
relatively prime domination polynomial of a graph. In this pa-
per, we define the relatively prime domination polynomial of a
graph G and find the relatively prime domination polynomial
of some standard graphs.
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2. Definition and Examples

Definition 2.1. Let G = (V,E) be a graph of order n with
relatively prime domination number γrpd(G). The relatively
prime domination polynomial of G is,

Drpd(G,x) =
n

∑
k=γrpd(G)

drpd(G,k)xk

where drpd(G,k) is the number of relatively prime dominating
sets of G of size k and γrpd(G) is the relatively prime domina-
tion number of G. The roots of the polynomial Drpd(G,k) are
called the relatively prime dominating roots of G.

Example 2.2. Let G be the graph given in Figure 1. Clearly
γrpd(G) = 2 and there are only two minimum relatively prime
dominating sets of size 2, namely {v2,v4} and {v3,v5}, three
relatively prime dominating sets of size 3, namely {v1,v4,v5},
{v1,v3,v5} and {v1,v2,v4} and two relatively prime dominat-
ing sets of size 4, namely {v1,v2,v4,v5} and {v1,v3,v4,v5}.
Hence Drpd(G,x) = 2x2 +3x3 +2x4 = x2(2+3x+2x2).

Figure 1. G

Example 2.3. Consider the graph G = 2K2 given in Figure
2. Clearly γrpd(G) = 2 and there are only four minimum rela-
tively prime dominating sets of size 2, namely {v1,v3},{v1,v4},
{v2,v3} and {v2,v4}, four relatively prime dominating sets of
size 3, namely {v1,v2,v3},{v1,v2,v4},{v2,v3,v4} and {v1,v3,
v4} and one relatively prime dominating set of size 4 which is
{v1,v2,v3,v4}. Hence Drpd(G,x) = 4x2 + 4x3 + x4 = x2(4+
4x+x2). Obviously, there are two relatively prime dominating
roots of G which are 0 and −2.

Figure 2. G = 2K2

Theorem 2.4. [8] For a complete bipartite graph Km,n,
γrpd(Km,n) = 2 if and only if (m,n) = 1.

Theorem 2.5. [8] If G1 ∼= G2, then γrpd(G1) = γrpd(G2) .

Theorem 2.6. [9] γrpd(Cv
n) =

{
2 for 3≤ n≤ 6
3 for n≥ 7

Theorem 2.7. [10] γrpd(K1,m∪Kn)=

{
2 if (m,n−1) = 1
m+1 if (m,n−1) 6= 1

Theorem 2.8. [10] γrpd(Bm,n)=

{
2 if (m+1,n+1) = 1
r+1 if (m+1,n+1) 6= 1

,

where r = min{m,n}.

Theorem 2.9. [10] γrpd(Km∪Kn)=

{
2 if (m−1,n−1) = 1
0 otherwise

Theorem 2.10. [8] γrpd(Pn) =


2 if 2≤ n≤ 5
3 if n = 6,7
0 otherwise

Theorem 2.11. [8] γrpd
(
Pn
)
=

{
2 if n≥ 3
0 otherwise

Theorem 2.12. [9] For n≥ 2,γrpd
(
Kv

m,n
)
= 2, where m 6= n

and m+n is odd.

3. Main Results
Theorem 3.1. If G1 ∼= G2, then Drpd(G1,x) = Drpd(G2,x).

Proof. Let G1 ∼= G2. Then by Theorem 2. 5, γrpd(G1) =
γrpd(G2). This implies that Drpd(G1,x) = Drpd(G2,x).

Theorem 3.2. Drpd(Pn,x) =



x2 if n = 2
3x2 + x3 if n = 3
3x2 +2x3 if n = 4
2x2 +3x3 if n = 5
2x3 if n = 6
x3 if n = 7
0 otherwise

Proof. Let v1v2...vn be the path Pn. By Theorem 2.10, γrpd(Pn)
has value 2 for 2≤ n≤ 5, 3 for n = 6,7 and 0 for n≥ 8.

We consider the following three cases.

Case 1. 2≤ n≤ 5

Clearly γrpd(Pn) = 2. We consider the following four sub-
cases.

Subcase 1.1. n = 2
In this case there is only one relatively prime dominating
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set of size 2, namely {v1,v2} and hence Drpd(P2,x) = x2.

Subcase 1.2. n = 3
In this case there are three relatively prime dominating sets

of size 2, namely {v1,v2}, {v1,v3} and {v2,v3} and only one
relatively prime dominating set of size 3, namely {v1,v2,v3}.
This implies that drpd(P3,2) = 3 and drpd(P3,3) = 1 and
hence Drpd(P3,x) = 3x2 + x3.

Subcase 1.3. n = 4
Here there are three relatively prime dominating sets of

size 2, namely {v1,v3}, {v1,v4} and {v2,v4} and two rela-
tively prime dominating sets of size 3, namely {v1,v2,v4} and
{v1,v3,v4}. This implies that drpd(P4,2)= 3 and drpd(P4,3)=
2 and hence Drpd(P4,x) = 3x2 +2x3.

Subcase 1.4. n = 5
Here there are two relatively prime dominating sets of

size 2, namely {v1,v4} and {v2,v5} and three relatively prime
dominating sets of size 3, namely {v1,v2,v5}, {v1,v3,v5} and
{v1,v4,v5}. This implies that drpd(P5,2)= 2 and drpd(P5,3)=
3. Clearly, drpd(P5,4) = drpd(P5,5) = 0, since any relatively
prime dominating set of size greater than three must contain
at least two vertices of same degree 2. Hence Drpd(P4,x) =
2x2 +3x3.

Case 2. n = 6,7
Clearly, γrpd(Pn) = 3. We consider the following two sub-
cases.

Subcase 2.1. n = 6
In this case there are two relatively prime dominating

sets of size 3, namely {v1,v3,v6} and {v1,v4,v6} and hence
drpd(P6,3)= 2. Clearly, drpd(P6,4)= drpd(P6,5)= drpd(P6,6)
= 0, since any relatively prime dominating set of size greater
than three must contain at least two vertices of same degree 2.
Hence Drpd(P6,x) = 2x3.

Subcase 2.2. n = 7
In this case there is only one relatively prime dominating

set of size 3, namely {v1,v4,v7} and hence drpd(P7,3) = 1.
Clearly, drpd(P7,4) = ... = drpd(P7,7) = 0, since any rela-
tively prime dominating set of size greater than three must con-
tain at least two vertices of same degree 2. Hence Drpd(P7,x)=
x3.

Case 3. n≥ 8
In this case γrpd(Pn) = 0 and hence Pn has no relatively prime
dominating set. This implies that Drpd(Pn,x) = 0.

The theorem follows from cases 1, 2 and 3.

Theorem 3.3. Drpd(K1,n,x) = x[(1+ x)n−1].

Proof. Let u be the centre and let u1,u2, ...,un be the end
vertices of K1,n = G. Then V (G) = {u,ui/1 ≤ i ≤ n} and

E(G) = {uvi/1≤ i≤ n}. Let A= {u} and B= {u1,u2, ...,un}.
We know that γ(K1,n) = 1 and γrpd(K1,n) = 2. To find the num-
ber of minimum relatively prime dominating sets each with
size 2, we take the vertex u and one vertex from B. This

can be done in
(

n
1

)
ways and hence drpd(G,2) =

(
n
1

)
. In

a similar way we can prove that drpd(G,3) =
(

n
2

)
and so

on. Hence Drpd(K1,n,x) = drpd(G,2)x2 +drpd(G,3)x3 + ...+

drpd(G,n)xn =

(
n
1

)
x2 +

(
n
2

)
x3 + ...+

(
n
n

)
xn+1 = x[(1 +

x)n−1].

Theorem 3.4. For m,n≥ 2,Drpd(Km,n,x) = mnx2 if (m,n) =
1.

Proof. Let (V1,V2) be the bipartition of the vertex set of Km,n
with |V1| = m and |V2| = n and (m,n) = 1. By Theorem 2.
4, γrpd(Km,n) = 2. There are mn minimum relatively prime
dominating sets of size 2. Any dominating set that contains
more than two vertices also must contain at least two vertices
of same degree and hence drpd(G,3) = drpd(G,4) = ... =
drpd(G,mn) = 0. Therefore, Drpd(Km,n,x) = mnx2.

Theorem 3.5. Let G be the bistar Bm,n.

(i) If (m+1,n+1)= 1,m= 1 and n 6= 1, then Drpd(G,x)=

2x2 +

[(
n
0

)
+2
(

n
1

)]
x3 +

[(
n
1

)
+

(
n
2

)]
x4 + ...

+

[(
n

n−1

)
+

(
n
n

)]
xn+2 +

(
n
n

)
xn+3.

(ii) If (m+1,n+1)= 1,n= 1 and m 6= 1, then Drpd(G,x)=

2x2 +

[(
m
0

)
+2
(

m
1

)]
x3 +

[(
m
1

)
+

(
m
2

)]
x4 + ...

+

[(
m

m−1

)
+

(
m
m

)]
xm+2 +

(
m
m

)
xm+3.

(iii) If (m+1,n+1) = 1 and both m and n not equal to 1,
then Drpd(Bm,n,x) = x2[(1+ x)m+n]

(iv) If (m + 1,n + 1) 6= 1, then Drpd(Bm,n,x) = xr+1[(1 +
x)s], where r = min{m,n},s = max{m,n} and r+ s =
m+n.

Proof. Let u and v be the vertices of P2. Let u1,u2, ...,um be
the vertices attached with u and let v1,v2, ...,vn be the vertices
attached with v. The resultant graph G is Bm,n with V (G) =
{u,v,ui,v j},1≤ i≤m,1≤ j≤ n and E(G)= {uv,uui,vv j/1≤
i≤m, 1≤ j≤ n}. Clearly, d(u)=m+1,d(v)= n+1,d(ui)=
1 and d(v j) = 1,1 ≤ i ≤ m,1 ≤ j ≤ n. Let A = {u,v},B =
{u1,u2, ...,um} and C = {v1,v2, ...,vn}.

Case 1. (m+1,n+1) = 1
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Subcase 1.1. m = 1 and n 6= 1
Then m+ 1 is even. Since (m+ 1,n+ 1) = 1,n+ 1 is

odd and hence n is even. Now {u,v} and {u1,v} are the
two relatively prime dominating set of order 2 and hence
drpd(G,2) = 2. To find the number of relatively prime domi-
nating sets of size 3, we take either two vertices from A and
one vertex from either B or C or by selecting the vertices v and
u1 and a vertex from C. This can be done in n+1+n = 2n+1
ways and hence drpd(G,3) = 2n+1. Similarly,

drpd(G,4) = n+
(

n
2

)
,drpd(G,5) =

(
n
2

)
+

(
n
3

)
, ...,

drpd(G,n+2) =
(

n
n−1

)
+

(
n
n

)
,drpd(G,n+3) =

(
n
n

)
.

Hence Drpd(Bm,n,x) =
drpd(G,2)x2 +drpd(G,3)x3 +drpd(G,4)x4 +
drpd(G,5)x5 + ...+drpd(G,n+3)xn+3 =

2x2 +

[(
n
0

)
+2
(

n
1

)]
x3 +

[(
n
1

)
+

(
n
2

)]
x4 + ...

+

[(
n

n−1

)
+

(
n
n

)]
xn+2 +

(
n
n

)
xn+3.

Subcase 1.2. n = 1 and m 6= 1
As in subcase 1. 1, Drpd(Bm,n,x) =

2x2 +

[(
m
0

)
+2
(

m
1

)]
x3 +

[(
m
1

)
+

(
m
2

)]
x4 + ...

+
[(

m
m−1

)
+

(
m
m

)]
xm+2 +

(
m
m

)
xm+3.

Subcase 1.3. m 6= 1 and n 6= 1
By Theorem 2.8, γrpd(Bm,n) = 2. Clearly, there is only

one minimal relatively prime dominating set of size 2, namely
{u,v}. To find the number of relatively prime dominating sets
each with size 3, we take two vertices from A and one vertex

from either B or C. This can be done in
(

m+n
1

)
ways and

hence drpd(G,3) =
(

m+n
1

)
. By a similar way, we can prove

that drpd(G,4) =
(

m+n
2

)
and so on. Hence Drpd(Bm,n,x) =

drpd(G,2)x2 +drpd(G,3)x3 +drpd(G,4)x4 + ...

+drpd(G,n)xn = x2 +

(
m+n

1

)
x3 +

(
m+n

2

)
x4 + ...

+

(
m+n

m+n−1

)
xm+n+1+

(
m+n
m+n

)
xm+n+2 = x2

[(
1+ x

)m+n
]
.

Case 2. (m+1,n+1) 6= 1

By Theorem 2. 8, γrpd(Bm,n)= r+1, where r =min{m,n}.
Clearly, there is only one minimal relatively prime domi-
nating set of size r + 1. To find a relatively prime domi-
nating set of size r + 2, first we choose the minimal car-
dinality set from the sets B and C, the maximum degree

vertex from u and v and a vertex from the maximum car-

dinality set from the set B and C. This can be done in
(

s
1

)
ways and hence drpd(G,r+2) =

(
s
1

)
, where r = min{m,n}

and s = max{m,n}. By a similar way, we can prove that

drpd(G,r + 3) =
(

s
2

)
and so on. Hence, Drpd(Bm,n,x) =

drpd(G,r+1)x2 +drpd(G,r+2)x3 + ...+drpd(G,n)xn =

xr+1 +

(
s
1

)
xr+2 +

(
s
2

)
xr+3 + ...+

(
s
s

)
xr+s+1 =

xr+1
[(

1+ x
)s]

where r = min{m,n},s = max{m,n} and r+ s = m+n.

The theorem follows from case 1 and case 2.

Theorem 3.6. Let G be the spider graph K1,n,n with centre v.
Then,

Drpd(G,x) =

{
n2xn +(n+1)xn+1, if d(v) is even
n2xn +(n+1)xn+1 +nxn+2, if d(v) is odd.

Proof. Let v be the center and let v1,v2, ...,vn be the end ver-
tices of K1,n. Let u1,u2, ...,un be the vertices attached with
v1,v2, ...,vn, respectively. The resultant graph G is the spi-
der graph with V (G) = {v,vi,u j/1 ≤ i, j ≤ n} and E(G) =
vvi,viu j/1≤ i, j ≤ n. Now dG(v)= n,dG(vi)= 2 and dG(u j)=
1,1≤ i, j≤ n. Clearly, γrpd(G)= γ(G)= n. Let A= {v1,v2, ...,
vn−1,vn} and B = {u1,u2, ...,un−1,un}.

Case 1. d(v) is even

A minimal relatively prime dominating set of size n is ob-
tained by selecting a vertex from set A and n−1 vertices from

set B. This can be done in
(

n
1

)(
n

n−1

)
=

(
n
1

)(
n
1

)
= n2

ways. Therefore, drpd(G,n) = n2. A relatively prime dom-
inating set of size n+ 1 is obtained by selecting the set B
and any one of the vertex from A∪{v}. This can be done
in n+ 1 ways. Therefore, drpd(G,n+ 1) = n+ 1. Clearly,
drpd(G,n+ 2) = drpd(G,n+ 3) = ... = drpd(G,2n+ 1) = 0,
since any relatively prime dominating set of size more than n+
1 vertices must contain at least two vertices of even degrees.
Therefore, Drpd(G,x) = drpd(G,n)xn +drpd(G,n+1)xn+1 =
n2xn +(n+1)xn+1.

Case 2. d(v) is odd

Clearly, drpd(G,n) = n2. A relatively prime dominat-
ing set of size n+ 1 is obtained by selecting either the ver-
tex v and the set B or the vertex v, a vertex vi from A and
the set B−{ui},1 ≤ i ≤ n. Therefore, drpd(G,n+ 1) = n+
1. A relatively prime dominating set of size n + 2 is ob-
tained by selecting a vertex from A, the set B and the vertex

v. This can be done in
(

n
1

)
ways. Therefore, drpd(G,n+
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2) = n. Clearly, drpd(G,n + 3) = ... = 0, since any rela-
tively prime dominating set of size more than n+2 vertices
must contain at least two vertices of same degree. Hence
Drpd(G,x) = drpd(G,n)xn +drpd(G,n+1)xn+1 +drpd(G,n+
2)xn+2 = n2xn +(n+1)xn+1 +nxn+2.

Figure 3. K1,n,n

Theorem 3.7. For the wounded spider graph G with centre v,
Drpd(G,x) =

xs+1 +

(
n− s

1

)
xs+2 +

(
n− s

2

)
xs+3 + ...

+

(
n− s

n− s−2

)
xn−1 +

(
n+1

)
xn

+
(

s+1
)

xn+1 if d(v) is even

xs+1 +

(
n
1

)
xs+2

+

[(
s
1

)(
n− s

1

)
+

(
n− s

2

)]
xs+3 + ...

+

[(
n− s

1

)
+ s

(
n− s

2

)
+ s2 +1

]
xn

+

[
s+ s

(
n− s

1

)
+ s2 +1

]
xn+1 + sxn+2 if d(v) is odd.

where s is the number of sub dividing edges of a star and s< n.

Proof. Let v be the centre and let v1,v2, ...,vn be the end
vertices of K1,n. Attach u1,u2, ...,us with v1,v2, ...,vs, respec-
tively where s < n. The resultant graph G is the wounded spi-
der with V (G) = {v,vi,u j/1≤ i≤ n,1≤ j ≤ s} and E(G) =
{vvi,v ju j/1≤ i≤ n,1≤ j ≤ s}. Now, dG(v) = n,dG(vi) = 2,
1 ≤ i ≤ n and dG(u j) = 1, 1 ≤ j ≤ s. Clearly, γrpd(G) =
γ(G) = s+1. Let A = {v1,v2, ...,vs,vs+1, ...,vn}, B = {v1,v2,
...,vs}, C = {vs+1, ...,vn}, and D = {u1,u2, ...,us}.

Case 1. d(v) is even

The only minimal relatively prime dominating set of size
s+1 is obtained by selecting the vertex set D and the vertex v.
Therefore, drpd(G,s+1) = 1. A relatively prime dominating
set of size s+2 is obtained by selecting the vertex set D, a ver-

tex from C and the vertex v. This can be done in
(

n− s
1

)
ways

and hence drpd(G,s+2) =
(

n− s
1

)
. A relatively prime dom-

inating set of size s+3 is obtained by selecting the vertex set
D, two vertices from C and the vertex v. This can be done in(

n− s
2

)
ways and hence drpd(G,s+3) =

(
n− s

2

)
. Similarly,

drpd(G,s+4)=
(

n− s
3

)
, ...,drpd(G,n−1)=

(
n− s

n− s−2

)
=(

n− s
2

)
. A relatively prime dominating set of size n is

obtained by selecting either the vertex v, the vertex set D
and n− (s + 1) vertices from C and this can be done in(

n− s
1

)
= n− s ways or the vertex set C, a vertex v j from

B and s− 1 vertices from D−{u j} and this can be done in
s ways or the vertex sets C and D. Therefore, drpd(G,n) =
n− s+ s+ 1 = n+ 1. A relatively prime dominating set of
size n+ 1 is obtained by selecting the vertex sets C and D
and the vertex v and the vertex sets C and D, any one of the
vertex from B∪{v}. This can be done in s+1 ways. There-
fore, drpd(G,n+ 1) = s+ 1. Clearly, drpd(G,n+ 2) = ... =
drpd(G,n+ s+1) = 0, since any dominating set that contains
more than n+ 1 vertices must contain at least two vertices
of same degree. Hence, Drpd(G,x) = drpd(G,s+ 1)xs+1 +
drpd(G,s+2)xs+2 +drpd(G,s+3)xs+3 + ...+drpd(G,n)xn +

drpd(G,n + 1)xn+1 = xs+1 +

(
n− s

1

)
xs+2 +

(
n− s

2

)
xs+3 +

...+

(
n− s

n− s−2

)
xn−1 +(n+1)xn +(s+1)xn+1.

Case 2. d(v) is odd

The only minimal relatively prime dominating set of size
s+ 1 is obtained by selecting the vertex set D and the ver-
tex v. Therefore, drpd(G,s + 1) = 1. A relatively prime
dominating set of size s+2 is obtained by selecting the ver-
tex set D, the vertex v and a vertex from A. This can be

done in
(

n
1

)
ways. This implies that drpd(G,s+2) =

(
n
1

)
.

A relatively prime dominating set of size s+ 3 is obtained
by selecting the vertex set D, the vertex v and either one
vertex from B and one vertex from C or two vertices from

C. This can be done in
(

s
1

)(
n− s

1

)
+

(
n− s

2

)
ways and

hence drpd(G,s+3) =
(

s
1

)(
n− s

1

)
+

(
n− s

2

)
. A relatively

prime dominating set of size s+ 4 is obtained by selecting
the vertex set D, the vertex v and either one vertex from
B and two vertices from C or three vertices from C. This
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can be done in
(

s
1

)(
n− s

2

)
+

(
n− s

3

)
ways and hence

drpd(G,s+ 4) =
(

s
1

)(
n− s

2

)
+

(
n− s

3

)
. Proceeding like

this, we get drpd(G,s + 5) =
(

s
1

)(
n− s

3

)
+

(
n− s

4

)
. A

relatively prime dominating set of size n is obtained by se-
lecting either the vertex v, the vertex set D and n− (s +

1) vertices from C which can be done in
(

n− s
n− (s+1)

)
=(

n− s
1

)
ways or the vertex v, the vertex set D, a vertex

from B and n− (s+2) vertices from C which can be done in(
s
1

)(
n− s

n− (s+2)

)
= s
(

n− s
2

)
ways or the vertex set C, a

vertex from B and s−1 vertices from D and this can be done

in
(

s
1

)(
s

s−1

)
= s2 ways or the vertex sets C and D. There-

fore, drpd(G,n) =
(

n− s
1

)
+ s
(

n− s
2

)
+ s2 +1. A relatively

prime dominating set of size n+ 1 is obtained by selecting
either the vertex sets C and D and the vertex v or the ver-
tex sets C and D and one vertex from B which can be done

in
(

s
1

)
= s ways or the vertex v, the vertex set D, a vertex

from B and n− (s+ 1) vertices from C and which can be

done in
(

s
1

)(
n− s

n− (s+1)

)
= s
(

n− s
1

)
ways or the vertex

v, the vertex set C, a vertex from B and s−1 vertices from D

and this can be done in
(

s
1

)(
s

s−1

)
= s2 ways. Therefore,

drpd(G,n+ 1) = s+ s
(

n− s
1

)
+ s2 + 1. A relatively prime

dominating set of size n+2 is obtained by selecting the vertex
sets C and D and one vertex from B and the vertex v. This
can be done in s ways. Therefore, drpd(G,n+2) = s. Clearly,
drpd(G,n+3) = ...= drpd(G,n+ s+1) = 0, since any domi-
nating set that contains more than n+2 vertices must contain
at least two vertices of same degree. Hence, Drpd(G,x) =
drpd(G,s+1)xs+1 +drpd(G,s+2)xs+2 +
drpd(G,s+3)xs+3 + ...+drpd(G,n)xn +
drpd(G,n+1)xn+1 +drpd(G,n+2)xn+2 =

xs+1 +

(
n
1

)
xs+2 +

[(
s
1

)(
n− s

1

)
+

(
n− s

2

)]
xs+3 + ...

+

[(
n− s

1

)
+ s
(

n− s
2

)
+ s2 +1

]
xn

+

[
s+ s

(
n− s

1

)
+ s2 +1

]
xn+1 + sxn+2.

The theorem follows from cases 1 and 2.

Theorem 3.8. Let G = K1,m∪Kn.

(i) If (m,n−1) = 1, then Drpd(G,x) = n∑
m
i=0 mCixi+2.

(ii) If (m,n−1) 6= 1, then Drpd(G,x) = nxm+1.

Proof. Let u be the central vertex and vi,1≤ i≤m be the end
vertices of K1,m. Let u1,u2, ...,un be the vertices of Kn. Let
A = {vi/1≤ i≤ m} and B = {u j/1≤ j ≤ n.

Case 1. (m,n−1) = 1

By Theorem 2. 7, γrpd(K1,m ∪Kn) = 2. There are n
ways to choose a minimal relatively prime dominating set
of size 2 by choosing the central vertex of K1,n and a ver-
tex from Kn. Hence drpd(G,2) = n. A relatively prime
dominating set of size 3 is obtained by selecting the cen-
tral vertex u, a vertex from A and vertex from B. There

are
(

m
1

)
ways to choose a vertex from A and

(
n
1

)
ways

to choose a vertex from B. This implies that number of rel-

atively prime dominating set each of size 3 is
(

n
1

)(
m
1

)
. Hence drpd(G,3) = n

(
m
1

)
. Since we can’t choose two

vertices from B, the number of relatively prime dominating

set of size 4 is n
(

m
2

)
and hence drpd(G,4) = n

(
m
2

)
. Con-

tinuing this, we see that drpd(G,m+ 2) = n
(

m
m

)
. Clearly,

drpd(G,m+3) = drpd(G,m+4) = ...= 0, since there do not
exist relatively prime dominating sets of size k≥m+3. Hence
Drpd(G,x) =
drpd(G,2)x2 +drpd(G,3)x3 +drpd(G,4)x4 + ...

+drpd(G,m+2)xm+2 = nx2 +n
(

m
1

)
x3 +n

(
m
2

)
x4 + ...

+n
(

m
m

)
xm+2 = n∑

m
i=0 mCixi+2.

Case 2. (m,n−1) 6= 1

By Theorem 2. 7, γrpd(G) = m+1. A minimal relatively
prime dominating set is obtained by choosing m vertices from
A and a vertex from B. The m vertices from A can be cho-
sen in one way and a vertex from B can be selected in n
ways. Therefore, the number of ways of choosing minimal
relatively prime dominating set of size m+ 1 is n. Clearly
drpd(G,m+2) = drpd(G,m+3) = ...= 0, since there do not
exist relatively prime dominating sets of size k≥m+2. Hence
Drpd(G,x) = drpd(G,m+1)xm+1 = nxm+1.

The theorem follows from cases 1 and 2.

Theorem 3.9. Let G = Km∪Kn where m,n≥ 2. Then,
Drpd(G,x) = mnx2 if (m−1,n−1) = 1.

Proof. By Theorem 2. 9, γrpd(Km ∪Kn) = 2 if (m− 1,n−
1) = 1. Any minimal relatively prime dominating set con-
tains a vertex of Km and a vertex from Kn. Clearly, there
are mn minimum relatively prime dominating sets of size 2.
Any dominating set contains more than two vertices must
contain at least two vertices of same degree and hence there
is no relatively prime dominating set exists of size 3 and
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so on. Therefore, drpd(G,3) = drpd(G,4) = ... = 0. Hence,
Drpd((Km∪Kn),x) = mnx2.

Result 3.10. For n ≥ 2,Drpd(Km,n,x) = mnx2 if (m−1,n−
1) = 1.

Proof. Clearly, Km,n =Km∪Kn. By Theorem 3. 9, Drpd(Km,n,x)
= mnx2 if (m−1,n−1) = 1.

Result 3.11. Drpd(P3,x) = 2x2 + x3.

Proof. Clearly P3 = K1∪K2, where K1 is u and v, w are the
vertices of K2. Hence there are only two relatively prime
dominating sets of size 2, namely {u,v} and {u,w} and only
one relatively prime dominating set of size 3, namely {u,v,w}.
This implies that drpd(G,2) = 2 and drpd(G,3) = 1. Hence
Drpd(P3,x) = 2x2 + x3.

Result 3.12. Drpd(P4,x) = 3x2 +2x3.

Proof. Clearly P4 ∼= P4 and hence by Theorem 3. 2,
Drpd(P4,x) = 3x2 +2x3.

Theorem 3.13. For a path Pn where n ≥ 5,Drpd(Pn,x) =
2(n−3)x2.

Proof. Let v1v2...vn be the path Pn. Let A = {v1,vn} and
B = {v2,v3, ...,vn−1}. By Theorem 2.11, γrpd(Pn) = 2. A rel-
atively prime dominating sets of size 2 is obtained by selecting
v1 from A and a vertex from B−{v3} or by selecting vn from
A and a vertex from B−{vn−2} this can be done in 2(n−3)
ways and hence drpd(G,2) = 2(n− 3). Any dominating set
that contains more than two vertices must contain at least two
vertices of same degree. This implies that drpd(G,3) = ...= 0.
Hence Drpd(Pn,x) = drpd(G,2)x2 = 2(n−3)x2.

Theorem 3.14. Let G = Kn ◦K1. Then Drpd(G,x) = xn(n+
1+ x).

Proof. Let u1,u2, ...,un be the vertices of Kn and let vi be the
vertex of ith copy of K1,1 ≤ i ≤ n. Join ui with vi,1 ≤ i ≤
n. Let A = {u1,u2, ...,un} and B = {v1,v2, ...,vn}. Clearly,
γrpd(G) = n. A relatively prime dominating set of size n
is obtained by selecting either a vertex ui from A and n− 1
vertices from B−{vi},1 ≤ i ≤ n and this can be done in n
ways or select all the vertices of B. Therefore, drpd(G,n) =
n + 1. A relatively prime dominating set of size n + 1 is
obtained by selecting a vertex from A and all the vertices of
B. This can be done in n ways. Therefore, drpd(G,n+1) = n.
Any relatively prime dominating set with more than n+ 1
vertices must contain at least two vertices of same degree.
Therefore, drpd(G,n+2) = drpd(G,n+3) = ... = 0. Hence,
Drpd(G,x) = drpd(G,n)xn+drpd(G,n+1)xn+1 = (n+1)xn+
nxn+1 = xn(n+1+ x).

Theorem 3.15. For the star K1,n where n≥ 2 is even,
Drpd(Kv

1,n,x) = 2(n−1)x2, if v is an end vertex of K1,n.

Proof. Clearly, Kv
1,n
∼= K2,n−1. By Theorem 2. 4, γrpd(K2,n−1)

= 2 if and only if (2,n− 1) = 1. This implies that n− 1 6=
2r. Therefore, n 6= 2r + 1 and hence n is even. Clearly
(2,n− 1) = 1. By Theorems 3. 1 and 3. 4, Drpd(Kv

1,n,x) =
Drpd(K2,n−1,x) = 2(n−1)x2.

Theorem 3.16. Let G = Km,n ◦K1. Then Drpd(G,x) = (m+
n+1)xm+n +(m+n)xm+n+1.

Proof. Let (V1,V2) be the bipartition of the vertex set of Km,n
with |V1|= m and |v2|= n. By Theorem 2. 4, γrpd(Km,n) = 2.
Let V1 = {u1,u2, ...,um},V2 = {v1,v2, ...,vn}. Let wi be the
vertex of ith copy of K1,1≤ i≤m+n. Join ui with wi,1≤ i≤
m and v j with wm+ j,1≤ j≤ n. The resultant graph G is Km,n◦
K1. Clearly, γrpd(G) = m+n. Let C = {w1,w2, ...,wm+n}. A
relatively prime dominating set of size m+n is obtained by
selecting either a vertex ui from V1 and m+ n− 1 vertices
from C−{wi},1≤ i≤m or a vertex v j from V2 and m+n−1
vertices from C−{wm+ j},1≤ j≤ n or select all vertices of V2.
This can be done in m+n+1 ways. Therefore, drpd(G,m+
n) = m+n+1. A relatively prime dominating set of size m+
n+1 is obtained by selecting either a vertex from V1 and all the
vertices of C or a vertex from V2 and all vertices of C. This can
be done in m+n ways. Therefore, drpd(G,m+n+1) = m+n.
Any relatively prime dominating set with more than m+n+1
vertices must contain at least two vertices of same degree.
Therefore, drpd(G,m+ n+ 2) = drpd(G,m+ n+ 3) = ... =
0. Hence Drpd(G,x) = drpd(G,m+n)xm+n +drpd(G,m+n+
1)xm+n+1 = (m+ n+ 1)xm+n + (m+ n)xm+n+1 = xm+n(m+
n+1+(m+n)x).

Theorem 3.17. Let G be a Helm graph and u be its centre.
Then,

Drpd(G,x) =

{
nxn +(n+1)xn+1 if d(u) is even
nxn +(2n+1)xn+1 +nxn+2 if d(u) is odd.

Proof. Let u be the centre, v1,v2, ...,vn be the vertices of the
outer cycle and u1,u2, ...,un be the end vertices of Hn. Let
A = {u},B = {v1,v2, ...,vn} and C = {u1,u2, ...,un} .

Case 1. d(u) is even

A minimal relatively prime dominating set of size n is ob-
tained by selecting a vertex vi from B and the set C−{ui},1≤
i≤ n. This can be done in n ways and hence drpd(G,n) = n.
A relatively prime dominating set of size n+ 1 is obtained
either by selecting the vertex u and the vertex set C which
can be done in one way or by selecting the vertex set C and
one vertex from B which can be done in n ways. Therefore,
drpd(G,n + 1) = 1 + n = n + 1. Clearly, drpd(G,n + 2) =
drpd(G,n+3) = ...= 0, since any relatively prime dominat-
ing set of size more than n+1 vertices must contain at least
two vertices from B of same degree 4 or one vertex from B
and the vertex u both have even degree. Hence Drpd(G,x) =
drpd(G,n)xn +drpd(G,n+1)xn+1 = nxn +(n+1)xn+1.
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Case 2. d(u) is odd

As in case 1, we have drpd(G,n) = n. A relatively prime
dominating set of size n+ 1 is obtained either by selecting
the vertex u and the vertex set C which can be done in one
way or by selecting the vertex u, a vertex vi from B and the
set C−{ui},1 ≤ i ≤ n which can be done in n ways or by
selecting the vertex set C and one vertex from B which can be
done in n ways. Therefore, drpd(G,n+1)= 1+n+n= 2n+1.
A relatively prime dominating set of size n+ 2 is obtained
by selecting the vertex set C, a vertex from B and the vertex
u. This can be done in n ways and hence drpd(G,n+2) = n.
Clearly, drpd(G,n+ 3) = drpd(G,n+ 4) = ... = 0, since any
relatively prime dominating set of size more than n+2 vertices
must contain at least two vertices from B of same degree
4. Hence Drpd(G,x) = drpd(G,n)xn + drpd(G,n+ 1)xn+1 +
drpd(G,n+2)xn+2 = nxn +(2n+1)xn+1 +nxn+2.

4. Conclusion
In this paper, we introduced the concept of relatively prime

domination polynomial of a graph G. These polynomials
establish the relationship between the relatively prime dom-
ination number and the relatively prime dominating sets in
graphs. Further we compute the relatively prime domination
polynomial of some standard graphs.
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