

Soft semiseparated sets via operations

B. Jaya Bharathi^{1*} and P. Gomathi sundari²

Abstract

In this paper, we introduce the notion γ -soft semiseparated sets and study some of their basic properties.

Keywords

Soft topological spaces, γ -soft semiseparated set, γ -soft semiconnected space.

AMS Subject Classification

54D05, 54C08, 54B05.

^{1,2} Department of Mathematics, Rajah Serfoji Government College, Affiliated to Bharathidasan University, Thanjavur, Tamil Nadu-613005, India. *Corresponding author: ¹vbhavatharani2011@gmail.com; ²rsgcgomathi18@gmail.com

Article History: Received 13 August 2019; Accepted 22 November 2019

©2020 MJM.

Contents

1	Introduction	42
2	Preliminaries	42
3	On operation-soft semiseparated sets	43
4	Operation-soft semiconnected spaces	44
	References	46

1. Introduction

The concept of soft sets was first introduced by Molodtsov [11]. After the introduction of the definition of a soft sets by Molodtsov, a large number of topologists have turned their attention to the generalization of different concepts of a classical sets in this sets. Recently, the concept of soft topological spaces was introduced and studied by Shabir and Naz [17]. A Good number of results are studied in this paper. The study of topological properties via operations was introduced and studied by Biswas and Prasannan in [2]. In this paper, we introduce the notion γ -soft semiseparated sets and study some of their basic properties. Also the concept of γ -soft semiconnected spaces are also introduced and studied in this paper.

2. Preliminaries

Let U be an initial universe set and E_U be a collection of all possible parameters with respect to U, where parameters are the characteristics or properties of objects in U. We will call E_U the universe set of parameters with respect to U.

Definition 2.1. [11] A pair (F,A) is called a soft set over U if $A \subset E_U$ and $F : A \to P(U)$, where P(U) is the set of all

subsets of U.

Definition 2.2. [6] Let U be an initial universe set and E_U be a universe set of parameters. Let (F,A) and (G,B) be soft sets over a common universe set U and $A,B \subset E$. Then (F,A) is a subset of (G,B), denoted by $(F,A)\widetilde{\subset}(G,B)$, if $A \subset B$ and for all $e \in A, F(e) \subset G(e)$. Also (F,A) equals (G,B), denoted by (F,A) = (G,B), if $(F,A)\widetilde{\subset}(G,B)$ and $(G,B)\widetilde{\subset}(F,A)$.

Definition 2.3. [12] A soft set (F,A) over U is called a null soft set, denoted by $\widetilde{\emptyset}$, if $e \in A$, $F(e) = \emptyset$.

Definition 2.4. [12] A soft set (F,A) over U is called an absolute soft set, denoted by \widetilde{A} , if $e \in A$, F(e) = U.

Definition 2.5. [12] The union of two soft sets (F,A) and (G,B) over a common universe U is the soft set (H,C), where $C = A \cup B$, and for all $e \in C$,

$$H(e) = \begin{cases} F(e) & \text{if } e \in A \backslash B, \\ G(e) & \text{if } e \in B \backslash A, \\ F(e) \cup G(e) & \text{if } e \in B \cap A. \end{cases}$$

We write $(F,A) \cup (G,B) = (H,C)$.

Definition 2.6. [6] The intersection of two soft sets of (F,A) and (G,B) over a common universe U is the soft set (H,C), where $C = A \cap B$, and for all $e \in C$, $H(e) = F(e) \cap G(e)$. We write $(F,A) \cap (G,B) = (H,C)$.

Now we recall some definitions and results defined and discussed in [16, 17]. Henceforth, let X be an initial universe set and E be the fixed nonempty set of parameter with respect to X unless otherwise specified.

Definition 2.7. For a soft set (F,A) over U, the relative complement of (F,A) is denoted by (F,A)' and is defined by (F,A)' = (F',A), where $F': A \to P(U)$ is a mapping given by $F'(e) = U \setminus F(e)$ for all $e \in A$.

Definition 2.8. Let τ be the collection of soft sets over X, then τ is called a soft topology on X if τ satisfies the following axioms.

- 1. $\widetilde{\emptyset}$, \widetilde{X} belong to τ .
- 2. The union of any number of soft sets in τ belongs to τ .
- 3. The intersection of any two soft sets in τ belongs to τ .

The triplet (X, τ, E) *is called a soft topological space.*

Definition 2.9. Let (X, τ, E) be a soft topological space, then the members of τ are said to be soft open sets in X.

Definition 2.10. Let (X, τ, E) be a soft topological space. A soft set (F, E) over X is said to be a soft closed set in X, if its relative complement (F, E)' belongs to τ .

Proposition 2.11. Let (X, τ, E) be a soft topological space. Then one has the following

- 1. $\widetilde{\emptyset}$, \widetilde{X} are soft closed sets over X.
- 2. The intersection of any number of soft closed sets is a soft closed set over X.
- 3. The union of any two soft closed sets is a soft closed set over X.

Definition 2.12. *Let* (X, τ, E) *be a soft topological space and* (A, E) *a soft set over* X.

- 1. The soft interior of (A,E) is the soft set $Int(A,E) = \bigcup \{(O,E) : (O,E) \text{ is soft open and } (O,E) \subset (A,E) \}.$
- 2. The soft closure of (A,E) is the soft set $Cl(A,E) = \bigcap \{(F,E) : (F,E) \text{ is soft closed and } (A,E) \subset (F,E) \}.$

Definition 2.13. Let (F,E) be a soft set over X and $x \in X$. We say that $x \in (F,E)$ read as x belongs to the soft set (F,E), whenever $x \in F(\alpha)$ for all $\alpha \in E$. Note that for $x \in X$, $x \notin (F,E)$ if $x \notin F(\alpha)$ for $\alpha \in E$.

Definition 2.14. *Let* $x \in X$, *then* (x,E) *denotes the soft set over* X *for which* $x(\alpha) = \{x\}$ *for all* $\alpha \in E$.

Definition 2.15. [2] An operation on a soft topology τ over X is called a γ -operation if a mapping from τ to the set $P(X)^E$ and defined by $\gamma: \tau \to P(X)^E$ such that for each $(V, E) \in \tau$, $(V, E) \subset \gamma(V, E)$.

Definition 2.16. [2] A soft set (P,E) is said to be γ -soft open set if for each $x \in (P,E)$, there exists a soft open set (V,E) such that $x \in (V,E) \subset \gamma(V,E) \subset (P,E)$. The complement of a γ -soft open set is called a γ -soft closed set. The family of all γ -soft open sets of (X, τ, E, γ) is denoted by τ_{γ} .

Definition 2.17. [2] Let (X, τ, E, γ) be an operation-soft topological space and (A, E) a soft set over X. Then

- 1. the τ_{γ} -soft interior of (A, E) is the soft set τ_{γ} -Int $(A, E) = \bigcup \{(O, E) : (O, E) \text{ is } \gamma\text{-soft open and } (O, E) \widetilde{\subset} (A, E) \}.$
- 2. the τ_{γ} -soft closure of (A, E) is the soft set τ_{γ} -Cl $(A, E) = \bigcap \{(F, E) : (F, E) \text{ is } \gamma\text{-soft closed and } (A, E) \subset (F, E)\}.$

Lemma 2.18. *Let* (X, τ, E, γ) *be an operation-soft topological space. Then*

- 1. for every γ -soft open set (G,E) and every soft subset (A,E) over X we have τ_{γ} - $\mathrm{Cl}((A,E))\cap (G,E)\subset \tau_{\gamma}$ - $\mathrm{Cl}((A,E)\cap (G,E))$,
- 2. for every γ -soft closed set (F,E) and every soft subset (A,E) over X we have τ_{γ} -Int $((A,E) \cap (F,E) \subset \tau_{\gamma}$ -Int $((A,E)) \cap (F,E)$.

Definition 2.19. A subset (A, E) of an operation-soft topological space (X, τ, E, γ) is said to be γ -soft semiopen [7] if $(A, E) \subset \tau_{\gamma}$ -Cl $(\tau_{\gamma}$ -Int((A, E))).

The complement of a γ -soft semiopen set is called a γ -soft semiclosed set. The family of all γ -soft semiopen sets of (X, τ, E, γ) is denoted by γ -SSO(X).

Definition 2.20. [7] Let (X, τ, E, γ) be an operation-soft topological space and (A, E) a soft set over X. Then

- 1. τ_{γ} -s Int $(A, E) = \bigcup \{(O, E) : (O, E) \text{ is } \gamma\text{-soft semiopen and } (O, E) \subset (A, E) \}.$
- 2. τ_{γ} - $sCl(A,E) = \cap \{(F,E) : (F,E) \text{ is } \gamma\text{-soft semiclosed and } (A,E)\widetilde{\subset}(F,E)\}.$

3. On operation-soft semiseparated sets

Definition 3.1. Two nonempty soft subsets (A, E) and (B, E) of an operation-soft topological space (X, τ, E, γ) are said to be γ -soft semiseparated if $(A, E) \cap \tau_{\gamma}$ -s $\mathrm{Cl}((B, E)) = \tau_{\gamma}$ -s $\mathrm{Cl}((A, E)) \cap (B, E) = \emptyset$. If $\widetilde{X} = (A, E) \cup (B, E)$ such that (A, E) and (B, E) are γ -soft semiseparated sets, then we say that (A, E) and (B, E) form a γ -soft semiseparation of \widetilde{X} .

Remark 3.2. Each two γ -soft semiseparated sets are always disjoint, since $(A, E) \widetilde{\cap} (B, E) \widetilde{\subset} (A, E) \widetilde{\cap} \tau_{\gamma}$ -s $\operatorname{Cl}((B, E)) = \widetilde{\emptyset}$.

Theorem 3.3. For the soft subsets (A, E) and (B, E) of an operation-soft topological space (X, τ, E, γ) , the following statements are equivalent:

- 1. (A,E) and (B,E) are γ -soft semiseparated.
- 2. There exist γ -soft semiclosed sets (F_1,E) , (F_2,E) satisfying $(A,E)\widetilde{\subset}(F_1,E)\widetilde{\subset}\widetilde{X}\setminus(B,E)$ and $(B,E)\widetilde{\subset}(F_2,E)$ $\widetilde{\subset}\widetilde{X}\setminus(A,E)$.

3. There exist γ -soft semiopen sets (G_1,E) and (G_2,E) satisfying $(A,E)\widetilde{\subset}(G_1,E)$ $\widetilde{\subset}(\widetilde{X}\setminus(B,E))$ and $(B,E)\widetilde{\subset}(G_2,E)\widetilde{\subset}\widetilde{X}\setminus(A,E)$.

Proof. The proof is clear.

Proposition 3.4. Let (A,E) and (B,E) be soft subsets of an operation-soft topological space (X,τ,E,γ) . If (A,E) and (B,E) are γ -soft semiseparated, $\widetilde{\emptyset} \neq (C,E) \widetilde{\subset} (A,E)$ and $\widetilde{\emptyset} \neq (D,E) \widetilde{\subset} (B,E)$, then (C,E) and (D,E) are γ -soft semiseparated.

Proof. Since (A,E) and (B,E) are γ -soft semiseparated sets, $(A,E)\widetilde{\cap}\tau_{\gamma}$ -sCl $((B,E))=\widetilde{\emptyset}$ and τ_{γ} -sCl $((A,E))\widetilde{\cap}(B,E)=\widetilde{\emptyset}$. Then $(C,E)\widetilde{\subset}(A,E)$, τ_{γ} -sCl $((C,E))\widetilde{\cap}(D,E)=\widetilde{\emptyset}$. Similarly, we have $(C,E)\widetilde{\cap}\tau_{\gamma}$ -sCl $((D,E))=\widetilde{\emptyset}$. Therefore, (C,E) and (D,E) are γ -soft semiseparated sets. \square

Theorem 3.5. If (A,E) and (B,E) are γ -soft semiseparated sets and (S,E) is a γ -soft semiclosed subset of an operation-soft topological space such that $(S,E) = (A,E)\widetilde{\cup}(B,E)$, then (A,E) and (B,E) are γ -soft semiclosed sets.

Proof. Let $(S,E) = (A,E)\widetilde{\cup}(B,E)$, where τ_{γ} -sCl((A,E)) $\widetilde{\cap}$ $(B,E) = \widetilde{\emptyset} = (A,E)\widetilde{\cap}\tau_{\gamma}$ -sCl((B,E)). It is clear that $(S,E)\widetilde{\cap}\tau_{\gamma}$ -sCl((A,E)) = $(A,E)\widetilde{\cup}(B,E)\widetilde{\cap}\tau_{\gamma}$ -sCl((A,E)) = (A,E). As the intersection of γ -soft semiclosed sets is γ -soft semiclosed, (A,E) is γ -soft semiclosed. Similarly (B,E) is γ -soft semiclosed. □

Theorem 3.6. Let (A,E) and (B,E) be nonempty soft subsets in an operation-soft topological space (X,τ,E,γ) . The following statements hold:

- 1. If (A,E) and (B,E) are γ -soft semiseparated such that $(A_1,E)\widetilde{\subset}(A,E)$, $(B_1,E)\widetilde{\subset}(B,E)$, then (A_1,E) , (B_1,E) are so.
- 2. If $(A,E) \cap (B,E) = \emptyset$ such that (A,E) and (B,E) are γ -soft semiclosed $(\gamma$ -soft semiopen), then (A,E) and (B,E) are γ -soft semiseparated.
- 3. If (A,E), (B,E) are γ -soft semiclosed $(\gamma$ -soft semiopen) and $(H,E) = (A,E) \cap (\widetilde{X} \setminus (B,E))$ and $(G,E) = (B,E) \cap (\widetilde{X} \setminus (A,E))$, then (H,E) and (G,E) are γ -soft semiseparated.

Proof. (1). Since $(A_1, E) \widetilde{\subset} (A, E)$, we have τ_{γ} -s Cl((A_1, E)) $\widetilde{\subset}$ τ_{γ} -s Cl((A, E)). Then $(B, E) \widetilde{\cap} \tau_{\gamma}$ -s Cl((A, E)) = $\widetilde{\emptyset}$ implies that $(B_1, E) \widetilde{\cap} \tau_{\gamma}$ -s Cl((A, E)) = $\widetilde{\emptyset}$ and $(B_1, E) \widetilde{\cap} \tau_{\gamma}$ -s Cl((A_1, E)) = $\widetilde{\emptyset}$. Hence (A_1, E) and (B_1, E) are γ -soft semiseparated. (2). Since $(A, E) = \tau_{\gamma}$ -s Cl((A, E)), $(B, E) = \tau_{\gamma}$ -s Cl((B, E)) and $(A, E) \widetilde{\cap} (B, E) = \widetilde{\emptyset}$, τ_{γ} -s Cl((A, E)) $\widetilde{\cap} (B, E) = \widetilde{\emptyset}$ and τ_{γ} -s Cl((B, E)) $\widetilde{\cap} (A, E) = \widetilde{\emptyset}$. Hence (A, E) and (B, E) are γ -soft semiseparated sets. If (A, E) and (B, E) are γ -soft semiopen, then their complements are γ -soft semiclosed.

(3). If (A,E) and (B,E) are γ -soft semiopen, then $\widetilde{X} \setminus (A,E)$ and $\widetilde{X} \setminus (B,E)$ are γ -soft semiclosed. Since $(H,E) \widetilde{\subset} \widetilde{X} \setminus (B,E)$, τ_{γ} - $s\operatorname{Cl}((H,E)) \widetilde{\subset} \tau_{\gamma}$ - $s\operatorname{Cl}(\widetilde{X} \setminus (B,E)) = \widetilde{X} \setminus (B,E)$ and hence τ_{γ} - $s\operatorname{Cl}((H,E)) \widetilde{\cap} (B,E) = \widetilde{\emptyset}$. Thus $(G,E) \widetilde{\cap} \tau_{\gamma}$ - $s\operatorname{Cl}((H,E)) = \widetilde{\emptyset}$. Similarly, $(H,E) \widetilde{\cap} \tau_{\gamma}$ - $s\operatorname{Cl}((G,E)) = \widetilde{\emptyset}$. Hence (H,E) and (G,E) are γ -soft semiseparated sets. \square

Theorem 3.7. The soft sets (A, E) and (B, E) of an operation-soft topological space are γ -soft semiseparated if, and only if there exist $(U, E), (V, E) \in \gamma SSO(X)$ such that $(A, E) \widetilde{\subset} (U, E), (B, E) \widetilde{\subset} (V, E), (A, E) \widetilde{\cap} (V, E) = \widetilde{\emptyset}$ and $(B, E) \widetilde{\cap} (U, E) = \widetilde{\emptyset}$.

Proof. Suppose that $(V,E) = \widetilde{X} \setminus \tau_{\gamma}$ - $s\operatorname{Cl}((A,E))$ and $(U,E) = \widetilde{X} \setminus \tau_{\gamma}$ - $s\operatorname{Cl}((B,E))$. Then $(U,E), (V,E) \in \gamma SSO(X)$ such that $(A,E) \widetilde{\subset} (U,E), (B,E) \widetilde{\subset} (V,E), (A,E) \widetilde{\cap} (V,E) = \widetilde{\emptyset}$ and $(B,E) \widetilde{\cap} (V,E) = \widetilde{\emptyset}$. On the other hand, let $(U,E), (V,E) \in \gamma SSO(X)$ such that $(A,E) \widetilde{\subset} (U,E), (B,E) \widetilde{\subset} (V,E), (A,E) \widetilde{\cap} (V,E) = \widetilde{\emptyset}$ and $(B,E) \widetilde{\cap} (U,E) = \widetilde{\emptyset}$. Since $\widetilde{X} \setminus (V,E)$ and $\widetilde{X} \setminus (U,E)$ are γ -soft semiclosed sets, τ_{γ} - $s\operatorname{Cl}((A,E)) \widetilde{\subset} \widetilde{X} \setminus (V,E) \widetilde{\subset} \widetilde{X} \setminus (B,E)$ and τ_{γ} - $s\operatorname{Cl}((B,E)) \widetilde{\subset} \widetilde{X} \setminus (U,E) \widetilde{\subset} \widetilde{X} \setminus (A,E)$. It follows that τ_{γ} - $s\operatorname{Cl}((A,E)) \widetilde{\cap} (B,E) = \widetilde{\emptyset}$ and τ_{γ} - $s\operatorname{Cl}((B,E)) \widetilde{\cap} (A,E) = \widetilde{\emptyset}$. \square

Theorem 3.8. Let (A,E) and (B,E) be nonempty disjoint soft subsets of an operation-soft topological space (X,τ,E,γ) and $(G,E)=(A,E)\widetilde{\cup}(B,E)$. Then (A,E) and (B,E) are γ -soft semiseparated if and only if each of (A,E) and (B,E) are γ -soft semiclosed $(\gamma$ -soft semiopen) in (G,E).

Proof. Let (A,E) and (B,E) are γ -soft semiseparated sets. By Definition 3.1, (A,E) contains no γ -soft semilimit points of (B,E). Then (B,E) contains all γ -soft semilimit points of (B,E) which are in $(A,E)\widetilde{\cup}(B,E)$ and (B,E) is γ -soft semiclosed in $(A,E)\widetilde{\cup}(B,E)$. Therefore (B,E) is γ -soft semiclosed in (G,E). Similarly (A,E) is γ -soft semiclosed in (G,E).

Theorem 3.9. Let (X, τ, E, γ) be an operation-soft topological space. If (A, E) and (B, E) are γ -soft semiseparation of \widetilde{X} itself, then (A, E) and (B, E) are γ -soft semiclosed sets of (X, τ, E, γ) .

Proof. Since (A,E) and (B,E) are γ -soft semiseparated, we have $(A,E) \widetilde{\cap} \tau_{\gamma}$ -sCl $((B,E)) = \tau_{\gamma}$ -sCl $((A,E)) \widetilde{\cap} (B,E) = \widetilde{\emptyset}$. Then $(A,E) \widetilde{\cap} \tau_{\gamma}$ -sCl $((B,E)) = \widetilde{\emptyset}$ if, and only if (B,E) is γ -soft semiclosed in $(A,E) \widetilde{\cup} (B,E) = \widetilde{X}$. Similarly, we can show that (A,E) is γ -soft semiclosed in \widetilde{X} .

4. Operation-soft semiconnected spaces

Definition 4.1. A subset (A,E) of an operation-soft topological space (X,τ,E,γ) is said to be γ -soft semiconnected if it cannot be expressed as the union of two γ -soft semiseparated sets. Otherwise, the set (A,E) is called γ -soft semidisconnected.

Lemma 4.2. Let $(A,E) \widetilde{\subset} (B,E) \widetilde{\cup} (C,E)$ such that (A,E) be a nonempty γ -soft semiconnected set in an operation-soft topological space (X,τ,E,γ) and (B,E),(C,E) be γ -soft semiseparated sets. Then only one of the following conditions holds:

- 1. $(A,E)\widetilde{\subset}(B,E)$ and $(A,E)\widetilde{\cap}(C,E)=\widetilde{\emptyset}$.
- 2. $(A,E)\widetilde{\subset}(C,E)$ and $(A,E)\widetilde{\cap}(B,E)=\widetilde{\emptyset}$.

Proof. Since $(A,E)\widetilde{\cap}(C,E)=\widetilde{\emptyset}$, we have $(A,E)\widetilde{\subset}(B,E)$. If $(A,E)\widetilde{\cap}(B,E)=\widetilde{\emptyset}$, then $(A,E)\widetilde{\subset}(C,E)$. Since $(A,E)\widetilde{\subset}(B,E)$ $\widetilde{\cap}(C,E)$, then both $(A,E)\widetilde{\cap}(B,E)=\widetilde{\emptyset}$ and $(A,E)\widetilde{\cap}(C,E)=\widetilde{\emptyset}$ cannot hold. Similarly, suppose that $(A,E)\widetilde{\cap}(B,E)\neq\widetilde{\emptyset}$ and $(A,E)\widetilde{\cap}(C,E)\neq\widetilde{\emptyset}$, then by Theorem 3.6 (1), $(A,E)\widetilde{\cap}(B,E)$ and $(A,E)\widetilde{\cap}(C,E)$ are γ-soft semiseparated sets such that $(A,E)=((A,E)\widetilde{\cap}(B,E))\widetilde{\cup}((A,E)\widetilde{\cap}(C,E))$ which contradicts with the γ-soft semiconnectedness of (A,E). Hence one of the conditions (1) and (2) must be hold.

Theorem 4.3. If a γ -soft semiconnected soft set (S,E) of an operation-soft topological space (X,τ,E,γ) is contained in $(A,E)\widetilde{\cup}(B,E)$, where (A,E) and (B,E) are γ -soft semiseparated sets, then either $(S,E)\widetilde{\subset}(A,E)$ or $(S,E)\widetilde{\subset}(B,E)$.

Proof. Let $(S,E) = ((S,E) \widetilde{\cap} (A,E)) \widetilde{\cup} ((S,E) \widetilde{\cup} (B,E))$ where $(S,E) \widetilde{\cap} (A,E)$ and $(S,E) \widetilde{\cap} (B,E)$ are γ-soft semiseparated sets. So either $(S,E) \widetilde{\cap} (A,E) = \widetilde{\emptyset}$ or $(S,E) \widetilde{\cap} (B,E) = \widetilde{\emptyset}$ and hence either $(S,E) \widetilde{\subset} (B,E)$ or $(S,E) \widetilde{\subset} (A,E)$. □

Theorem 4.4. A soft subset (M,E) of an operation-soft topological space (X,τ,E,γ) is a γ -soft semiconnected if there exists a γ -soft semiconnected set (C,E) such that $(C,E)\widetilde{\subset}(M,E)$ $\widetilde{\subset} \tau_{\gamma}$ -sCl((C,E)).

Proof. Let $(M,E) = (A,E)\widetilde{\cup}(B,E)$, where (A,E) and (B,E) are γ -soft semiseparated sets. Then either $(C,E)\widetilde{\subset}(A,E)$ and $(C,E)\widetilde{\subset}(B,E)$ and hence either $(M,E)\subset \tau_{\gamma}$ - $s\operatorname{Cl}((C,E))\subset \tau_{\gamma}$ - $s\operatorname{Cl}((A,E))\widetilde{\subset}(\widetilde{X}\setminus(B,E))$ or $(M,E)\widetilde{\subset}(\widetilde{X}\setminus(A,E))$. Therefore either $(B,E)=\widetilde{\emptyset}$ or $(A,E)=\widetilde{\emptyset}$.

Corollary 4.5. If (C,E) is a γ -soft semiconnected soft set of an operation-soft topological space (X, τ, E, γ) , then τ_{γ} - $s\operatorname{Cl}((C,E))$ is so.

Proof. Follows from Theorem 4.4. \Box

Theorem 4.6. If $\{(M_{\alpha}, E) : \alpha \in \Delta\}$ is a family of γ -soft semiconnected sets of an operation-soft topological space (X, τ, E, γ) satisfying the property that any two of which are not γ -soft semiseparated, then $(M, E) = \bigcup_{\alpha \in \Delta} (M_{\alpha}, E)$ is γ -soft semiconnected.

Proof. Let $(M,E) = (A,E)\widetilde{\cup}(B,E)$, where (A,E) and (B,E) are γ -soft semiseparated sets. Then for each $\alpha \in \Delta$ either $(M_{\alpha},E)\widetilde{\subset}(A,E)$ or $(M_{\alpha},E)\widetilde{\subset}(B,E)$. Since any two members of the family $\{(M_{\alpha},E):\alpha\in\Delta\}$ are not γ -soft semiseparated, either $(M_{\alpha},E)\widetilde{\subset}(A,E)$ for each $\alpha\in\Delta$ or $(M_{\alpha},E)\widetilde{\subset}(B,E)$ for each $\alpha\in\Delta$. So either $(B,E)=\widetilde{\emptyset}$ or $(A,E)=\widetilde{\emptyset}$.

Corollary 4.7. If $(M,E) = \bigcup_{\alpha \in \Delta} (M_{\alpha}, E)$, where each (M_{α}, E) is γ -soft semiconnected set in an operation-soft topological space (X, τ, E, γ) and also $(M_{\alpha}, E) \cap (M_{\alpha'}, E) \neq \emptyset$ for $\alpha, \alpha' \in \Delta$, then (M, E) is γ -soft semiconnected.

Proof. Follows from Theorem 4.6. \Box

Corollary 4.8. If $(M,E) = \bigcup_{\alpha \in \Delta} (M_{\alpha}, E)$, where each (M_{α}, E) is γ -soft semiconnected in an operation-soft topological space (X, τ, E, γ) and $\bigcap_{\alpha \in \Delta} (M_{\alpha}, E) \neq \widetilde{\emptyset}$ for each $\alpha \in \Delta$, then (M, E) is γ -soft semiconnected.

Proof. Suppose that $\bigcup_{\alpha \in \Delta} (M_{\alpha}, E)$ is not γ-soft semiconnected. Then $\bigcup_{\alpha \in \Delta} (M_{\alpha}, E) = (H, E) \widetilde{\cup} (G, E)$, where (H, E) and (G, E) are γ-soft semiseparated sets in \widetilde{X} . Since $\bigcap_{\alpha \in \Delta} (M_{\alpha}, E) \neq \widetilde{\emptyset}$, we have a soft point $e_M \widetilde{\in} \bigcap_{\alpha \in \Delta} (M_{\alpha}, E)$. Since $e_M \in \bigcup_{\alpha \in \Delta} (M_{\alpha}, E)$, either $e_M \in (G, E)$ or $e_M \in (H, E)$. Suppose that $e_M \in (H, E)$. Since $e_M \in (M_{\alpha}, E)$ for each $\alpha \in \Delta$, then (M_{α}, E) and (H, E) intersect for each $\alpha \in \Delta$. By Theorem 4.3, $(M_{\alpha}, E)\widetilde{\subset} (H, E)$ or $(M_{\alpha}, E)\widetilde{\subset} (G, E)$. Since (H, E) and (G, E) are disjoint, $(M_{\alpha}, E)\widetilde{\subset} (H, E)$ for all $\alpha \in \Delta$ and hence $\bigcup_{\alpha \in \Delta} (M_{\alpha}, E)\widetilde{\subset} (H, E)$. Then $(G, E) = \widetilde{\emptyset}$, which is a contradiction. Suppose that $e_M \in (G, E)$. By similar way, we have $(H, E) = \widetilde{\emptyset}$, which is a contradiction. Thus $\bigcup_{\alpha \in \Delta} (M_{\alpha}, E)$ is γ-soft semiconnected. \square

Theorem 4.9. The following statements are equivalent for an operation-soft topological space (X, τ, E, γ) :

- 1. \widetilde{X} is γ -soft semiconnected.
- 2. \widetilde{X} can not be expressed as the union of two nonempty disjoint γ -soft semiopen sets.
- 3. \dot{X} contains no nonempty soft subset which is both γ -soft semiopen and γ -soft semiclosed.

Proof. (1) \Rightarrow (2): Suppose that \widetilde{X} is γ -soft semiconnected and if X can be expressed as the union of two nonempty disjoint sets (A, E) and (B, E) such that (A, E) and (B, E) are γ -soft semiopen sets. Consequently $(A,E) \subset \widetilde{X} \setminus (B,E)$. Then τ_{γ} -sCl $((A,E)) \subset \tau_{\gamma}$ -sCl $(\widetilde{X} \setminus (B,E)) = \widetilde{X} \setminus (B,E)$. Therefore, τ_{γ} -sCl $((A,E)) \widetilde{\cap} (B,E) = \widetilde{\emptyset}$. Similarly we can prove $(A,E) \widetilde{\cap} \tau_{\gamma}$ -sCl $((B,E)) = \emptyset$. This is a contradiction to the fact that X is γ -soft semiconnected. Then X cannot be expressed as the union of two nonempty disjoint γ -soft semiopen sets. $(2) \Rightarrow (3)$: Suppose that X cannot be expressed as the union of two nonempty disjoint sets (A, E) and (B, E) such that (A, E)and (B, E) are γ -soft semiopen sets. If X contains a nonempty proper subset (A, E) which is both γ -soft semiopen and γ -soft semiclosed. Then $X = (A, E) \widetilde{\cup} (X \setminus (A, E))$. Hence (A, E) and $X \setminus (A, E)$ are disjoint γ -soft semiopen sets whose union is X. This is the contradiction to our assumption. Hence *X* contains no nonempty proper subset which is both γ -soft semiopen and γ-soft semiclosed.

(3) \Rightarrow (1): Suppose that X contains no nonempty soft subset which is γ -soft semiopen and γ -soft semiclosed and X is not γ -soft semiconnected. Then X can be expressed as the union of two nonempty disjoint soft sets (A,E) and (B,E) such that $((A,E) \cap \tau_{\gamma}\text{-}s \operatorname{Cl}((B,E))) \cup (\tau_{\gamma}\text{-}s \operatorname{Cl}((A,E)) \cap (B,E)) = \emptyset$. Since $(A,E) \cap (B,E) = \emptyset$, $(A,E) = X \setminus (B,E)$ and $(B,E) = X \setminus (A,E)$. Since $(A,E) \cap (B,E) = \emptyset$, $(A,E) \cap (B,E) = \emptyset$, $(A,E) \cap (B,E) \cap (B,E) \cap (B,E) \cap (B,E)$. Therefore, $(A,E) \cap (B,E) \cap (B,E) \cap (B,E)$ is $(A,E) \cap (B,E) \cap (B,E) \cap (B,E)$ is $(A,E) \cap (B,E) \cap (B,E) \cap (B,E)$. Therefore, there exists a nonempty set $(A,E) \cap (B,E) \cap (B,E) \cap (B,E)$ is $(A,E) \cap (B,E) \cap (B,E) \cap (B,E)$. Therefore, there exists a nonempty set $(A,E) \cap (B,E) \cap (B,E) \cap (B,E) \cap (B,E)$. Therefore, there exists a nonempty set $(A,E) \cap (B,E) \cap (B,E) \cap (B,E)$. Therefore, there exists a nonempty set $(A,E) \cap (B,E) \cap (B,E) \cap (B,E)$. Therefore, there exists a nonempty set $(A,E) \cap (B,E) \cap (B,E) \cap (B,E)$. Therefore, there exists a nonempty set $(A,E) \cap (B,E) \cap (B,E)$. Therefore, there exists a nonempty set $(A,E) \cap (B,E) \cap (B,E)$.

Theorem 4.10. An operation-soft topological space is γ -soft semiconnected if, and only if \widetilde{X} is not the union of any two γ -soft semiseparated sets.

Proof. Let (*A*, *E*) and (*B*, *E*) be any two γ-soft semiseparated sets such that $\widetilde{X} = (A, E) \widetilde{\cup} (B, E)$. Therefore τ_{γ} -s Cl((*A*, *E*)) $\widetilde{\cap}$ (*B*, *E*) = (*A*, *E*) $\widetilde{\cap}$ τ_{γ} -s Cl((*B*, *E*)) = $\widetilde{\emptyset}$. Since (*A*, *E*) $\widetilde{\subset}$ τ_{γ} -s Cl((*A*, *E*)) and (*B*, *E*) $\widetilde{\subset}$ τ_{γ} -s Cl((*B*, *E*)), (*A*, *E*) $\widetilde{\cap}$ (*B*, *E*) = $\widetilde{\emptyset}$. Now τ_{γ} -s Cl((*A*, *E*)) $\widetilde{\subset}\widetilde{X}\setminus (B, E) = (A, E)$. So τ_{γ} -s Cl((*A*, *E*)) = (*A*, *E*). Then (*A*, *E*) is γ-soft semiclosed. By the same way we can show that (*B*, *E*) is γ-soft semiclosed which contradicts with Theorem 4.9 (2). Conversely, let (*A*, *E*) and (*B*, *E*) be any two disjoint nonempty and γ-soft semiclosed sets over *X* such that $\widetilde{X} = (A, E)\widetilde{\cup}(B, E)$. Then τ_{γ} -s Cl((*A*, *E*)) $\widetilde{\cap}(B, E) = (A, E)\widetilde{\cap}\tau_{\gamma}$ -s Cl(((*B*, *E*))) = (*A*, *E*) $\widetilde{\cap}(B, E) = \widetilde{\emptyset}$, which contradicts with the hypothesis.

Theorem 4.11. An operation-soft topological space is γ -soft semiconnected if, and only if for every pair of soft points x_{α}, y_{β} in X, there is a γ -soft semiconnected subset of X which contains both x_{α} and y_{β} .

Proof. The necessity is immediate since the γ-soft semiconnected space itself contains these two points. For the sufficiency, suppose that for any two soft points x_{α} and y_{β} , there is a γ-soft semiconnected subset $(C,E)_{x_{\alpha},y_{\beta}}$ of \widetilde{X} such that $x_{\alpha},y_{\beta}\in (C,E)_{x_{\alpha},y_{\beta}}$. Let a_{μ} be a fixed soft point and $\{C_{a_{\mu},x_{\alpha}}:x_{\alpha}\in\widetilde{X}\}$ be a class of all γ-soft semiconnected subsets of \widetilde{X} which contain the points a_{μ} and x_{α} . Then $\widetilde{X}=\bigcup\limits_{x_{\alpha}\in\widetilde{X}}C_{a_{\mu},x_{\alpha}}$ and $\bigcap\limits_{x_{\alpha}\in X}C_{a_{\mu},x_{\alpha}}\neq\widetilde{\emptyset}$. Therefore by Corollary 4.8, \widetilde{X} is γ-soft

and $\bigcap_{x_{\alpha} \in X} C_{a_{\mu},x_{\alpha}} \neq \emptyset$. Therefore by Corollary 4.8, X is γ -soft semiconnected.

Theorem 4.12. Let (X, τ, E, γ) be an operation-soft topological space and $\{(F_i, E) : i \in \Delta\}$ a family of γ -soft semiconnected sets. If a pair $((F_i, E), (F_j, E))$ is not a γ -soft semiseparation for any $i, j \in \Delta$, then $\widetilde{\cup} \{(F_i, E) : i \in \Delta\}$ is γ -soft semiconnected.

Proof. Suppose $\widetilde{\cup}\{(F_i,E):i\in\Delta\}$ is not γ -soft semiconnected. Then there exist γ -soft semiseparated sets (A,E), (B,E) such

that $\widetilde{\cup}\{(F_i,E):i\in\Delta\}=(A,E)\widetilde{\cup}(B,E)$. Since (F_i,E) is γ -soft semiconnected for each $i\in\Delta$ and $(F_i,E)\widetilde{\subset}(A,E)\widetilde{\cup}(B,E)$, by Theorem 4.3, $(F_i,E)\widetilde{\subset}(A,E)$ or $(F_i,E)\widetilde{\subset}(B,E)$. Now, put $\Delta_a=\{i\in\Delta:(F_i,E)\widetilde{\subset}(A,E)\}, \Delta_b=\{i\in\Delta:(F_i,E)\widetilde{\subset}(B,E)\}$. Then $\Delta_a\neq\widetilde{\emptyset}, \Delta_b\neq\widetilde{\emptyset}$ and $\Delta_a\widetilde{\cup}\Delta_b=\Delta$. Let $i_a\in\Delta_a$ and $i_b\in\Delta_b$, then $(F_{i_a},E)\widetilde{\subset}(A,E)$ and $(F_{i_b},E)\widetilde{\subset}(B,E)$. By Proposition 3.4, we obtain (F_{i_a},E) and (F_{i_b},E) are γ -soft semiseparated sets. This is contrary to our hypothesis.

References

- [1] Abdulkadir Aygunoglu, Halis Aygun: Some notes on soft topological spaces. Neural Comput and Applic. DOI: 10.1007/s00521-011-0722-3.
- J. Biswas and A.R. Prasannan, An introduction to weaker and stronger form of soft open sets by γ-operation, Inter. J. Pure and Appl. Math., 116 (2) 2017, 285-298.
- Bozena Kostek: Soft set approach to the subjective assessment of sound quality. in: IEEE Conferences. 1 (1998), 669-674.
- [4] D. Chen, E.C.C. Tsang, D.S. Yeung: Some notes on the parameterization reduction of soft sets, in: International Conference on Machine Learning and Cybernetics, vol. 3, 2003,pp. 1442-1445.
- [5] D. Chen, E.C.C. Tsang, D.S. Yeung, X. Wang: The parameterization reduction of soft sets and its applications. Computers and Mathematics with Applications. 49 (2005), 757-763.
- [6] Feng Feng, Young Bae Jun, Xianzhong Zhao: soft semirings. Computers and Mathematics with Applications. 56 (2008), 2621-2628.
- [7] P. Gomathi sundari and B. Jaya Bharathi, Soft semiopen sets via operations (submitted).
- [8] P. Gomathi sundari and B. Jaya Bharathi, Some weak forms of soft open sets via operations (submitted).
- [9] Z. Kong, L. Gao, L. Wang, S. Li: The normal parameter reduction of soft sets and its algorithm, Computers and Mathematics with Applications 56 (2008), 3029-3037.
- [10] E. F. Lashin, A. M. Kozae, A. A. Abo Khadra and T. Medhat: Rough set for topological spaces, Internat. J. Approx. Reason. 40 (2005), 35-43.
- [11] D. Molodtsov: Soft set theory-first results. Computers and Mathematics with Applications. 37 (1999), 19-31.
- [12] P.K. Maji, R. Biswas, A.R. Roy: Soft set theorys. Computers and Mathematics with Applications. 45 (2003), 555-562.
- [13] P.K. Maji, A.R. Roy: An application of soft sets in a decision making problem. Computers and Mathematics with Applications. 44 (2002), 1077-1083.
- [14] Milind M. Mushrif, S. Sengupta, A.K. Ray: Texture Classification Using a Novel, Soft Set Theory Based Classification Algorithm, Springer, Berlin, Heidelberg. (2006), 246-254.
- [15] D. Pei, D. Miao: From soft sets to information systems, in: X. Hu, Q. Liu, A. Skowron, T.Y. Lin, R.R. Yager, B.

- Zhang (Eds.), Proceedings of Granular Computing, vol. 2, IEEE, 2005, pp. 617-621.
- [16] S. Hussain and B. Ahmad: Some properties of soft topological spaces. Computers and Mathematics with Applications. 62 (2011), 4058-4067.
- [17] M. Shabir, M. Naz: On soft topological spaces. Computers and Mathematics with Applications. 61 (2011), 1786-1799.
- [18] Z. Xiao, L. Chen, B. Zhong, S. Ye: Recognition for soft information based on the theory of soft sets, in: J. Chen (Ed.), Proceedings of ICSSSM-05, vol. 2, IEEE, 2005, pp. 1104-1106.
- [19] I. Zorlutuna, M. Akdag, W. K. Min, S. Atmaca: Remarks on soft topological spaces. To appear in Annals of Fuzzy Mathematics and Informatics.

ISSN(P):2319 – 3786
Malaya Journal of Matematik
ISSN(O):2321 – 5666

ISSN(O):2321 – 5666 ******

