

https://doi.org/10.26637/MJM0S20/0007

Continuous mappings on cubic topological spaces

P. Loganayaki^{1*} and D. Jayanthi²

Abstract

In this paper we have introduced and investigated some continuous mappings on P - cubic topological spaces and R- cubic topological spaces and obtained interrelations between them. We have proved and analysed some basic properties and characterization of the newly defined continuous mappings.

Keywords

Cubic sets, P-cubic topology, R-cubic topology, P-cubic continuous mappings, R-cubic continuous mappings.

AMS Subject Classification

54A40.

^{1,2} Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore-641043, Tamil Nadu, India.

*Corresponding author: ¹ logaruthika@gmail.com; ²jayanthimathss@gmail.com Article History: Received 01 January 2020; Accepted 12 February 2020

©2020 MJM.

Contents

- 3 Continuous Mappings on *P*-Cubic Topological Spaces 33
- 4 Continuous mappings on *R*-cubic topological spaces 35

1. Introduction

Y.B.Jun [2] introduced the concept of cubic sets, using fuzzy sets [6] and interval valued fuzzy sets [7] in 2012. In 2016, Akhtar [1] has constructed topological structure on cubic set theory called cubic topological space and discussed about two types of cubic topological spaces such as P-cubic topological space and R-cubic topological space. In 2017, Mahmood, et al. [5] introduced cubic hesitant fuzzy set and defined internal (external)cubic hesitant fuzzy set, P(R)-union and P(R)-intersection of cubic hesitant fuzzy sets. In 2019, Loganayaki and Jayanthi [4] introduced interior and closure in P-cubic topological space and R-cubic topological space and discussed various types of open sets. The objective of our work is to introduce continuous mappings, α -continuous mappings, semi continuous mappings, pre- continuous mappings and β -continuous mappings in both *P*-cubic topological spaces and R-cubic topological spaces.

2. Preliminaries

In this section some preliminary definitions with references are given.

Definition 2.1. [2] Let X be a non-empty set. Then $A = \{\langle x, \mu(x), \lambda(x) \rangle | x \in X\}$ structure is a cubic set in X in which μ is a an IVFS in X and λ is a fuzzy set in X. Simply a cubic set is denoted by $A = \langle \mu, \lambda \rangle$ and C^x denotes the collection of all cubic sets in X.

- (i) A cubic set $A = \langle \mu, \lambda \rangle$ in which $\mu(x) = 0$ and $\lambda(x) = 1$ (resp. $\mu(x) = 1$ and $\lambda(x) = 0$) $\forall x \in X$ is denoted by $\ddot{0}$ (resp. $\ddot{1}$).
- (ii) A cubic set $A = \langle \mu, \lambda \rangle$ in which $\mu(x) = 0$ and $\lambda(x) = 1$ (resp. $\mu(x) = 0$ and $\lambda(x) = 0$) $\forall x \in X$ is denoted by $\hat{0}$ (resp. $\hat{1}$).

Definition 2.2. [2] Let $A = \langle \mu, \lambda \rangle$ and $B = \langle \beta, \eta \rangle$ be two cubic sets in *X*, Then we define:

- (a) Equal: $A = B \Leftrightarrow \mu = \beta$ and $\lambda = \eta$
- (b) *P*-order: $A = B \subseteq_P \mu \subseteq \beta$ and $\lambda \leq \eta$
- (c) *R*-order: $A = B \subseteq_R \mu \subseteq \beta$ and $\lambda \ge \eta$

Definition 2.3. [2] The complement of a cubic set $A = \langle \mu, \lambda \rangle$ = { $\langle x, [\mu^-(x), \mu^+(x)], \lambda(x) \rangle | x \in X$ } in X is defined to be $A^c = \langle \mu^c, 1 - \lambda \rangle = \{ \langle x, [1 - \mu^+(x), 1 - \mu^-(x)], 1 - \lambda(x) \rangle | x \in X \}$. Obviously, $(A^c)^c = A, \ddot{0}^c = \ddot{1}, \ddot{1}^c = \ddot{c}, \dot{0}^c = 1$ and $\hat{1}^c = \hat{0}$

Definition 2.4. [2] For any cubic set $A_i = \{ \langle x, \mu_i(x), \lambda_i(x) \rangle | x \in X \}$ where $i \in N$, we define

(a) P-Union

$$\bigcup_{i\in N} PA_i = \{ \langle x, \bigcup_{i\in N} \mu_i(x), \bigvee_{i\in N} \lambda_i(x) \rangle | x \in X \}$$

(b) R-Union

$$\bigcup_{i\in N} {}_{R} A_{i} = \{ \langle x, \cup_{i\in N} \mu_{i}(x), \wedge_{i\in N} \lambda_{i}(x) \rangle | x \in X \}$$

(c) P-Intersection

$$\bigcap_{i\in N} PA_i = \{ \langle x, \cap_{i\in N} \mu_i(x), \wedge_{i\in N} \lambda_i(x) \rangle | x \in X \}$$

(d) R-Intersection

$$\bigcap_{i\in N} {}_{P} A_{i} = \{ \langle x, \cap_{i\in N} \mu_{i}(x), \vee_{i\in N} \lambda_{i}(x) \rangle | x \in X \}$$

Definition 2.5. [1] A P-cubic topology \mathscr{F}_P is the family of cubic sets in X which satisfies the following conditions:

- (i) $\hat{0}, \hat{1} \in \mathscr{F}_P$ (ii) If $A_i \in \mathscr{F}_P$ then $\bigcup_{i \in N} {}_P A_i \in \mathscr{F}_P$
- (iii) If $A, B \in \mathscr{F}_P$ then

$$A \cap_R B \in \mathscr{F}_H$$

The pair (X, \mathscr{F}_P) is called the *P*-cubic topological space and any cubic set in \mathscr{F}_P is known as *R*-cubic open set in *X*. The complement A^c of a *P*-cubic open set *A* in *P*-cubic topological space (X, \mathscr{F}_P) is called a *P*-cubic closed set in *X*.

Definition 2.6. [1] A *R*-cubic topology \mathscr{F}_R is the family of cubic sets in *X* which satisfies the following conditions:

- (*i*) $\hat{0}, \hat{1}, \ddot{0}, \ddot{1} \in \mathscr{F}_R$
- (*ii*) If $A_i \in \mathscr{F}_R$ then

$$\bigcup_{i\in N} {}_R A_i \in \mathscr{F}_R$$

(iii) If $A, B \in \mathscr{F}_R$ then

$$A\cap_R B\in\mathscr{F}_R$$

The pair (X, \mathscr{F}_R) is called the *R*-cubic topological space and any cubic set in \mathscr{F}_R is known as *R*-cubic open set in *X*. The complement A^c of a *R*-cubic open set *A* in *R*-cubic topological space (X, \mathscr{F}_R) is called a *R*-cubic closed set in *X*. Throughout this paper (X, \mathscr{F}_P) or X_P denotes the *P*-cubic topological space and (X, \mathscr{F}_R) or X_R denotes the *R*-cubic topological space.

3. Continuous Mappings on *P*-Cubic Topological Spaces

In this section we have defined and analysed the basic properties and characterization of some continuous mappings like α continuous mappings, semi continuous mappings, precontinuous mappings and β -continuous mappings in *P*-cubic topological spaces.

Definition 3.1. Let $f_P : X \to Y$ be a mapping and let $A = (\mu, \lambda)$ be a cubic set in X. Then the image of A under f_P , denoted by $f_P(A) = (f_P(\mu), f_P(\lambda))$, is defined by

$$\begin{split} [f_{P}(\mu)(y)]^{-} &= \begin{cases} \sup_{f_{P}(x)=y}[\mu(x)]^{-}, & \text{if } f_{P}^{-1}(y) \neq \phi \\ 0, & \text{otherwise} \end{cases} \\ [f_{P}(\mu)(y)]^{+} &= \begin{cases} \sup_{f_{P}(x)=y}[\mu(x)]^{+}, & \text{if } f_{P}^{-1}(y) \neq \phi \\ 0, & \text{otherwise} \end{cases} \\ [f_{P}(\lambda)](y) &= \begin{cases} \sup_{f_{P}^{-1}(y)}\{\lambda(x)\}, & \text{if } f_{P}^{-1}(y) \neq \phi \\ 0, & \text{otherwise} \end{cases} \end{split}$$

for all y in Y, where $f_P^{-1}(y) = \{x | f_P(x) = y\}$ Let $B = \langle \beta, \eta \rangle$ be an cubic set in Y. Then the inverse image of B under, f_P denoted by $f_P^{-1}(B) = (f_P^{-1}(\beta), f_P^{-1}(\eta))$, is defined by $[f_P^{-1}(\beta)(x)]^- = [\beta(f_P(x))]^-, [f_P^{-1}(\beta)(x)]^+ = [\beta(f_P(x))]^+,$ $f_P^{-1}(\eta)(x) = \eta(f_P(x)),$ for all $x \in X$.

Definition 3.2. Let X_P and Y_P be any two *P*-cubic topological spaces. A mapping $f_P : X_P \to Y_P$ said to be a

- (i) P-cubic continuous mapping if $f_P^{-1}(A)$ is a P-cubic open set in X_P for each P-cubic open set A in Y_P .
- (ii) P-cubic semi continuous (resp. α-continuous, precontinuous, β-continuous) mapping if f_P⁻¹(A) is a Pcubic semi open (resp.αopen, pre – open, β – open) set [4] in X_P for each P-cubic open set A in Y_P.

Proposition 3.3. The identity mapping $f_P : X_P \to X_P$ is a *P*-cubic continuous mapping.

Proof. Straightforward.

Proposition 3.4. The composition of two *P*-cubic continuous mappings is again a *P*-cubic continuous mapping in general.

Proposition 3.5. Every P-cubic continuous mapping is a Pcubic semi continuous (resp. α -continuous, pre-continuous, β -continuous) mapping but the converses are not true in general.

Proof. Since every *P*-cubic open set is a *P*-cubic semi open (resp. α -open, pre-open, β -pen) set, the result follows obviously.

The following examples show that the converses of proposition 3.5 is not true.

Example 3.6. Let $X \neq \phi$, $\mathbb{F}_P = \{\hat{0}, A_1, A_2, A_3, \hat{1}\}$ and $\mathbb{F}'_P = \{\hat{0}, B, \hat{1}\}$ be two *P*-cubic topologies on *X* where $A_1 = \langle [0.2, 0.4], 0.2 \rangle, A_2 = \langle [0.3, 0.4], 0.3 \rangle, A_3 = \langle [0.4, 0.6], 0.5 \rangle$ and $B = \langle [0.2, 0.5], 0.25 \rangle$. Define a mapping $f_P : (X, \mathbb{F}_P) \rightarrow (X, \mathbb{F}'_P)$ by $f_P(x) = x$, then f_P is a *P*-cubic α continuous mapping but not a *P*-cubic continuous mapping.

Example 3.7. Let $X \neq \phi$, $\mathbb{F}_P = \{\hat{0}, A_1, A_2, A_3, A_4, \hat{1}\}$ and $\mathbb{F}'_P = \{\hat{0}, C, \hat{1}\}$ be two P-cubic topologies on X where $A_1 = \langle [0.2, 0.4], 0.2 \rangle, A_2 = \langle [0.3, 0.4], 0.3 \rangle, A_3 = \langle [0.4, 0.6], 0.5 \rangle, A_4 = \langle [0.5, 0.7], 0.6 \rangle$ and $C = \langle [0.3, 0.5], 0.4 \rangle$. Define a mapping $g_P : (X, \mathbb{F}_P) \rightarrow (X, \mathbb{F}'_P)$ by $g_P(x) = x$, then g_P is a P-cubic semi continuous mapping but not a P-cubic continuous mapping.

Example 3.8. Let $X \neq \phi$, $\mathbb{F}_P = \{\hat{0}, A_1, A_2, A_3, \hat{1}\}$ and $\mathbb{F}'_P = \{\hat{0}, D, \hat{1}\}$ be two P-cubic topologies on X where $A_1 = \langle [0.2, 0.4], 0.2 \rangle, A_2 = \langle [0.3, 0.4], 0.3 \rangle, A_3 = \langle [0.4, 0.6], 0.5 \rangle$ and $D = \langle [0.1, 0.5], 0.3 \rangle$. Define a mapping $h_p : (X, \mathbb{F}_P) \rightarrow (X, \mathbb{F}'_P)$ by $h_P(x) = x$, then is a P-cubic pre-continuous mapping and a P-cubic β -continuous mapping, but not a P-cubic continuous mapping.

Theorem 3.9. A mapping $f_P : X_P \to Y_P$ is a P-cubic α -continuous mapping if and only if it is both a P-cubic semi continuous mapping and P-cubic pre-continuous mapping.

Proof. Let f_P be both a *P*-cubic semi continuous mapping and a *P*-cubic pre-continuous mapping. Let *A* be a *P*-cubic open set in Y_P , then by hypothesis f_P^{-1} is a *P*-cubic semi open set and *P*-cubic pre-open set. Hence by proposition 3.25[6], f_P^{-1} is a *P*-cubic α open set and hence it is a *P*-cubic α -continuous mapping. The converse is immediate.

Theorem 3.10. Let $f_P : X_P \to Y_P$ be a mapping. Then

- (i) $f_P^{-1}(B^c) = [f_P^{-1}(B)]^c$ for all cubic sets B in Y.
- (ii) $[f_P(A)]^c \subseteq_P f_p(A^c)$ for all cubic sets A in X.
- (iii) $B_1 \subset_P B_2$ implies $f_P^{-1}(B_1) \subset_P f_P^{-1}(B_2)$, where B_1 and B_2 are cubic sets in Y.
- (iv) $A_1 \subset_P A_2$ implies $f_P(A_1) \subset_P f_P(A_2)$, where A_1 and A_2 are cubic sets in Y.
- (v) $f_P(f_P^{-1}(B)) \subset_P B$ the equality holds if f_P is surjective, for all cubic sets B in Y.
- (vi) $A \subset_P f_P^{-1}(f_P(A))$ the equality holds if f_P is injective, for all cubic sets A in X.

(vii)

$$f_P^{-1}(\bigcup_{i\in\Lambda} {}_PB_i) = \bigcup_{i\in\Lambda} {}_Pf_P^{-1}(B_i)$$

for all cubic sets B_i in Y.

(viii)

$$f_P^{-1}(\bigcap_{i\in\Lambda} {}_PB_i) = \bigcap_{i\in\Lambda} {}_Pf_P^{-1}(B_i)$$

for all cubic sets B_i in Y.

Proof. (i) Let $B = \langle \beta, \eta \rangle$ be a cubic set in *Y*. Then

$$\begin{split} f_P^{-1}(B^c)(x) &= \langle x, f_P^{-1}(\beta^c)(x), f_P^{-1}(\eta^c)(x) \rangle \\ &= \langle x, \beta^c(f_P)(x), \eta^c(f_P)(x) \rangle \\ &= \langle x, 1 - \beta(f_P)(x), 1 - \eta(f_P)(x) \rangle \\ &= [f_P^{-1}(B)]^c \end{split}$$

(ii) $A = \langle \mu, \lambda \rangle$ be a cubic set in X and $f_P^{-1}(y) \neq \phi$. Then $A^c = \{\langle x, [1 - \mu^+(x), 1 - \mu^-(x)], 1 - \lambda(x) \rangle\}$, we have

$$\begin{split} [f_P(A)]^c(y) &= 1 - f_P(A)(y) \\ &= 1 - \langle y, [\sup(\mu^-(x)), \sup(\mu^+(x))], \\ &\quad \sup(\lambda(x)) \rangle \\ &= \langle 1 - y, [1 - \sup(\mu^-(x)), 1 - \sup(\mu^+(x))], \\ &\quad 1 - \sup(\lambda(x)) \rangle \\ [f_P(A)]^c(y) &= \langle y, [\sup\{1 - \mu^-(x)\}, \sup\{1 - \mu^+(x)\}], \\ &\quad \sup\{1 - \lambda(x)\} \rangle \end{split}$$

Therefore, $[f_P(A)]^c \subseteq_P f_P(A^c)$ (iii) $f_P^{-1}(B_1) = B_1(f_P(x))$ and $f_P^{-1}(B_2) = B_2(f_P(x))$ for all $x \in X$. Since $B_1 \subseteq_P B_2$, $B_1 f_P(x) \leq B_2 f_P(x)$ for all $x \in X$. Therefore, $f_P^{-1}(B_1)(x) \leq f_P^{-1}(B_2)(x)$. Hence $f_P^{-1}(B_1) \subset_P f_P^{-1}(B_2)$ (iv) Let $A_1 = \langle \mu_1, \lambda_1 \rangle$ and $A_2 = \langle \mu_2, \lambda_2 \rangle$ be any two cubic sets in X. Then $f_P(A_1)(x) = \langle x, [\sup(\mu_1^-(x)), \sup(\mu_1^+(x))], \sup(\lambda_1(x)) \rangle$ and $f_P(A_2)(x) = \langle x, [\sup(\mu_1^-(x)), \sup(\mu_2^+(x))], \sup(\lambda_2(x)) \rangle$. Since $A_1 \subseteq_P A_2$, $\sup(\mu_1^-(x)) \leq \sup(\mu_2^-(x))$, $\sup(\mu_1^+(x)) \leq \sup(\mu_2^+(x))$ and $\sup(\lambda_1(x) \leq \sup(\lambda_2(x))$. Hence $f_P(A_1) \subseteq_P f_P(A_2)$. (v) Let $B = \langle B, n \rangle$ be a cubic set in Y and $y \in Y$

(v) Let $B = \langle \beta, \eta \rangle$ be a cubic set in Y and $y \in Y$. Case I: $f_P^{-1}(y) \neq \phi$

$$[f_P(f_P^{-1}(\beta))(y)]^- = \sup_{y=f_P(x)} [f_P^{-1}(\beta)(x)]^-$$
$$= \sup_{y=f_P(x)} [\beta f_P(x)]^- = [\beta(y)]^-$$

Similarly,

and

$$[f_P(f_P^{-1}(\beta))(y)]^+ = [\beta(y)]^+$$

 $[f_P(f_P^{-1}(\eta))(y)] = [\eta(y)]$

Case I: $f_{P}^{-1}(y) = 0$

$$[f_P(f_P^{-1}(\beta))(y)]^- = 0$$

$$[f_P(f_P^{-1}(\beta))(y)]^+ = 0$$

and

 $[f_P(f_P^{-1}(\eta))(y)] = 0$

Therefore, by cases I and II we get $f_P(f_P^{-1}(B) \subseteq_P B$ when f_P is surjective, for all $y \in Y$. So by case I the equality holds. (i) Let $A = \langle \mu, \lambda \rangle$ be a cubic set in *X*. Then

$$\begin{split} f_P^{-1}(f_P(A))(x) \\ &= \langle x, [f_P(\mu(f_P(x)))^-, f_P(\mu(f_P(x)))^+], \\ & f_P(\lambda(f_P(x))) \\ &= \langle z, [\sup_{z=f_P^{-1}(f_P(x))} \mu^-(z), \sup_{z=f_P^{-1}(f_P(x))} \mu^+(z)], \\ & \sup_{z=f_P^{-1}(f_P(x))} \lambda(z) \rangle \\ &\geq \langle x, [\mu^-(x), \mu^+(x)], \lambda(x) \rangle \forall x \in X \end{split}$$

Therefore $A \subset_P f_P^{-1}(f_P(A))$

(ii) Let $B_i = \langle \beta_i, \eta_i \rangle$ be a cubic set in *Y* and $y \in Y$. Then

$$f_P^{-1}(\bigcup_{i\in\Lambda} {}_PB_i)(y) = \left(\bigcup_{i\in\Lambda} {}_PB_i\right)f_P(y)$$
$$= \bigcup_{i\in\Lambda} {}_PB_i(f_P(y))$$
$$= \bigcup_{i\in\Lambda} {}_Pf_P^{-1}(B_i(y))$$

(iii) Let $B_i = \langle \beta_i, \eta_i \rangle$ be a cubic set in *Y* and $y \in Y$. Then

$$f_P^{-1}(\bigcap_{i\in\Lambda} {}_PB_i)(y) = \left(\bigcap_{i\in\Lambda} {}_PB_i\right)f_P(y)$$
$$= \bigcap_{i\in\Lambda} {}_PB_i(f_P(y))$$
$$= \bigcap_{i\in\Lambda} {}_Pf_P^{-1}(B_i(y))$$

Theorem 3.11. If X_P and Y_P are any two *P*-cubic topological spaces and f_P is a mapping from X_P to Y_P , then the following statements are equivalent:

- (i) The mapping f_P is continuous
- *(ii)* The inverse image of every *P*-cubic closed set is *P*-cubic closed
- (iii) For each cubic point P_x [3] in X the inverse image of every neighbourhood of $f_P(P_x)$ under f_P is a neighbourhood of P_x .
- (iv) For each cubic point P_x in X and each neighbourhood V of $f_P(P_x)$, there is a neighbourhood W of P_x such that $f_P(W) \subset_P V$.

Proof. (i) \Leftrightarrow (ii) : The result is obvious as $f_P^{-1}(B^c) = [f_P^{-1}(B)]^c$ for any cubic set *B*.

(i) \Leftrightarrow (iii) Assume that the mapping f_P is continuous and let *B* be a neighbourhood of $f_P(P_x)$. Then there exists a *P*-cubic open set *U* such that $f_P(P_x) \in U \subseteq_P B$. Now $P_x \in$

 $f_P^{-1}(f_P(P_x)) \in \subseteq P$, where $f_P^{-1}(B)$ is a *P*-cubic open set in *X* implying that the inverse of every neighbourhood of $f_P(P_x)$ under f_P is a neighbourhood of P_x .

(iii) \Leftrightarrow (i): Let $f_P(P_x)$ be an arbitrary *P*-cubic point of a *P*cubic open set *B* of *Y_P*. Then *B* is a neighbourhood of $f_P(P_x)$. By hypothesis, $f_P^{-1}(B)$ is a neighbourhood of P_x , then there is a *P*-cubic open set U_x such that $P_x \in U_x \subseteq_P f_P^{-1}(B)$. Then $B = \bigcup_{P_x \in B} U_x$ is a *P*-union of *P*-cubic open set of *X_P* which implies $f_P^{-1}(B)$ is a *P*-cubic open set of *X_P*. (iii) \Leftrightarrow (iv): Let P_x be a cubic point in *X* and *V* be a neighbourhood of $f_P(P_x)$, then by (iii) $f_P^{-1}(V)$ is a neighbourhood of P_x , we have $f_P(W) = f_P[f_P^{-1}(V)] \subseteq_P V$ where $W = f_P^{-1}(V)$

(iv) \Leftrightarrow (iii): Let V be a neighbourhood of $f_P(P_x)$. Then there is a neighbourhood W of P_x such that $f_P(W) \subseteq_P V$. Hence $f_P^{-1}[f_P(W)] \subseteq_P f_P^{-1}(V)$. Furthermore, since $W \subset_P f_P[f_P^{-1}(W)], f_P^{-1}(V)$ is a neighbourhood of P_x .

4. Continuous mappings on *R*-cubic topological spaces

In this section we have defined and analysed the basic properties and characterization of some continuous mappings like α -continuous mappings, semi continuous mappings, precontinuous mappings and β -continuous mappings in *R*-cubic topological spaces.

Definition 4.1. Let $f_R : X \to Y$ be a mapping and let $A = (\mu, \lambda)$ be a cubic set in X. Then the image of A under f_R , denoted by $f_R(A) = (f_R(\mu), f_R(\lambda))$, is defined by

$$[f_R(\mu)(y)]^- = \begin{cases} \sup_{f_R(x)=y} [\mu(x)]^-, & \text{if } f_R^{-1}(y) \neq \phi \\ 0, & \text{otherwise} \end{cases}$$

$$[f_R(\mu)(y)]^+ = \begin{cases} \sup_{f_R(x)=y} [\mu(x)]^+, & \text{if } f_R^{-1}(y) \neq \phi \\ 0, & \text{otherwise} \end{cases}$$
$$[f_R(\lambda)](y) = \begin{cases} \inf_{x \in f_R^{-1}(y)} \{\lambda(x)\}, & \text{if } f_R^{-1}(y) \neq \phi \\ 0, & \text{otherwise} \end{cases}$$

for all y in Y, where $f_R^{-1}(y) = \{x | f_R(x) = y\}$ Let $B = \langle \beta, \eta \rangle$ be an cubic set in Y. Then the inverse image of B under, f_R denoted by $f_R^{-1}(B) = (f_R^{-1}(\beta), f_R^{-1}(\eta))$, is defined by $[f_R^{-1}(\beta)(x)]^- = [\beta(f_R(x))]^-, [f_R^{-1}(\beta)(x)]^+ = [\beta(f_R(x))]^+,$ $f_R^{-1}(\eta)(x) = \eta(f_R(x))$, for all $x \in X$.

Definition 4.2. Let X_R and Y_R be any two *R*-cubic topological spaces. A mapping $f_R : X_R \to Y_R$ said to be a

- (i) *R*-cubic continuous mapping if $f_R^{-1}(A)$ is a *R*-cubic open set in X_R for each *R*-cubic open set *A* in Y_R .
- (ii) R-cubic semi continuous (resp. α -continuous, precontinuous, β -continuous) mapping if $f_R^{-1}(A)$ is a Rcubic semi open (resp. α open, pre-open, β -open) set [4] in X_R for each R-cubic open set A in Y_R .

Proposition 4.3. The identity mapping $f_R : X_R \to X_R$ is a *R*-cubic continuous mapping.

Proof. Straightforward.

Proposition 4.4. The composition of two *R*-cubic continuous mappings is again a *R*-cubic continuous mapping in general.

Proof. Straightforward.

Proposition 4.5. Every *R*-cubic continuous mapping is a *R*-cubic semi continuous (resp. α -continuous, pre-continuous, β -continuous) mapping but the converses are not true in general.

Proof. Since every *R*-cubic open set is a *R*-cubic semi open (resp. α -open, pre-open, β -pen) set, the result follows obviously.

The following examples show that the converses of proposition 4.5 is not true.

Example 4.6. Let $X \neq \phi$, $\mathbb{F}_R = \{\hat{0}, \hat{0}, A_1, A_2, A_3, A_4, A_5, \hat{1}, \hat{1}\}$ and $\mathbb{F}'_R = \{\hat{0}, B, \hat{1}\}$ be two *R*-cubic topologies on *X* where $A_1 = \langle [0.2, 0.4], 0.6 \rangle, A_2 = \langle [0, 0], 0.6 \rangle, A_3 = \langle [1, 1], 0.6 \rangle, A_4 = \langle [0.2, 0.4], 0 \rangle, A_5 = \langle [0.2, 0.4], 1 \rangle$ and $B = \langle [0.2, 0.3], 0 \rangle$. Define a mapping $f_R : (X, \mathbb{F}_R) \to (X, \mathbb{F}'_R)$ by $f_R(x) = x$, then f_R is a *R*-cubic α continuous mapping but not a *R*-cubic continuous mapping.

Example 4.7. Let $X \neq \phi$, $\mathbb{F}_R = \{\hat{0}, \hat{0}, A_1, A_2, A_3, A_4, A_5, \hat{1}, \hat{1}\}$ and $\mathbb{F}'_R = \{\hat{0}, C, \hat{1}\}$ be two *R*-cubic topologies on *X* where $A_1 = \langle [0.2, 0.4], 0.6 \rangle, A_2 = \langle [0, 0], 0.6 \rangle, A_3 = \langle [1, 1], 0.6 \rangle, A_4 = \langle [0.2, 0.4], 0 \rangle, A_5 = \langle [0.2, 0.4], 1 \rangle$ and $C = \langle [0.6, 0.8], 0.4 \rangle$. Define a mapping $g_R : (X, \mathbb{F}_R) \to (X, \mathbb{F}'_R)$ by $g_R(x) = x$, then g_R is a *R*-cubic semi continuous mapping but not a *R*-cubic continuous mapping.

Example 4.8. Let $X \neq \phi$, $\mathbb{F}_R = \{\hat{0}, \hat{0}, A_1, A_2, A_3, A_4, A_5, \hat{1}, \hat{1}\}$ and $\mathbb{F}'_R = \{\hat{0}, D, \hat{1}\}$ be two *R*-cubic topologies on *X* where $A_1 = \langle [0.2, 0.4], 0.6 \rangle, A_2 = \langle [0, 0], 0.6 \rangle, A_3 = \langle [1, 1], 0.6 \rangle, A_4 = \langle [0.2, 0.4], 0 \rangle, A_5 = \langle [0.2, 0.4], 1 \rangle$ and $D = \langle [0.7, 0.8], 0.7 \rangle$. Define a mapping $h_R : (X, \mathbb{F}_R) \to (X, \mathbb{F}'_R)$ by $h_R(x) = x$, then is a *R*-cubic pre-continuous mapping and a *R*-cubic β -continuous mapping, but not a *R*-cubic continuous mapping.

Theorem 4.9. A mapping $f_R : X_R \to Y_R$ is a R-cubic α -continuous mapping if and only if it is both a R-cubic semi continuous mapping and R-cubic pre-continuous mapping.

Proof. Let f_R be both a *R*-cubic semi continuous mapping and a *R*-cubic pre-continuous mapping. Let *A* be a *R*-cubic open set in Y_R , then by hypothesis $f_R^{-1}(A)$ is a *R*-cubic semi open set and *R*-cubic pre-open set. Hence by proposition 4.25[6], f_R^{-1} is a *P*-cubic α open set and hence it is a *R*-cubic α -continuous mapping. The converse is immediate. \Box

Theorem 4.10. Let $f_R : X_R \to Y_R$ be a mapping. Then

- (i) $f_R^{-1}(B^c) = [f_R^{-1}(B)]^c$ for all cubic sets B in Y.
- (ii) $[f_R(A)]^c \subseteq_R f_R(A^c)$ for all cubic sets A in X.

- (iii) $B_1 \subset_R B_2$ implies $f_R^{-1}(B_1) \subset_R f_R^{-1}(B_2)$, where B_1 and B_2 are cubic sets in Y.
- (iv) $A_1 \subset_R A_2$ implies $f_R(A_1) \subset_R f_R(A_2)$, where A_1 and A_2 are cubic sets in Y.
- (v) $f_R(f_R^{-1}(B)) \subset_R B$ the equality holds if f_R is surjective, for all cubic sets B in Y.
- (vi) $A \subset_R f_R^{-1}(f_R(A))$ the equality holds if f_R is injective, for all cubic sets A in X.

(vii)

$$f_R^{-1}(\bigcup_{i\in\Lambda} {}_RB_i) = \bigcup_{i\in\Lambda} {}_Rf_R^{-1}(B_i)$$

for all cubic sets B_i in Y.

(viii)

$$f_R^{-1}(\bigcap_{i\in\Lambda}{}_RB_i)=\bigcap_{i\in\Lambda}{}_Rf_R^{-1}(B_i)$$

for all cubic sets B_i in Y.

Proof. (i) Let $B = \langle \beta, \eta \rangle$ be a cubic set in Y. Then

$$f_R^{-1}(B^c)(x) = \langle x, f_R^{-1}(\beta^c)(x), f_R^{-1}(\eta^c)(x) \rangle$$

= $\langle x, \beta^c(f_R)(x), \eta^c(f_R)(x) \rangle$
= $\langle x, 1 - \beta(f_R)(x), 1 - \eta(f_R)(x) \rangle$
= $[f_R^{-1}(B)]^c$

(ii) $A = \langle \mu, \lambda \rangle$ be a cubic set in X and $f_R^{-1}(y) \neq \phi$. Then $A^c = \{\langle x, [1 - \mu^+(x), 1 - \mu^-(x)], 1 - \lambda(x) \rangle\}$, we have

$$[f_{R}(A)]^{c}(y) = 1 - f_{R}(A)(y)$$

= 1 - $\langle y, [\sup(\mu^{-}(x)), \sup(\mu^{+}(x))], \sup(\lambda(x)) \rangle$
= $\langle 1 - y, [1 - \sup(\mu^{-}(x)), 1 - \sup(\mu^{+}(x))], 1 - \sup(\lambda(x)) \rangle$
[$f_{R}(A)]^{c}(y) = \langle y, [\sup\{1 - \mu^{-}(x)\}, \sup\{1 - \mu^{+}(x)\}], \sup\{1 - \lambda(x)\} \rangle$

Therefore, $[f_R(A)]^c \subseteq_R f_R(A^c)$

(iii) $f_R^{-1}(B_1) = B_1(f_R(x))$ and $f_R^{-1}(B_2) = B_2(f_R(x))$ for all $x \in X$. Since $B_1 \subseteq_R B_2$, $B_1 f_R(x) \leq B_2 f_R(x)$ for all $x \in X$ Therefore, $f_R^{-1}(B_1)(x) \leq f_R^{-1}(B_2)(x)$. Hence $f_R^{-1}(B_1) \subset_R f_R^{-1}(B_2)$ (iv) Let $A_1 = \langle \mu_1, \lambda_1 \rangle$ and $A_2 = \langle \mu_2, \lambda_2 \rangle$ be any two cubic sets in X. Then $f_R(A_1)(x) = \langle x, [\sup(\mu_1^-(x)), \sup(\mu_1^+(x))], \sup(\lambda_1(x)) \rangle$ and $f_R(A_2)(x) = \langle x, [\sup(\mu_1^-(x)), \sup(\mu_2^+(x))], \sup(\lambda_2(x)) \rangle$. Since $A_1 \subseteq_R A_2$, $\sup(\mu_1^-(x)) \leq \sup(\mu_2^-(x))$, $\sup(\mu_1^+(x)) \leq \sup(\mu_2^+(x))$ and $\sup(\lambda_1(x) \leq \sup(\lambda_2(x))$. Hence $f_R(A_1) \subseteq_R f_R(A_2)$.

(v) Let $B = \langle \beta, \eta \rangle$ be a cubic set in *Y* and $y \in Y$. Case I: $f_R^{-1}(y) \neq \phi$

$$[f_{R}(f_{R}^{-1}(\beta))(y)]^{-}$$

= $\sup_{y=f_{R}(x)} [f_{R}^{-1}(\beta)(x)]^{-}$
= $\sup_{y=f_{R}(x)} [\beta f_{R}(x)]^{-} = [\beta(y)]^{-}$

Similarly,

$$[f_R(f_R^{-1}(\beta))(y)]^+ = [\beta(y)]^+$$

and

$$[f_R(f_R^{-1}(\eta))(y)] = [\eta(y)]$$

Case I: $f_{R}^{-1}(y) = 0$

$$[f_R(f_R^{-1}(\beta))(y)]^- = 0$$

$$[f_R(f_R^{-1}(\beta))(y)]^+ = 0$$

and

$$[f_R(f_R^{-1}(\eta))(y)] = 0$$

Therefore, by cases I and II we get $f_R(f_R^{-1}(B) \subseteq_R B$ when f_R is surjective, for all $y \in Y$. So by case I the equality holds. (i) Let $A = \langle \mu, \lambda \rangle$ be a cubic set in X. Then

$$\begin{split} f_R^{-1}(f_R(A))(x) &= \langle x, [f_R(\mu(f_R(x)))^-, f_R(\mu(f_R(x)))^+], \\ f_R(\lambda(f_R(x))) \rangle &= \langle z, [\sup_{z=f_R^{-1}(f_R(x))} \mu^-(z), \sup_{z=f_R^{-1}(f_R(x))} \mu^+(z)], \\ &\sup_{z=f_R^{-1}(f_R(x))} \lambda(z) \rangle \\ &\geq \langle x, [\mu^-(x), \mu^+(x)], \lambda(x) \rangle \forall x \in X \end{split}$$

Therefore $A \subset_R f_R^{-1}(f_R(A))$ (ii) Let $B_i = \langle \beta_i, \eta_i \rangle$ be a cubic set in *Y* and $y \in Y$. Then

$$f_{R}^{-1}(\bigcup_{i\in\Lambda} {}_{R}B_{i})(y) = \left(\bigcup_{i\in\Lambda} {}_{R}B_{i}\right)f_{R}(y)$$
$$= \bigcup_{i\in\Lambda} {}_{R}B_{i}(f_{R}(y))$$
$$= \bigcup_{i\in\Lambda} {}_{R}f_{R}^{-1}(B_{i}(y))$$

(iii) Let $B_i = \langle \beta_i, \eta_i \rangle$ be a cubic set in *Y* and $y \in Y$. Then

$$f_R^{-1}(\bigcap_{i \in \Lambda} {}_RB_i)(y) = \left(\bigcap_{i \in \Lambda} {}_RB_i\right) f_R(y)$$
$$= \bigcap_{i \in \Lambda} {}_RB_i(f_R(y))$$
$$= \bigcap_{i \in \Lambda} {}_Rf_R^{-1}(B_i(y))$$

Theorem 4.11. If X_R and Y_R are any two R-cubic topological spaces and f_R is a mapping from X_R to Y_R , then the following statements are equivalent:

- (i) The mapping f_R is continuous
- (ii) The inverse image of every R-cubic closed set is R-cubic closed
- (iii) For each cubic point R_x [3] in X the inverse image of every neighbourhood of $f_R(R_x)$ under f_R is a neighbourhood of R_x .
- (iv) For each cubic point R_x in X and each neighbourhood V of $f_R(R_x)$, there is a neighbourhood W of R_x such that $f_R(W) \subset_R V$.

Proof. (i) \Leftrightarrow (ii) : The result is obvious as $f_R^{-1}(B^c) = [f_R^{-1}(B)]^c$ for any cubic set B.

(i) \Leftrightarrow (iii) Assume that the mapping f_R is continuous and let B be a neighbourhood of $f_R(R_x)$. Then there exists a Rcubic open set U such that $f_R(R_x) \in U \subseteq_R B$. Now $R_x \in$ $f_R^{-1}(f_R(R_x)) \in \subseteq R$, where $f_R^{-1}(B)$ is a *R*-cubic open set in *X* implying that the inverse of every neighbourhood of $f_R(R_x)$ under f_R is a neighbourhood of R_x .

(iii) \Leftrightarrow (i): Let $f_R(R_x)$ be an arbitrary *R*-cubic point of a *R*cubic open set B of Y_R . Then B is a neighbourhood of $f_R(R_x)$. By hypothesis, $f_R^{-1}(B)$ is a neighbourhood of R_x , then there is a *R*-cubic open set U_x such that $R_x \in U_x \subseteq_R f_R^{-1}(B)$. Then $B = \bigcup_{R_x \in B} U_x$ is a *R*-union of *R*-cubic open set of X_R which implies $f_R^{-1}(B)$ is a *R*-cubic open set of X_R . (iii) \Leftrightarrow (iv): Let R_x be a cubic point in X and V be a neighbourhood of $f_R(R_x)$, then by (iii) $f_R^{-1}(V)$ is a neighbourhood of R_x , we have $f_R(W) = f_R[f_R^{-1}(V)] \subseteq_R V$ where $W = f_R^{-1}(V)$ (iv) \Leftrightarrow (iii): Let V be a neighbourhood of $f_R(R_x)$. Then there is a neighbourhood W of R_x such that $f_R(W) \subseteq_R V$. Hence $f_R^{-1}[f_R(W)] \subseteq_R f_R^{-1}(V)$. Futhermore, since $W \subset_R f_R[f_R^{-1}(W)], f_R^{-1}(V)$ is a neighbourhood of R_x .

References

- ^[1] A. Zeb, S. Abdullah, M. Khan, and A. Majid, Cubic topology, Int. J. Comput. Sci. Inform. Secur., 14(2016), 659-669.
- ^[2] Y. B. Jun, C.S. Kim, and K.O. Yang, Cubic sets, Ann. Fuzzy Math. Inform. 4 (2012), 83-98.
- ^[3] P. Loganayaki and D. Jayanthi, Cubic point (submitted)
- ^[4] P. Loganayaki and D. Jayanthi, Open sets on cubic topological spaces(submitted).
- ^[5] T. Mahmood, F. Mehmood and Q. Khan, Cubic Hesitant Fuzzy Sets and Their Applications Criteria Decision Making, Int. J. of Algebra and Statistics, 5 (2016), 19–51.
- [6] L.A. Zadeh, Fuzzy Sets, Inform. Control 8(1965), 338-353.

37

[7] L.A. Zadeh, The concept of a linguistic variable and its applications to approximate reasoning- I, *Inform. Sci.*, 8(1975), 199-249.

> ******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********

