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1. Introduction

Y.B.Jun [2] introduced the concept of cubic sets, using
fuzzy sets [6] and interval valued fuzzy sets [7] in 2012. In
2016, Akhtar [1] has constructed topological structure on cu-
bic set theory called cubic topological space and discussed
about two types of cubic topological spaces such as P-cubic
topological space and R-cubic topological space. In 2017,
Mahmood, et al. [5] introduced cubic hesitant fuzzy set and
defined internal (external)cubic hesitant fuzzy set, P(R)-union
and P(R)-intersection of cubic hesitant fuzzy sets. In 2019,
Loganayaki and Jayanthi [4] introduced interior and closure
in P-cubic topological space and R-cubic topological space
and discussed various types of open sets. The objective of
our work is to introduce continuous mappings, Q-continuous
mappings, semi continuous mappings , pre- continuous map-
pings and 3-continuous mappings in both P-cubic topological
spaces and R-cubic topological spaces.

2. Preliminaries

In this section some preliminary definitions with refer-
ences are given.

Definition 2.1. [2] Let X be a non-empty set. Then A =
{{x,pu(x),A(x)) |x € X} structure is a cubic set in X in which
Wwisaan IVES in X and A is a fuzzy set in X. Simply a cubic
set is denoted by A = ([, A) and C* denotes the collection of
all cubic sets in X.

(i) A cubic set A= (u,A) in which u(x) =0and A(x) =1
(resp. u(x) =1 and A(x) =0 ) Vx € X is denoted by 0
(resp. 1).

(ii) A cubic set A= (u,A) in which u(x) =0and A(x) =1
(resp. U(x) =0and A(x) =0 ) Vx € X is denoted by 0
(resp.i).

Definition 2.2. [2] Let A = (u,A) and B = (,n) be two
cubic sets in X, Then we define:

(a) Equal: A=B<u=Band A =n

(b) P-order- A=BCpuCBand A <n

(c) R-order: A=BCruCfBandA >n

Definition 2.3. [2] The complement of a cubic set A = (i, )
= {(x, [0 (x),uT ()], A(x))|x € X} in X is defined to be
AC=(u1-2) = {<x7 1 _"”Jr()f)v"l _M_A(x)]v 1 - l(f)) |)CAE
X} . Obviously, (A°) =A,06=1,1°=¢,0°=1and 1°=0

Definition 2.4. [2] For any cubic set A; = { (x, ;(x), A;(x)) |x €
X} where i € N, we define



(a) P-Union

U pA; = {(x,Uien tti(x), VienAdi(x)) |x € X }
ieN

(b) R-Union

U rAi = {{x,Uien i (x), NienAi(x)) [x € X }
ieN

(c) P-Intersection

() pAi = {{x, Nientti(x), NienAi(x)) [x € X }
ieN

(d) R-Intersection
() pAi = {(x, Niew i (x), VienXi(x)) [x € X}

ieN

Definition 2.5. [1] A P-cubic topology Fp is the family of
cubic sets in X which satisfies the following conditions:

(i) 0,1e.%p
(ii) If A; € Fp then
U rAic 2
ieN
(iii) IfA,B € Zp then

ANgB e p

The pair (X,.%p) is called the P-cubic topological space
and any cubic set in .%p is known as R-cubic open set in
X. The complement A of a P-cubic open set A in P-cubic
topological space (X,.%p) is called a P-cubic closed set in X.

Definition 2.6. [1] A R-cubic topology Fy is the family of
cubic sets in X which satisfies the following conditions:

(i) 0,1,0,1 e %
(ii) If A; € Fg then

U rAie

iEN
(iii) If A,B € FR then

ANgB € Fg

The pair (X,.%g) is called the R-cubic topological space
and any cubic set in % is known as R-cubic open set in
X. The complement A¢ of a R-cubic open set A in R-cubic
topological space (X, %#g) is called a R-cubic closed set in
X. Throughout this paper (X,.%#p) or Xp denotes the P-cubic
topological space and (X,.%g) or Xg denotes the R-cubic
topological space.
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3. Continuous Mappings on P-Cubic
Topological Spaces

In this section we have defined and analysed the basic
properties and characterization of some continuous mappings
like o continuous mappings, semi continuous mappings, pre-
continuous mappings and f-continuous mappings in P-cubic
topological spaces.

Definition 3.1. Let fp : X — Y be a mapping and let A =
(1,A) be a cubic set in X. Then the image of A under fp,

denoted by fp(A) = (fp(), fp(1)). is defined by

—_ cre—1

o] ={ P T D) 70
e r—1

o] = { P T 0 70
cror—1

[fp(k)](y)={ Zupfpl(’){lm}’ Uci‘l;zef”}v;)i:zq)

forallyinY, where f5'(y) = {x|fp(x) =y} Let B= (B,7)
be an cubic set in Y. Then the inverse image of B under,
fp denoted by f;'(B) = (fp"'(B).fp"'(n)), is defined by
[ (B0 = [BUfe))] ™, [fp ' (B))]T = [B(fe(x))]",
fo' (M) =0(fp(x), for all x € X.

Definition 3.2. Let Xp and Yp be any two P-cubic topological
spaces. A mapping fp: Xp — Yp said to be a

(i) P-cubic continuous mapping if fp ' (A) is a P-cubic
open set in Xp for each P-cubic open set A in Yp.

(ii) P-cubic semi continuous (resp. O.-continuous, pre-
continuous, B-continuous) mapping if fp ' (A) is a P-
cubic semi open (resp.aopen, pre — open, 3 — open)
set [4] in Xp for each P-cubic open set A in Yp.

Proposition 3.3. The identity mapping fp: Xp — Xp is a
P-cubic continuous mapping.

Proof. Straightforward. O

Proposition 3.4. The composition of two P-cubic continuous
mappings is again a P-cubic continuous mapping in general.

Proof. Straightforward. 0

Proposition 3.5. Every P-cubic continuous mapping is a P-
cubic semi continuous (resp. Q-continuous, pre-continuous,
B-continuous) mapping but the converses are not true in gen-
eral.

Proof. Since every P-cubic open set is a P-cubic semi open
(resp. a-open, pre-open, 3-pen) set,the result follows obvi-
ously. O

The following examples show that the converses of propo-
sition 3.5 is not true.



Example 3.6. Let X # ¢,Fp = {0,A,A2,A3,1} and F), =
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(viii)

{0,B,1} be two P-cubic topologies on X where 4 .
A; = ([0.2,0.4],0.2), A, = ([0.3,0.4],0.3), A3 = ([0.4,0.6],0.5) fo (Y pB) = pfp' (B)
and B = ([0.2,0.5],0.25). Define a mapping f, : (X,Fp) — ieA ieA

(X ,]F;,) by fp(x) = x, then fp is a P-cubic o continuous map-
ping but not a P-cubic continuous mapping.

Example 3.7. Let X # ¢, Fp={0,A1,A»,A3,Aq,1} and Fp =
{0,Cc,1} be two P-cubic topologies on X where
A; = (]0.2,0.4],0.2),A> = ([0.3,0.4],0.3), A3 = ([0.4,0.6],
0.5),A4 = ([0.5,0.7],0.6) and C = ([0.3,0.5],0.4). Define a
mapping gp : (X,Fp) — (X,IF;,) by gp(x) = x, then gp is a P-
cubic semi continuous mapping but not a P-cubic continuous
mapping.

Example 3.8. Let X # ¢,Fp = {0,A,,A2,A3,1} and F, =
{0,D,1} be two P-cubic topologies on X where

A;=([0.2,0.4],0.2), A, = ([0.3,0.4],0.3),A3 = ([0.4,0.6],0.5)

and D = ([0.1,0.5],0.3). Define a mapping hy, : (X,Fp) —
(X,Fp) by hp(x) = x, then is a P-cubic pre-continuous map-
ping and a P-cubic B-continuous mapping, but not a P-cubic
continuous mapping.

Theorem 3.9. A mapping fp : Xp — Yp is a P-cubic
a-continuous mapping if and only if it is both a P-cubic semi
continuous mapping and P-cubic pre-continuous mapping.

Proof. Let fp be both a P-cubic semi continuous mapping and
a P-cubic pre-continuous mapping. Let A be a P-cubic open
set in Yp, then by hypothesis f, !'is a P-cubic semi open set
and P-cubic pre-open set. Hence by proposition 3.25[6], fp !
is a P-cubic « open set and hence it is a P-cubic a-continuous
mapping . The converse is immediate. O

Theorem 3.10. Let fp : Xp — Yp be a mapping. Then
(i) fp'(B) =
(ii) [fp(A)]¢ Cp fp(AC) for all cubic sets A in X.

[f5 ' (B)]° for all cubic sets BinY.

(iii) By Cp By implies f» ' (B1) Cp fp ' (Ba), where By and

B, are cubic setsinY.

(iv) Ay Cp Ay implies fp(A1) Cp fr(Az), where Ay and A,
are cubic setsinY.

(v) fe(fp '(B)) Cp B the equality holds if fp is surjective,
for all cubic sets BinY.

(vi) A Cp fp' (fp(A)) the equality holds if fp is injective,
for all cubic sets A in X.

(vii)
U »fr'(B)

ieA

(U pBi) =

ieA

for all cubic sets B; in'Y.

for all cubic sets B; inY.

Proof. (i) Let B

[ (B)(x) =

= (B, 1) be a cubic set in Y. Then

(x, fp (B @), fp () (%))
= (x, B°(fp) (x),n°(f >(>>
= (x, 1 =B (fp)(x), 1 =n(f
=[fz ' (B)

= (u,A) be a cubic set in X and fp'(y) # ¢. Then
{1 — i (0),1— = ()], 1= A() }, we have

[fp(A)](y)

=1—fp(A)(y)

=1—{y[sup (u~ (x)),sup (1" (x))],

sup(4 (x)))

= (1—y[1 —sup(u™(x)),1 —sup(u”(x))],
1 —sup(2(x)))

(9 [sup{1 — = ()}, sup{1 — ™
sup{1 -1 (x)})

Therefore, [fp(A)]° Cp f,(A°)

(iii) f5 '(B1) = Bi(fp(x)) and f, ' (B2) = Ba(fp(x)) for all
x€X. Since B| Cp By, B fp(x) < By fp(x) for all x € X There-
fore, f5' (B1)(x) < f5' (B2)(x). Hence f, ' (B1) Cp f5 ' (Ba)
(iv) Let A} = (u;,A1) and Ay = (Up,A,) be any two cubic
ses n X. Then (A1) (x) = (x,[sup (s, (x)),5up (11 (1))
sup(2 (x))) and fp(A2)(x) = (x.[sup (5 (x)).sup (113 (¥))];

P)(x))

(i) A
A =

[fe(A)(y) = ()},

)
sup(Ax(x))). Since Ay Cp Aa, sup (i (x) < su (uz( )
sup (11" (x) < sup (k" (x)) and sup(Ai(x) < up(lz( )-
Hence fp(A]) gp fp(Az).
(v) Let B=(3,n) be acubicsetinY andy € Y.
Case I: f' () # ¢
p(fp  (BHO]™ = sup £ (B)(x)]
y=fp(x)
= sup [Bfe()]” =B
y=/p(x)
Similarly,
[fp(fp (BT = BOIT
and
fp(fp M) = [n)]

Case L.f, ' (y)

and

34
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Therefore, by cases I and IT we get fp(fp ' (B) Cp B when fp
is surjective, for all y € Y . So by case I the equality holds. (i)
Let A= (u,A) be a cubic set in X. Then

S (fp(A)) (x)

= (x5, [fe(u(fp(x)) 7, fe(u(fe(x)7],
fr(A(fp(x)))

= (z,] K (2),

sup 1t (),

=fp" (fp(x))
sup
=fp  (fr(x))
> (o, (1™ (), 1t ()], A (x))Vx € X

sup
=fp ' (fp(x))

A(2))

Therefore A Cp f5 ' (fp(A))
(ii) Let B; = {B;,n;) be a cubic setin Y and y € Y. Then

fo' (U pB) () = (U pB,»> fr(y)

ieA ieA
= rBi(fr(»))
icA
= rfp ' (Bi(y))

ieA

(iii) Let B; = (fB;,m;) be a cubic setin ¥ and y € Y. Then

fo () pB() = (ﬂ pB,-> fr(y)

ieA icA
= rBi(fr(»))
icA
= rfp " (Bi(y))
icA
O

Theorem 3.11. If Xp and Yp are any two P-cubic topological
spaces and fp is a mapping from Xp to Yp, then the following
statements are equivalent:

(i) The mapping fp is continuous

(ii) The inverse image of every P-cubic closed set is P-cubic
closed

(iii) For each cubic point P, [3] in X the inverse image of
every neighbourhood of fp(P;) under fp is a neighbour-
hood of P,.

(iv) For each cubic point P, in X and each neighbourhood
V of fp(Py) , there is a neighbourhood W of P, such
that fp(W) Cp V.

Proof. (i) < (ii) : The result is obvious as f5 ' (B¢) = [f ' (B)]°
for any cubic set B.

(1) & (iii) Assume that the mapping fp is continuous and

let B be a neighbourhood of fp(P;). Then there exists a P-

cubic open set U such that fp(P,) € U Cp B. Now P, €
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f7 ' (fp(Py)) €C P, where f,'(B) is a P-cubic open set in X
implying that the inverse of every neighbourhood of fp(Py)
under fp is a neighbourhood of 7.
(iii) < (i): Let fp(P;) be an arbitrary P-cubic point of a P-
cubic open set B of Yp. Then B is a neighbourhood of fp(P).
By hypothesis, fp ! (B) is a neighbourhood of P, then there
is a P-cubic open set Uy such that P, € U, Cp fp ! (B). Then
B = Up,ep Uy is a P-union of P-cubic open set of Xp which
implies fp l(B) is a P-cubic open set of Xp. (iii) & (iv):
Let P, be a cubic point in X and V be a neighbourhood of
fr(Py), then by (iii) f» ' (V) is a neighbourhood of Py, we have
fr(W) = folfp (V)] CpV where W = £ (V)
(iv) & (iii): Let V be a neighbourhood of fp(P;). Then
there is a neighbourhood W of P, such that fp(W) Cp V
. Hence f;l [fr(W)] Cp f;] (V). Futhermore, since W Cp
felfe '(W)], f» (V) is a neighbourhood of P.

O

4. Continuous mappings on R-cubic
topological spaces

In this section we have defined and analysed the basic
properties and characterization of some continuous mappings
like a-continuous mappings, semi continuous mappings, pre-
continuous mappings and f3-continuous mappings in R-cubic
topological spaces.

Definition 4.1. Let fr : X — Y be a mapping and let A =
(U, A) be a cubic set in X. Then the image of A under f,

denoted by f(A) = (fa(). fa(A)). is defined by

— e r—1

()]~ ={ o P T e b2
e or—1

()] ={ Pl T b7
i 1 X if fg!

e O) { e oAk ffthgv)# ’

forallyinY, where fg'(y) = {x|fr(x) =y} Let B= (B,1)
be an cubic set in Y. Then the inverse image of B under,
fr denoted by fz'(B) = (fy''(B).fz'(n)), is defined by
[z (BYX)]™ = (B [z (B)]T = BRI,
Jr' (M) = n(fr(x)), for all x € X.

Definition 4.2. Let Xr and Yg be any two R-cubic topological
spaces. A mapping fr: Xp — Yg said to be a

(i) R-cubic continuous mapping if fr ' (A) is a R-cubic
open set in Xg for each R-cubic open set A in Yg.

(ii) R-cubic semi continuous (resp. O.-continuous, pre-
continuous, B-continuous) mapping if fr ' (A) is a R-
cubic semi open (resp.aopen, pre — open, 3 — open)
set [4] in Xg for each R-cubic open set A in Yg.

Proposition 4.3. The identity mapping fr : Xrp — Xg is a
R-cubic continuous mapping.



Proof. Straightforward. O

Proposition 4.4. The composition of two R-cubic continuous
mappings is again a R-cubic continuous mapping in general.

Proof. Straightforward. O

Proposition 4.5. Every R-cubic continuous mapping is a R-
cubic semi continuous (resp. O.-continuous, pre-continuous,
B-continuous) mapping but the converses are not true in gen-
eral.

Proof. Since every R-cubic open set is a R-cubic semi open
(resp. a-open, pre-open, 3-pen) set,the result follows obvi-
ously. O

The following examples show that the converses of propo-
sition 4.5 is not true.

Example 4.6. Let X # ¢, Fr = {0,0,A1,A2,A3,A4,A5,1,1}
and F}e = {0,B,1} be two R-cubic topologies on X where
A1 =([0.2,0.4],0.6),A, = ([0,0],0.6),A3 = ([1,1],0.6),As =
([0.2,0.4],0),A5 = ([0.2,0.4],1) and B = {[0.2,0.3],0). De-
fine a mapping fr: (X, Fg) — (X,FIR) by fr(x) =x, then f is
a R-cubic o continuous mapping but not a R-cubic continuous
mapping.

Example 4.7. Let X # ¢,Fgr = {0,0,A1,A2,A3,A4,A5,1,1}
and ¥y = {0,C,1} be two R-cubic topologies on X where
A;=([0.2,0.4],0.6),A2 = (]0,0],0.6),A43 = ([1,1],0.6),A4 =
([0.2,0.4],0),A5 = ([0.2,0.4],1) and C = {[0.6,0.8],0.4). De-
fine a mapping gr : (X,Fg) — (X,F;e) by gr(x) =x, then gg
is a R-cubic semi continuous mapping but not a R-cubic con-
tinuous mapping.

Example 4.8. Ler X 75 0, Fr = {O,G,A17A27A3,A4,A5, i, 1}
and IF;,2 = {0,D,1} be two R-cubic topologies on X where
A1 =([0.2,0.4],0.6),A, = ([0,0],0.6),A3 = ([1,1],0.6),As =
([0.2,0.4],0),A5 =([0.2,0.4], 1) and D = ([0.7,0.8],0.7). De-
fine a mapping hg : (X,Fg) — (X,IF;Q) by hg(x) = x, then is a
R-cubic pre-continuous mapping and a R-cubic B-continuous
mapping, but not a R-cubic continuous mapping.

Theorem 4.9. A mapping fg : Xp — Yr is a R-cubic
a-continuous mapping if and only if it is both a R-cubic semi
continuous mapping and R-cubic pre-continuous mapping.

Proof. Let fgr be both a R-cubic semi continuous mapping
and a R-cubic pre-continuous mapping. Let A be a R-cubic
open set in Vg, then by hypothesis f5 ' (A) is a R-cubic semi
open set and R-cubic pre-open set. Hence by proposition
4.25[6], fr I'is a P-cubic « open set and hence it is a R-cubic
a-continuous mapping . The converse is immediate. O

Theorem 4.10. Let fg : Xgp — Yr be a mapping. Then
(i) fr'(B) =
(ii) [fr(A)] Cr fr(A) for all cubic sets A in X.

[f ' (B)]¢ for all cubic sets BinY.
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(iii) By Cg By implies fz ' (B1) Cr fz (B
B, are cubic setsinY.

2), where By and

(iv) Ay Cg Ay implies fr(Ay) Cgr fr(A2), where A| and A,
are cubic setsinY.

(v) fr(fz ' (B)) Cr B the equality holds if fx is surjective,
for all cubic sets BinY.

(vi) A Cg fR’I(fR(A)) the equality holds if fr is injective,
for all cubic sets A in X.

(vii)
(U »Bi) = rfz ' (B)
icA ieA
for all cubic sets B; in'Y.
(viii)
() rB) =) rfz ' (B)
ieA ieA

for all cubic sets B; inY.

Proof. (i) Let B=(f8,1) be a cubic setin Y. Then

fr ' (B)Y@) = (0, fr (B ), £z ' () (x)
= (x, B(fr) (x), n°(fr) (x))
= (x5, 1=B(fr)(x),1 =n(fr)(x))
=[x B
(ii) A = (1, 7A) be a cubic set in X and fz'(y) # ¢. Then
A= {{x,[1 =t (x),1—pu~(x)],1 —A(x))}, we have

[fr(A)](y) =1 - fr(A)(y)
=1 —(y,[sup (1~ (x)),sup (1" (x))],
sup(A (x)))
= (1 =y [1 —sup(u™(x)),1—sup(u™(x))],
1 —sup(A(x)))
(3, [sup{1 —p~(x)},sup{1 —p*
sup{1—A(x)})

[fR(A)] () = ()},

Therefore, [fr(A)] Cr fr(A)

(iii) fr '(B1) = Bi(fr(x)) and fq'(B2) = Ba(fr(x)) for all
x € X. Since By Cg By, By fr(x) < By fr(x) forall x € X There-
fore, fiz(B1)(x) < fi(B2)(x). Hence fir (B1) Cr £ (B2)
(iv) Let A} = (i1, A1) and Ay = (Up,A,) be any two cubic
ses i X. Then fi(A1)(x) = (x.[sup (s, (x)).5up (11 (x))].

sup(A1(x))) and fr(A2)(x) = (x, [sup (15 (x)),sup (4 (x))],
Sup(lz( )))- Since A CR Az, sup (g (x)) < sup (U, (x)),
sup (p7"(x)) < sup (15 (x)) and sup(A;(x) < up(lz( ).
Hence fR( 1) Cr fR(Az)



(v)Let B=(B,n) beacubicsetinY andy €Y.
Case I: f'(y) # ¢
)

fr(fe (B )]~
= sup [fz'(B)X)]”

y=/r(¥)
= sup [Bfr(¥)]” =[BO)]”
y=/r(x)
Similarly,
fr(fz (BYGT =BG
and

Case Iifg '(y) =0

and
fr(fz ()] =0

Therefore, by cases I and IT we get fr(fr ! (B) Cg B when fg
is surjective, for all y € Y . So by case I the equality holds. (i)
Let A= (u,A) be a cubic set in X. Then

fe (fr(A)) (%)
= (6, [fr (e (fr(x)) 7 fr(m(fr(6))) T,
frRA(fr(x)))

A
=(z,[ sup u (z), sup
=fr (fr(x) =fz' (fr(x))
sup  A(z))
=fr (fr(x))
> (x, [0 (x), w7 (x)], A (x))Vx € X

ur(z)],

Therefore A Cg fr ' (fz(A))
(i) Let B; = {B;,n;) be a cubic setin Y and y € Y. Then

fe' (U B () = (U R3i> Tr ()

ieA ieA
= J rBi(fz(¥))
iEA
= »fx ' (Bi(y))
€A

(iii) Let B; = {fB;,m;) be a cubic setin ¥ and y € Y. Then

f2 () #B)(y) = (ﬂ RB,») Tr(y)

ieA i€EA
=) &Bi(fz(¥))
icA
= &fz ' Bi(y))
i€A

O
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Theorem 4.11. If Xr and Yy are any two R-cubic topological
spaces and fr is a mapping from Xg to Yg, then the following
Statements are equivalent:

(i) The mapping fr is continuous

(ii) The inverse image of every R-cubic closed set is R-cubic
closed

(iii) For each cubic point R, [3] in X the inverse image of
every neighbourhood of fgr(R.) under fg is a neigh-
bourhood of Ry.

(iv) For each cubic point R, in X and each neighbourhood
V of fr(Ry) , there is a neighbourhood W of R such
that fr(W) Cr V.

Proof. (i) < (ii) : The resultis obvious as f5 ' (B¢) = [f5 ' (B)]°
for any cubic set B.
(i) & (iii) Assume that the mapping fr is continuous and
let B be a neighbourhood of fg(R,). Then there exists a R-
cubic open set U such that fg(R,) € U Cg B. Now R, €
fz '(fr(R))) EC R, where f5 ' (B) is a R-cubic open set in X
implying that the inverse of every neighbourhood of fz(Ry)
under fg is a neighbourhood of R,.
(iii) < (i): Let fr(Ry) be an arbitrary R-cubic point of a R-
cubic open set B of Y. Then B is a neighbourhood of fr(Ry).
By hypothesis, f ' (B) is a neighbourhood of Ry, then there
is a R-cubic open set U, such that R, € U, Cpg fR’1 (B). Then
B = Ug,ep Ux is a R-union of R-cubic open set of Xg which
implies fp 1(B) is a R-cubic open set of Xg. (iii) & (iv):
Let R, be a cubic point in X and V be a neighbourhood of
fr(Ry), then by (iii) fz (V) is a neighbourhood of R,, we
have fr(W) = frlfg ' (V)] Cr V where W = fp ' (V)
(iv) & (iii): Let V be a neighbourhood of fz(Ry). Then
there is a neighbourhood W of R, such that fr(W) Cgp V
. Hence f'[fr(W)] Ck f5'(V). Futhermore, since W Cg
frlfx ' (W)], fz (V) is a neighbourhood of R,.
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