

https://doi.org/10.26637/MJM0S20/0007

Continuous mappings on cubic topological spaces

P. Loganayaki^{1*} and D. Jayanthi²

Abstract

In this paper we have introduced and investigated some continuous mappings on P - cubic topological spaces and R- cubic topological spaces and obtained interrelations between them. We have proved and analysed some basic properties and characterization of the newly defined continuous mappings.

Keywords

Cubic sets, P-cubic topology, R-cubic topology, P-cubic continuous mappings, R-cubic continuous mappings.

AMS Subject Classification

54A40.

1,2*Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore-641043, Tamil Nadu, India.*

***Corresponding author**: 1 logaruthika@gmail.com; ² jayanthimathss@gmail.com **Article History**: Received **01** January **2020**; Accepted **12** February **2020** c 2020 MJM.

Contents

- **1 [Introduction](#page-0-0) . 32**
- **2 [Preliminaries](#page-0-1) . 32**
- **3 Continuous Mappings on** *P***[-Cubic Topological Spaces](#page-1-0) 33**
- **4 Continuous mappings on** *R***[-cubic topological spaces](#page-3-0) 35**

[References](#page-5-0) . 37

1. Introduction

Y.B.Jun [\[2\]](#page-5-1) introduced the concept of cubic sets, using fuzzy sets [\[6\]](#page-5-2) and interval valued fuzzy sets [\[7\]](#page-6-0) in 2012. In 2016, Akhtar [\[1\]](#page-5-3) has constructed topological structure on cubic set theory called cubic topological space and discussed about two types of cubic topological spaces such as *P*-cubic topological space and *R*-cubic topological space. In 2017, Mahmood, et al. [\[5\]](#page-5-4) introduced cubic hesitant fuzzy set and defined internal (external)cubic hesitant fuzzy set, *P*(*R*)-union and *P*(*R*)-intersection of cubic hesitant fuzzy sets. In 2019, Loganayaki and Jayanthi [\[4\]](#page-5-5) introduced interior and closure in *P*-cubic topological space and R-cubic topological space and discussed various types of open sets. The objective of our work is to introduce continuous mappings, α -continuous mappings, semi continuous mappings , pre- continuous mappings and β-continuous mappings in both *P*-cubic topological spaces and R-cubic topological spaces.

2. Preliminaries

In this section some preliminary definitions with references are given.

Definition 2.1. [\[2\]](#page-5-1) Let *X* be a non-empty set. Then $A =$ $\{\langle x,\mu(x),\lambda(x)\rangle | x \in X\}$ *structure is a cubic set in X in which* µ *is a an IVFS in X and* λ *is a fuzzy set in X. Simply a cubic set is denoted by* $A = \langle \mu, \lambda \rangle$ *and* C^x *denotes the collection of all cubic sets in X.*

- *(i) A cubic set* $A = \langle \mu, \lambda \rangle$ *in which* $\mu(x) = 0$ *and* $\lambda(x) = 1$ *(resp.* $\mu(x) = 1$ *and* $\lambda(x) = 0$ *)* $\forall x \in X$ *is denoted by* 0 $(resp. i)$.
- *(ii) A cubic set* $A = \langle \mu, \lambda \rangle$ *in which* $\mu(x) = 0$ *and* $\lambda(x) = 1$ *(resp.* $\mu(x) = 0$ *and* $\lambda(x) = 0$ *)* $\forall x \in X$ *is denoted by* $\hat{0}$ $(resp.\hat{1})$ *.*

Definition 2.2. *[\[2\]](#page-5-1) Let* $A = \langle \mu, \lambda \rangle$ *and* $B = \langle \beta, \eta \rangle$ *be two cubic sets in X, Then we define:*

- *(a) Equal: A* = *B* ⇔ μ = *β and* λ = *η*
- *(b) P-order: A* = *B* ⊆*p* μ ⊆ *β and* λ ≤ *η*
- *(c) R*-*order: A* = *B* ⊆*R* μ ⊆ *β and* λ ≥ *η*

Definition 2.3. [\[2\]](#page-5-1) The complement of a cubic set $A = \langle \mu, \lambda \rangle$ $=\ \{\langle x,[\mu^-(x),\mu^+(x)],\lambda(x)\rangle\,|x\in X\}\$ in *X* is defined to be *A*^c = $\langle \mu^c, 1 - \lambda \rangle$ = { $\langle x, [1 - \mu^+(x), 1 - \mu^-(x)], 1 - \lambda(x) \rangle | x ∈$ *X*} *. Obviously,* $(A^c)^c = A, 0^c = 1, 1^c = c, 0^c = 1$ *and* $1^c = 0$

Definition 2.4. *[\[2\]](#page-5-1) For any cubic set* $A_i = \{ \langle x, \mu_i(x), \lambda_i(x) \rangle | x \in$ *X*} *where* $i \in N$ *, we define*

(a) P-Union

$$
\bigcup_{i\in N} P A_i = \{ \langle x, \cup_{i\in N} \mu_i(x), \vee_{i\in N} \lambda_i(x) \rangle \ | x \in X \}
$$

(b) R-Union

$$
\bigcup_{i\in N} R A_i = \{ \langle x, \cup_{i\in N} \mu_i(x), \wedge_{i\in N} \lambda_i(x) \rangle \ | x \in X \}
$$

(c) P-Intersection

$$
\bigcap_{i\in N} P A_i = \{ \langle x, \cap_{i\in N} \mu_i(x), \wedge_{i\in N} \lambda_i(x) \rangle \ | x \in X \}
$$

(d) R-Intersection

$$
\bigcap_{i\in N} P A_i = \{ \langle x, \cap_{i\in N} \mu_i(x), \vee_{i\in N} \lambda_i(x) \rangle \, | x \in X \}
$$

Definition 2.5. [\[1\]](#page-5-3) A *P*-cubic topology \mathcal{F}_P is the family of *cubic sets in X which satisfies the following conditions:*

(i) $\hat{0}$, $\hat{1}$ ∈ \mathscr{F}_P *(ii) If* $A_i \in \mathcal{F}_P$ *then*

$$
\bigcup_{i\in N} P A_i \in \mathscr{F}_P
$$

(iii) If $A, B \in \mathscr{F}_P$ *then*

$$
A\cap_R B\in \mathscr{F}_P
$$

The pair (X, \mathcal{F}_P) is called the *P*-cubic topological space and any cubic set in \mathcal{F}_P is known as *R*-cubic open set in *X*. The complement A^c of a *P*-cubic open set *A* in *P*-cubic topological space (X, \mathcal{F}_P) is called a *P*-cubic closed set in *X*.

Definition 2.6. [\[1\]](#page-5-3) A *R*-cubic topology \mathcal{F}_R is the family of *cubic sets in X which satisfies the following conditions:*

- *(i)* $\hat{0}, \hat{1}, \hat{0}, \hat{1} \in \mathscr{F}_R$
- *(ii) If* $A_i \in \mathcal{F}_R$ *then*

$$
\bigcup_{i\in N} R A_i \in \mathscr{F}_R
$$

(iii) If A, B $\in \mathscr{F}_R$ *then*

$$
A\cap_R B\in\mathscr{F}_R
$$

The pair (X, \mathcal{F}_R) is called the *R*-cubic topological space and any cubic set in \mathcal{F}_R is known as *R*-cubic open set in *X*. The complement A^c of a *R*-cubic open set *A* in *R*-cubic topological space (X, \mathcal{F}_R) is called a *R*-cubic closed set in *X*. Throughout this paper (X, \mathcal{F}_P) or X_P denotes the *P*-cubic topological space and (X, \mathcal{F}_R) or X_R denotes the *R*-cubic topological space.

3. Continuous Mappings on *P***-Cubic Topological Spaces**

In this section we have defined and analysed the basic properties and characterization of some continuous mappings like α continuous mappings, semi continuous mappings, precontinuous mappings and β-continuous mappings in *P*-cubic topological spaces.

Definition 3.1. *Let* $f_P: X \to Y$ *be a mapping and let* $A =$ (μ, λ) *be a cubic set in X. Then the image of A under f_P*, *denoted by* $f_P(A) = (f_P(\mu), f_P(\lambda))$ *, is defined by*

$$
[f_P(\mu)(y)]^- = \begin{cases} \sup_{f_P(x)=y} [\mu(x)]^-, & \text{if } f_P^{-1}(y) \neq \phi \\ 0, & \text{otherwise} \end{cases}
$$

$$
[f_P(\mu)(y)]^+ = \begin{cases} \sup_{f_P(x)=y} [\mu(x)]^+, & \text{if } f_P^{-1}(y) \neq \phi \\ 0, & \text{otherwise} \end{cases}
$$

$$
[f_P(\lambda)](y) = \begin{cases} \sup_{f_P^{-1}(y)} {\{\lambda(x)\}}, & \text{if } f_P^{-1}(y) \neq \phi \\ 0, & \text{otherwise} \end{cases}
$$

for all y in Y, *where* $f_P^{-1}(y) = \{x | f_P(x) = y\}$ *Let* $B = \langle \beta, \eta \rangle$ *be an cubic set in Y. Then the inverse image of B under, f*^{*P*} *denoted by* $f_P^{-1}(B) = (f_P^{-1}(\beta), f_P^{-1}(\eta))$ *, is defined by* $[f_P^{-1}(\beta)(x)]^- = [\beta(f_P(x))]^-$, $[f_P^{-1}(\beta)(x)]^+ = [\beta(f_P(x))]^+,$ $f_P^{-1}(\eta)(x) = \eta(f_P(x))$ *, for all* $x \in X$.

Definition 3.2. *Let X^P and Y^P be any two P-cubic topological spaces. A mapping* $f_P: X_P \to Y_P$ *<i>said to be a*

- (*i*) *P*-cubic continuous mapping if $f_P^{-1}(A)$ is a *P*-cubic *open set in X^P for each P-cubic open set A in YP.*
- *(ii) P-cubic semi continuous (resp.* α*-continuous, pre-* \mathcal{L} *continuous* \mathcal{L} *mapping if* $f_P^{-1}(A)$ *is a* P *cubic semi open* (*resp*.α*open*, *pre* − *open*,β − *open*) *set [4] in X^P for each P-cubic open set A in YP.*

Proposition 3.3. *The identity mapping* $f_P: X_P \to X_P$ *is a P-cubic continuous mapping.*

Proof. Straightforward. \Box

Proposition 3.4. *The composition of two P-cubic continuous mappings is again a P-cubic continuous mapping in general.*

Proof. Straightforward.
$$
\Box
$$

Proposition 3.5. *Every P-cubic continuous mapping is a Pcubic semi continuous (resp.* α*-continuous, pre-continuous,* β*-continuous) mapping but the converses are not true in general.*

Proof. Since every *P*-cubic open set is a *P*-cubic semi open (resp. α -open, pre-open, β -pen) set, the result follows obviously. \Box

The following examples show that the converses of proposition [3.5](#page-1-1) is not true.

Example 3.6. *Let* $X \neq \emptyset$, $\mathbb{F}_P = \{ \hat{0}, A_1, A_2, A_3, \hat{1} \}$ *and* $\mathbb{F}_P' =$ ${\lbrace \hat{0}, B, \hat{1} \rbrace}$ *be two P-cubic topologies on X where* $A_1 = \langle [0.2, 0.4], 0.2 \rangle, A_2 = \langle [0.3, 0.4], 0.3 \rangle, A_3 = \langle [0.4, 0.6], 0.5 \rangle$ *and* $B = \langle [0.2, 0.5], 0.25 \rangle$ *. Define a mapping* $f_p : (X, \mathbb{F}_P) \rightarrow$ $(X,\mathbb F)$ P_P) *by* $f_P(x) = x$, then f_P is a *P*-cubic α continuous map*ping but not a P-cubic continuous mapping.*

Example 3.7. Let $X \neq \emptyset$, $\mathbb{F}_P = \{0, A_1, A_2, A_3, A_4, 1\}$ and $\mathbb{F}_P' =$ $\{\hat{0}, C, \hat{1}\}$ *be two P-cubic topologies on X where* $A_1 = \langle [0.2, 0.4], 0.2 \rangle, A_2 = \langle [0.3, 0.4], 0.3 \rangle, A_3 = \langle [0.4, 0.6],$ $(0.5), A_4 = \langle [0.5, 0.7], 0.6 \rangle$ *and* $C = \langle [0.3, 0.5], 0.4 \rangle$ *. Define a mapping* $g_P : (X, \mathbb{F}_P) \to (X, \mathbb{F}')$ P ^{p}) by $g_P(x) = x$, then g_P is a P*cubic semi continuous mapping but not a P-cubic continuous mapping.*

Example 3.8. *Let* $X \neq \emptyset$, $\mathbb{F}_P = \{\hat{0}, A_1, A_2, A_3, \hat{1}\}$ *and* $\mathbb{F}_P' =$ $\{0, D, \hat{1}\}$ *be two P-cubic topologies on X where* $A_1 = \langle [0.2, 0.4], 0.2 \rangle, A_2 = \langle [0.3, 0.4], 0.3 \rangle, A_3 = \langle [0.4, 0.6], 0.5 \rangle$ *and* $D = \langle [0.1, 0.5], 0.3 \rangle$ *. Define a mapping* $h_p : (X, \mathbb{F}_P) \rightarrow$ $(X,\mathbb F)$ P_P) *by* $h_P(x) = x$, then is a *P-cubic pre-continuous mapping and a P-cubic* β*-continuous mapping, but not a P-cubic continuous mapping.*

Theorem 3.9. A mapping $f_P: X_P \rightarrow Y_P$ is a P-cubic α*-continuous mapping if and only if it is both a P-cubic semi continuous mapping and P-cubic pre-continuous mapping.*

Proof. Let *f^P* be both a *P*-cubic semi continuous mapping and a *P*-cubic pre-continuous mapping. Let *A* be a *P*-cubic open set in Y_P , then by hypothesis f_P^{-1} is a *P*-cubic semi open set and *P*-cubic pre-open set. Hence by proposition 3.25[\[6\]](#page-5-2), f_P^{-1} is a P-cubic α open set and hence it is a *P*-cubic α -continuous mapping . The converse is immediate. \Box

Theorem 3.10. *Let* $f_P: X_P \to Y_P$ *be a mapping. Then*

- *(i)* $f_P^{-1}(B^c) = [f_P^{-1}(B)]^c$ for all cubic sets B in Y.
- *(ii)* $[f_P(A)]^c \subseteq_P f_p(A^c)$ *for all cubic sets A in X.*
- (*iii*) $B_1 ⊂ P B_2$ *implies* $f_P^{-1}(B_1) ⊂ P f_P^{-1}(B_2)$ *, where* B_1 *and B*² *are cubic sets in Y .*
- *(iv)* $A_1 ⊂ P A_2$ *implies* $f_P(A_1) ⊂ P f_P(A_2)$ *, where* A_1 *and* A_2 *are cubic sets in Y .*
- *(v)* $f_P(f_P^{-1}(B)) ⊂_P B$ *the equality holds if* f_P *is surjective, for all cubic sets B in Y .*
- *(vi)* $A \subset_{P} f_{P}^{-1}(f_{P}(A))$ *the equality holds if* f_{P} *is injective, for all cubic sets A in X.*

(vii)

$$
f_P^{-1}(\bigcup_{i\in\Lambda}\,P B_i)=\bigcup_{i\in\Lambda}\,p f_P^{-1}(B_i)
$$

for all cubic sets Bⁱ in Y .

(viii)

$$
f_P^{-1}(\bigcap_{i\in\Lambda} P B_i) = \bigcap_{i\in\Lambda} pf_P^{-1}(B_i)
$$

for all cubic sets Bⁱ in Y .

Proof. (i) Let $B = \langle \beta, \eta \rangle$ be a cubic set in *Y*. Then

$$
f_P^{-1}(B^c)(x) = \langle x, f_P^{-1}(\beta^c)(x), f_P^{-1}(\eta^c)(x) \rangle
$$

= $\langle x, \beta^c(f_P)(x), \eta^c(f_P)(x) \rangle$
= $\langle x, 1 - \beta(f_P)(x), 1 - \eta(f_P)(x) \rangle$
= $[f_P^{-1}(B)]^c$

(ii) $A = \langle \mu, \lambda \rangle$ be a cubic set in *X* and $f_P^{-1}(y) \neq \phi$. Then $A^{c} = {\langle x, [1 - \mu^{+}(x), 1 - \mu^{-}(x)], 1 - \lambda(x)\rangle}$, we have

$$
[f_P(A)]^c(y)
$$

= 1 - f_P(A)(y)
= 1 - \langle y, [\sup (\mu^-(x)), \sup (\mu^+(x))],
 \sup(\lambda(x)) \rangle
= \langle 1 - y, [1 - \sup (\mu^-(x)), 1 - \sup (\mu^+(x))],
 1 - \sup(\lambda(x)) \rangle
[f_P(A)]^c(y) = \langle y, [\sup \{1 - \mu^-(x)\}, \sup \{1 - \mu^+(x)\}],
 \sup \{1 - \lambda(x)\} \rangle

Therefore, $[f_P(A)]^c \subseteq_P f_p(A^c)$ (iii) $f_P^{-1}(B_1) = B_1(f_P(x))$ and $f_P^{-1}(B_2) = B_2(f_P(x))$ for all *x* ∈ *X*. Since *B*₁ ⊆ *P B*₂, *B*₁ f *P*(*x*) ≤ *B*₂ f *P*(*x*) for all *x* ∈ *X* Therefore, $f_P^{-1}(B_1)(x) \le f_P^{-1}(B_2)(x)$. Hence $f_P^{-1}(B_1) \subset_P f_P^{-1}(B_2)$ (iv) Let $A_1 = \langle \mu_1, \lambda_1 \rangle$ and $A_2 = \langle \mu_2, \lambda_2 \rangle$ be any two cubic sets in *X*. Then $f_P(A_1)(x) = \langle x, [\sup (\mu_1^-(x)), \sup (\mu_1^+(x))],$ $\sup(\lambda_1(x))$ and $f_P(A_2)(x) = \langle x, [\sup (\mu_2^-(x)), \sup (\mu_2^+(x))],$ $\sup(\lambda_2(x))$. Since $A_1 \subseteq P A_2$, $\sup(\mu_1^-(x)) \leq \sup(\mu_2^-(x))$, $\sup (\mu_1^+(x)) \leq \sup (\mu_2^+(x))$ and $\sup (\lambda_1(x) \leq \sup (\lambda_2(x)).$ Hence $f_P(A_1) \subseteq_P f_P(A_2)$.

(v) Let $B = \langle \beta, \eta \rangle$ be a cubic set in *Y* and $y \in Y$. Case I: $f_P^{-1}(y) \neq \phi$

$$
[f_P(f_P^{-1}(\beta))(y)]^- = \sup_{y=f_P(x)} [f_P^{-1}(\beta)(x)]^-
$$

=
$$
\sup_{y=f_P(x)} [\beta f_P(x)]^- = [\beta(y)]^-
$$

Similarly,

and

$$
[f_P(f_P^{-1}(\beta))(y)]^+ = [\beta(y)]^+
$$

 $[f_P(f_P^{-1}(\eta))(y)] = [\eta(y)]$

Case I: $f_P^{-1}(y) = 0$

$$
[f_P(f_P^{-1}(\beta))(y)]^- = 0
$$

$$
[f_P(f_P^{-1}(\beta))(y)]^+ = 0
$$

and

 $[f_P(f_P^{-1}(\eta))(y)] = 0$

Therefore, by cases I and II we get $f_P(f_P^{-1}(B) \subseteq_P B$ when f_P is surjective, for all $y \in Y$. So by case I the equality holds. (i) Let $A = \langle \mu, \lambda \rangle$ be a cubic set in *X*. Then

$$
f_P^{-1}(f_P(A))(x)
$$

= $\langle x, [f_P(\mu(f_P(x)))^-, f_P(\mu(f_P(x)))^+],$
 $f_P(\lambda(f_P(x)))$
= $\langle z, [\sup_{z=f_P^{-1}(f_P(x))} \mu^{-}(z), \sup_{z=f_P^{-1}(f_P(x))} \mu^{+}(z)],$
 $\sup_{z=f_P^{-1}(f_P(x))} \lambda(z) \rangle$
 $\ge \langle x, [\mu^{-}(x), \mu^{+}(x)], \lambda(x) \rangle \forall x \in X$

Therefore $A \subset_P f_P^{-1}(f_P(A))$

(ii) Let $B_i = \langle \beta_i, \eta_i \rangle$ be a cubic set in *Y* and $y \in Y$. Then

$$
f_P^{-1}(\bigcup_{i \in \Lambda} P B_i)(y) = \left(\bigcup_{i \in \Lambda} P B_i\right) f_P(y)
$$

=
$$
\bigcup_{i \in \Lambda} P B_i(f_P(y))
$$

=
$$
\bigcup_{i \in \Lambda} P f_P^{-1}(B_i(y))
$$

(iii) Let $B_i = \langle \beta_i, \eta_i \rangle$ be a cubic set in *Y* and $y \in Y$. Then

$$
f_P^{-1}(\bigcap_{i \in \Lambda} P B_i)(y) = \left(\bigcap_{i \in \Lambda} P B_i\right) f_P(y)
$$

=
$$
\bigcap_{i \in \Lambda} P B_i(f_P(y))
$$

=
$$
\bigcap_{i \in \Lambda} P f_P^{-1}(B_i(y))
$$

Theorem 3.11. *If X^P and Y^P are any two P-cubic topological spaces and f^P is a mapping from X^P to YP, then the following statements are equivalent:*

- *(i) The mapping f^P is continuous*
- *(ii) The inverse image of every P-cubic closed set is P-cubic closed*
- *(iii) For each cubic point P^x [\[3\]](#page-5-6) in X the inverse image of every neighbourhood of* $f_P(P_x)$ *under* f_P *is a neighbourhood of Px.*
- *(iv) For each cubic point P^x in X and each neighbourhood V* of $f_P(P_x)$, there is a neighbourhood *W* of P_x *such that* $f_P(W) \subset_P V$.

Proof. (i) \Leftrightarrow (ii): The result is obvious as $f_P^{-1}(B^c) = [f_P^{-1}(B)]^c$ for any cubic set *B*.

(i) \Leftrightarrow (iii) Assume that the mapping f_P is continuous and let *B* be a neighbourhood of $f_P(P_x)$. Then there exists a *P*cubic open set *U* such that $f_P(P_x) \in U \subseteq P B$. Now $P_x \in$

 $f_P^{-1}(f_P(P_x)) \in \subseteq P$, where $f_P^{-1}(B)$ is a *P*-cubic open set in *X* implying that the inverse of every neighbourhood of $f_P(P_x)$ under f_P is a neighbourhood of P_x .

(iii) \Leftrightarrow (i): Let *f*^{*P*}(*P_x*) be an arbitrary *P*-cubic point of a *P*cubic open set *B* of Y_P . Then *B* is a neighbourhood of $f_P(P_x)$. By hypothesis, $f_P^{-1}(B)$ is a neighbourhood of P_x , then there is a *P*-cubic open set U_x such that $P_x \in U_x \subseteq P f_P^{-1}(B)$. Then $B = \bigcup_{P_x \in B} U_x$ is a *P*-union of *P*-cubic open set of X_P which implies $f_P^{-1}(B)$ is a *P*-cubic open set of X_P . (iii) ⇔ (iv): Let P_x be a cubic point in X and V be a neighbourhood of *f*_{*P*}(*P*_{*x*}), then by (iii) $f_P^{-1}(V)$ is a neighbourhood of *P*_{*x*}, we have $f_P(W) = f_P[f_P^{-1}(V)] \subseteq_P V$ where $W = f_P^{-1}(V)$

(iv) \Leftrightarrow (iii): Let *V* be a neighbourhood of *f*_{*P*}(*P*_{*x*}). Then there is a neighbourhood *W* of P_x such that $f_P(W) \subseteq_P V$ *P* $f_P^{-1}[f_P(W)] ⊆_P f_P^{-1}(V)$. Futhermore, since $W ⊂_P$ $f_P[f_P^{-1}(W)], f_P^{-1}(V)$ is a neighbourhood of P_x .

4. Continuous mappings on *R***-cubic topological spaces**

In this section we have defined and analysed the basic properties and characterization of some continuous mappings like α -continuous mappings, semi continuous mappings, precontinuous mappings and β-continuous mappings in *R*-cubic topological spaces.

Definition 4.1. Let $f_R: X \to Y$ be a mapping and let $A =$ (μ, λ) *be a cubic set in X. Then the image of A under* f_R *, denoted by* $f_R(A) = (f_R(\mu), f_R(\lambda))$ *, is defined by*

$$
[f_R(\mu)(y)]^- = \begin{cases} \sup_{f_R(x)=y} [\mu(x)]^-, & \text{if } f_R^{-1}(y) \neq \emptyset \\ 0, & \text{otherwise} \end{cases}
$$

$$
[f_R(\mu)(y)]^+ = \begin{cases} \sup_{f_R(x)=y} [\mu(x)]^+, & \text{if } f_R^{-1}(y) \neq \phi \\ 0, & \text{otherwise} \end{cases}
$$

$$
[f_R(\lambda)](y) = \begin{cases} \inf_{x \in f_R^{-1}(y)} {\lambda(x)}, & \text{if } f_R^{-1}(y) \neq \phi \\ 0, & \text{otherwise} \end{cases}
$$

for all y in Y, *where* $f_R^{-1}(y) = \{x | f_R(x) = y\}$ *Let* $B = \langle \beta, \eta \rangle$ *be an cubic set in Y. Then the inverse image of B under, f*_{*R*} *denoted by* $f_R^{-1}(B) = (f_R^{-1}(\beta), f_R^{-1}(\eta))$ *, is defined by* $[f_{R_1}^{-1}(\beta)(x)]^- = [\beta(f_R(x))]^-$, $[f_R^{-1}(\beta)(x)]^+ = [\beta(f_R(x))]^+,$ $f_R^{-1}(\eta)(x) = \eta(f_R(x))$ *, for all* $x \in X$.

Definition 4.2. *Let X^R and Y^R be any two R-cubic topological spaces. A mapping* $f_R: X_R \to Y_R$ *said to be a*

- (*i*) *R*-cubic continuous mapping if $f_R^{-1}(A)$ is a *R*-cubic *open set in X^R for each R-cubic open set A in YR.*
- *(ii) R-cubic semi continuous (resp.* α*-continuous, pre-* \mathcal{L} *continuous*) mapping if $f_R^{-1}(A)$ is a R*cubic semi open* (*resp*.α*open*, *pre* − *open*,β − *open*) *set [4] in X^R for each R-cubic open set A in YR.*

Proposition 4.3. *The identity mapping* $f_R: X_R \to X_R$ *is a R-cubic continuous mapping.*

 \Box

 \Box

Proof. Straightforward.

Proposition 4.4. *The composition of two R-cubic continuous mappings is again a R-cubic continuous mapping in general.*

Proof. Straightforward. \Box

Proposition 4.5. *Every R-cubic continuous mapping is a Rcubic semi continuous (resp.* α*-continuous, pre-continuous,* β*-continuous) mapping but the converses are not true in general.*

Proof. Since every *R*-cubic open set is a *R*-cubic semi open (resp. α -open, pre-open, β -pen) set, the result follows obviously.

The following examples show that the converses of proposition [4.5](#page-4-0) is not true.

Example 4.6. *Let* $X \neq \emptyset$, $\mathbb{F}_R = \{0, 0, A_1, A_2, A_3, A_4, A_5, 1, 1\}$ *and* $\overline{\mathbb{F}}_R^{\overline{I}} = \{ \hat{0}, B, \hat{1} \}$ *be two R-cubic topologies on X where* $A_1 = \langle [0.2, 0.4], 0.6 \rangle, A_2 = \langle [0,0], 0.6 \rangle, A_3 = \langle [1,1], 0.6 \rangle, A_4 =$ $\langle [0.2, 0.4], 0 \rangle$, $A_5 = \langle [0.2, 0.4], 1 \rangle$ *and* $B = \langle [0.2, 0.3], 0 \rangle$ *. Define a mapping* $f_R : (X, \mathbb{F}_R) \to (X, \mathbb{F})$ f_R) *by* $f_R(x) = x$ *, then* f_R *is a R-cubic* α *continuous mapping but not a R-cubic continuous mapping.*

Example 4.7. *Let* $X \neq \emptyset$, $\mathbb{F}_R = \{\hat{0}, \hat{0}, A_1, A_2, A_3, A_4, A_5, \hat{1}, \hat{1}\}\$ *and* $\overline{\mathbb{F}}_R^{\overline{I}} = \{ \hat{0}, C, \hat{1} \}$ *be two R-cubic topologies on X where* $A_1 = \langle [0.2, 0.4], 0.6 \rangle, A_2 = \langle [0,0], 0.6 \rangle, A_3 = \langle [1,1], 0.6 \rangle, A_4 =$ $\langle [0.2, 0.4], 0 \rangle$, $A_5 = \langle [0.2, 0.4], 1 \rangle$ and $C = \langle [0.6, 0.8], 0.4 \rangle$ *. Define a mapping* $g_R : (X, \mathbb{F}_R) \to (X, \mathbb{F})$ $g_R(x) = x$, then $g_R(x) = x$ *is a R-cubic semi continuous mapping but not a R-cubic continuous mapping.*

Example 4.8. *Let* $X \neq \emptyset$, $\mathbb{F}_R = \{0, 0, A_1, A_2, A_3, A_4, A_5, 1, 1\}$ *and* $\overline{\mathbb{F}}_R^{\overline{I}} = \{ \hat{0}, D, \hat{1} \}$ *be two R-cubic topologies on X where* $A_1 = \langle [0.2, 0.4], 0.6 \rangle, A_2 = \langle [0,0], 0.6 \rangle, A_3 = \langle [1,1], 0.6 \rangle, A_4 =$ $\langle [0.2, 0.4], 0 \rangle$, $A_5 = \langle [0.2, 0.4], 1 \rangle$ *and* $D = \langle [0.7, 0.8], 0.7 \rangle$ *.* De*fine a mapping* $h_R : (X, \mathbb{F}_R) \to (X, \mathbb{F}_R')$ $h_R(x) = x$, then is a *R-cubic pre-continuous mapping and a R-cubic* β*-continuous mapping, but not a R-cubic continuous mapping.*

Theorem 4.9. A mapping $f_R: X_R \to Y_R$ is a R-cubic α*-continuous mapping if and only if it is both a R-cubic semi continuous mapping and R-cubic pre-continuous mapping.*

Proof. Let *f^R* be both a *R*-cubic semi continuous mapping and a *R*-cubic pre-continuous mapping. Let *A* be a *R*-cubic open set in *Y_R*, then by hypothesis $f_R^{-1}(A)$ is a *R*-cubic semi open set and *R*-cubic pre-open set. Hence by proposition 4.25[\[6\]](#page-5-2), f_R^{-1} is a P-cubic α open set and hence it is a *R*-cubic α -continuous mapping. The converse is immediate. \Box

Theorem 4.10. *Let* f_R : $X_R \rightarrow Y_R$ *be a mapping. Then*

- *(i)* $f_R^{-1}(B^c) = [f_R^{-1}(B)]^c$ for all cubic sets B in Y.
- *(ii)* $[f_R(A)]^c \subseteq_R f_R(A^c)$ *for all cubic sets A in X.*
- (*iii*) B_1 ⊂*R* B_2 *implies* $f_R^{-1}(B_1)$ ⊂*R* $f_R^{-1}(B_2)$ *, where* B_1 *and B*² *are cubic sets in Y .*
- *(iv)* $A_1 ⊂_R A_2$ *implies* $f_R(A_1) ⊂_R f_R(A_2)$ *, where* A_1 *and* A_2 *are cubic sets in Y .*
- $F(X)$ *f_R*($f_R^{-1}(B)$) ⊂*R B the equality holds if* f_R *is surjective, for all cubic sets B in Y .*
- *(vi)* $A \subset_R f_R^{-1}(f_R(A))$ *the equality holds if* f_R *is injective, for all cubic sets A in X.*

(vii)

 \Box

$$
f_R^{-1}(\bigcup_{i\in\Lambda} {}_R B_i) = \bigcup_{i\in\Lambda} {}_R f_R^{-1}(B_i)
$$

for all cubic sets Bⁱ in Y .

(viii)

$$
f_R^{-1}(\bigcap_{i\in\Lambda} {}_R B_i) = \bigcap_{i\in\Lambda} {}_R f_R^{-1}(B_i)
$$

for all cubic sets Bⁱ in Y .

Proof. (i) Let $B = \langle \beta, \eta \rangle$ be a cubic set in *Y*. Then

$$
f_R^{-1}(B^c)(x) = \langle x, f_R^{-1}(\beta^c)(x), f_R^{-1}(\eta^c)(x) \rangle
$$

= $\langle x, \beta^c(f_R)(x), \eta^c(f_R)(x) \rangle$
= $\langle x, 1 - \beta(f_R)(x), 1 - \eta(f_R)(x) \rangle$
= $[f_R^{-1}(B)]^c$

(ii) $A = \langle \mu, \lambda \rangle$ be a cubic set in *X* and $f_R^{-1}(y) \neq \phi$. Then $A^{c} = \{\langle x, [1 - \mu^{+}(x), 1 - \mu^{-}(x)], 1 - \lambda(x)\rangle\},$ we have

$$
[f_R(A)]^c(y) = 1 - f_R(A)(y)
$$

= 1 - \langle y, [\sup (\mu^-(x)), \sup (\mu^+(x))],
 \sup(\lambda(x)) \rangle
= \langle 1 - y, [1 - \sup (\mu^-(x)), 1 - \sup (\mu^+(x))],
 1 - \sup(\lambda(x)) \rangle
[f_R(A)]^c(y) = \langle y, [\sup \{1 - \mu^-(x)\}, \sup \{1 - \mu^+(x)\}],
 \sup \{1 - \lambda(x)\} \rangle

Therefore, $[f_R(A)]^c \subseteq_R f_R(A^c)$

(iii) $f_R^{-1}(B_1) = B_1(f_R(x))$ and $f_R^{-1}(B_2) = B_2(f_R(x))$ for all *x* ∈ *X*. Since *B*₁ ⊆*R B*₂, *B*₁ *f_R*(*x*) ≤ *B*₂ *f_R*(*x*) for all *x* ∈ *X* Therefore, $f_R^{-1}(B_1)(x) \le f_R^{-1}(B_2)(x)$. Hence $f_R^{-1}(B_1) \subset_R f_R^{-1}(B_2)$ (iv) Let $A_1 = \langle \mu_1, \lambda_1 \rangle$ and $A_2 = \langle \mu_2, \lambda_2 \rangle$ be any two cubic sets in *X*. Then $f_R(A_1)(x) = \langle x, [\sup (\mu_1^-(x)), \sup (\mu_1^+(x))],$ $\sup(\lambda_1(x))$ and $f_R(A_2)(x) = \langle x, [\sup (\mu_2^-(x)), \sup (\mu_2^+(x))],$ $\sup(\lambda_2(x))$. Since $A_1 \subseteq_R A_2$, $\sup(\mu_1^-(x)) \leq \sup(\mu_2^-(x))$, $\sup (\mu_1^+(x)) \leq \sup (\mu_2^+(x))$ and $\sup (\lambda_1(x) \leq \sup (\lambda_2(x)).$ Hence $f_R(A_1) \subseteq_R f_R(A_2)$.

(v) Let $B = \langle \beta, \eta \rangle$ be a cubic set in *Y* and $y \in Y$. Case I: $f_R^{-1}(y) \neq \phi$

$$
[f_R(f_R^{-1}(\beta))(y)]^-
$$

= $\sup_{y=f_R(x)} [f_R^{-1}(\beta)(x)]^-$
= $\sup_{y=f_R(x)} [\beta f_R(x)]^- = [\beta(y)]^-$

Similarly,

$$
[f_R(f_R^{-1}(\beta))(y)]^+ = [\beta(y)]^+
$$

and

$$
[f_R(f_R^{-1}(\eta))(y)] = [\eta(y)]
$$

Case I: $f_R^{-1}(y) = 0$

$$
[f_R(f_R^{-1}(\beta))(y)]^- = 0
$$

$$
[f_R(f_R^{-1}(\beta))(y)]^+ = 0
$$

and

$$
[f_R(f_R^{-1}(\eta))(y)] = 0
$$

Therefore, by cases I and II we get $f_R(f_R^{-1}(B) \subseteq_R B$ when f_R is surjective, for all $y \in Y$. So by case I the equality holds. (i) Let $A = \langle \mu, \lambda \rangle$ be a cubic set in *X*. Then

$$
f_R^{-1}(f_R(A))(x)
$$

= $\langle x, [f_R(\mu(f_R(x)))^-, f_R(\mu(f_R(x)))^+],$
 $f_R(\lambda(f_R(x)))$
= $\langle z, [\sup_{z=f_R^{-1}(f_R(x))} \mu^{-}(z), \sup_{z=f_R^{-1}(f_R(x))} \mu^{+}(z)],$
 $\sup_{z=f_R^{-1}(f_R(x))} \lambda(z) \rangle$
 $\geq \langle x, [\mu^{-(x)}, \mu^{+(x)}], \lambda(x) \rangle \forall x \in X$

Therefore $A \subset_R f_R^{-1}(f_R(A))$

(ii) Let $B_i = \langle \beta_i, \eta_i \rangle$ be a cubic set in *Y* and $y \in Y$. Then

$$
f_R^{-1}(\bigcup_{i \in \Lambda} R B_i)(y) = \left(\bigcup_{i \in \Lambda} R B_i\right) f_R(y)
$$

=
$$
\bigcup_{i \in \Lambda} R B_i(f_R(y))
$$

=
$$
\bigcup_{i \in \Lambda} R f_R^{-1}(B_i(y))
$$

(iii) Let $B_i = \langle \beta_i, \eta_i \rangle$ be a cubic set in *Y* and $y \in Y$. Then

$$
f_R^{-1}(\bigcap_{i \in \Lambda} R B_i)(y) = \left(\bigcap_{i \in \Lambda} R B_i\right) f_R(y)
$$

=
$$
\bigcap_{i \in \Lambda} R B_i(f_R(y))
$$

=
$$
\bigcap_{i \in \Lambda} R f_R^{-1}(B_i(y))
$$

Theorem 4.11. *If X^R and Y^R are any two R-cubic topological spaces and f^R is a mapping from X^R to YR, then the following statements are equivalent:*

- *(i) The mapping f^R is continuous*
- *(ii) The inverse image of every R-cubic closed set is R-cubic closed*
- *(iii) For each cubic point R^x [\[3\]](#page-5-6) in X the inverse image of every neighbourhood of* $f_R(R_x)$ *under* f_R *is a neighbourhood of Rx.*
- *(iv) For each cubic point R^x in X and each neighbourhood V* of $f_R(R_x)$, there is a neighbourhood *W* of R_x such *that* $f_R(W) \subset_R V$.

Proof. (i) \Leftrightarrow (ii) : The result is obvious as $f_R^{-1}(B^c) = [f_R^{-1}(B)]^c$ for any cubic set *B*.

(i) \Leftrightarrow (iii) Assume that the mapping f_R is continuous and let *B* be a neighbourhood of $f_R(R_x)$. Then there exists a *R*cubic open set *U* such that $f_R(R_x) \in U \subseteq_R B$. Now $R_x \in$ $f_R^{-1}(f_R(R_x)) \in \subseteq R$, where $f_R^{-1}(B)$ is a *R*-cubic open set in *X* implying that the inverse of every neighbourhood of $f_R(R_x)$ under f_R is a neighbourhood of R_x .

(iii) \Leftrightarrow (i): Let $f_R(R_x)$ be an arbitrary *R*-cubic point of a *R*cubic open set *B* of Y_R . Then *B* is a neighbourhood of $f_R(R_x)$. By hypothesis, $f_R^{-1}(B)$ is a neighbourhood of R_x , then there is a *R*-cubic open set U_x such that $R_x \in U_x \subseteq_R f_R^{-1}(B)$. Then $B = \bigcup_{R_x \in B} U_x$ is a *R*-union of *R*-cubic open set of X_R which implies $f_R^{-1}(B)$ is a *R*-cubic open set of X_R . (iii) ⇔ (iv): Let R_x be a cubic point in *X* and *V* be a neighbourhood of $f_R(R_x)$, then by (iii) $f_R^{-1}(V)$ is a neighbourhood of R_x , we have $f_R(W) = f_R[f_R^{-1}(V)] \subseteq_R V$ where $W = f_R^{-1}(V)$ (iv) \Leftrightarrow (iii): Let *V* be a neighbourhood of *f_R*(*R_x*). Then there is a neighbourhood *W* of R_x such that $f_R(W) \subseteq_R V$ *R* Hence $f_R^{-1}[f_R(W)] \subseteq_R f_R^{-1}(V)$. Futhermore, since *W* ⊂*R* $f_R[f_R^{-1}(W)], f_R^{-1}(V)$ is a neighbourhood of R_x .

 \Box

References

- [1] A. Zeb, S. Abdullah, M. Khan, and A. Majid, Cubic topology, *Int. J. Comput. Sci. Inform. Secur.*, 14(2016), 659–669.
- [2] Y. B. Jun, C.S. Kim, and K.O. Yang, Cubic sets, *Ann. Fuzzy Math. Inform.* 4 (2012), 83–98.
- $[3]$ P. Loganayaki and D. Jayanthi, Cubic point (submitted)
- [4] P. Loganayaki and D. Jayanthi, Open sets on cubic topological spaces(submitted).
- [5] T. Mahmood, F. Mehmood and Q. Khan, Cubic Hesitant Fuzzy Sets and Their Applications Criteria Decision Making, *Int. J. of Algebra and Statistics*, 5 (2016), 19–51.
- [6] L.A. Zadeh, Fuzzy Sets, *Inform. Control* 8(1965), 338- 353.

37

 \Box

[7] L.A. Zadeh, The concept of a linguistic variable and its applications to approximate reasoning- I, *Inform. Sci.*, 8(1975), 199-249.

> $**********$ ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 $**********$

