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Effects of Heat Source/ Sink and non uniform
temperature gradients on
Darcian-Bènard-Magneto-Marangoni convection in
composite layer horizontally enclosed by adiabatic
boundaries
R. Sumithra1 and N. Manjunatha2*

Abstract
The problem of Bènard-Magneto-Marangoni convection in a composite layer which is horizontally infinite, is
investigated for the Darcian case in the presence of constant heat source/sink in both the layers. This composite
layer is enclosed by adiabatic boundaries and subjected to linear, parabolic and inverted parabolic temperature
gradients. The eigenvalue, thermal Marangoni number is obtained in the closed form for lower rigid and upper
free with surface tension velocity boundary combinations. The influence of various parameters on the eigenvalue
against depth ratio is discussed. It is observed that the effect of heat source/sink is dominant in the fluid layer.
The parameters which manipulate (advance or delay) the convection are determined.
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1. Introduction
The study of MHD flow is very important because of

its applications in geophysics, astrophysics, engineering and

technology. The study of effect of magnetic field on tempera-
ture distribution with heat source/sink when fluid is capable
of emitting and absorbing thermal radiations is of great im-
portance in concerned with space applications and higher
operating temperatures. The study of heat generation or ab-
sorption in moving fluids is important in several physical prob-
lems such as fluids undergoing exothermic or endothermic
chemical reactions. The effect of heat source/sink in thermal
convection is considered where there are high temperature
differences between surfaces such as space craft bodies. The
present model has applications in geophysics, astrophysics,
aerospace, solar energy collection systems and also in the
design of high operating temperature chemical process sys-
tems.The study of heat source/sink effects on heat transfer
is very important because their effects are crucial in control-
ling the heat transfer also used as an effective parameter to
control convection. The natural convection process in the
presence of heat source/sink is presented in various physical
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phenomena such as fire engineering, combustion modeling,
nuclear energy, heat ex-changers, petroleum reservoir, etc.
Internal heat source (sink) may arise due to heat released dur-
ing chemical reactions in the fluid, radioactive decay, Ohmic
heating by current in conductive liquid, produced by radia-
tion from external medium there by helping in advancing or
delaying convection. The several studies have been made on
the single layer, Suneetha et al. [13] studied the thermal radia-
tion effects on MHD flow past an impulsively started vertical
plate in the presence of heat source/sink is investigated us-
ing implicit finite difference method of Crank-Nicholson type.
Balasubrahmanyam et al. [1] studied the Soret effect on mixed
convective heat and mass transfer through a porous medium
confined in a cylindrical annulus under a radial magnetic field
in the presence of a constant heat source/sink.Sudhakar Reddy
et al. [9] studied the unsteady free convection unsteady flow
of a viscous incompressible, electrically conducting, rotating
liquid in a porous medium past an infinite isothermal vertical
plate with constant heat source / sink in the presence of a uni-
form magnetic field applied perpendicular to the flow region.
Thommaandru Ranga Rao et al. [15] investigates theoretically
the problem of free convection boundary layer flow of nanoflu-
ids over a nonlinear stretching sheet in the presence of MHD
and heat source/sink using fourth order Runge-Kutta method
along with shooting technique. Dileep Kumar and Singh [2]
investigated the effects of induced magnetic field and heat
source/sink on fully developed laminar natural convective
flow of a viscous incompressible and electrically conducting
fluid in the presence of radial magnetic field by considering
induced magnetic field into account. The governing equations
of the considered model are transformed into simultaneously
ordinary differential equations and solved analytically. Sud-
hakara Reddy et al. [10] studied the upshots of an unsteady
MHD radiating nanofluid past a stretching sheet taking into
account the heat source/sink using Runge-Kutta scheme along
with shooting technique. Tasawar Hayat et al. [14] studied the
heat source/sink in a magneto-hydrodynamic non-newtonian
fluid flow in a porous medium.

Recently, Using Laplace transformation technique, the
effect of heat source or sink past an impulsively started ver-
tical plate under the influence of transverse magnetic field
has been investigated by Garg and Shipra [3].Garg and Shipra
[4] investigated the heat source/sink effect on free convec-
tive incompressible viscous fluid flow and mass transfer in
presence of uniform magnetic field applied normal to the in-
finite vertical plate moving with time dependent velocity by
Laplace transformation method.The effect of heat source/sink
on unsteady free-convective flow past an accelerated infinite
vertical plate with mass diffusion in the presence of transverse
magnetic field is investigated by Garg and Shipra [5]. They
used the Laplace transformation technique to find the exact so-
lution of the problem. Shipra and Garg [8] studied the effects
of heat source/sink and chemical reaction with mass diffusion
on free convective incompressible viscous fluid flow past an
accelerated vertical plate with magnetic field has been inves-

tigated. Laplace transformation method has been applied to
solve the system of linear partial differential equations. Lalrin-
puia Tlau and Surender Ontela [6] investigated the generation
of entropy in the presence of a heat source/sink in a sloping
channel filled with porous medium in magnetohydrodynamic
nanofluid flow using Homotopy analysis method. Naveen
Dwivedi and Singh [7] studied the fully developed laminar
magnetohydrodynamic free convection between two concen-
tric vertical cylinders with Hall currents and heat source/sink,
in the presence of the radial magnetic field. They found that
the Hall current has a strong and direct impact on the flow
character, such that the influence of the Hall parameter en-
hances the velocity fields in the appearance of heat source and
sink.

For the composite layers, Sumithra and Manjunatha [11,
12] considered the effect of non-uniform temperature gra-
dients on single and double diffusive magneto-Marangoni
convection in a two layer system. They obtained the closed
form of solution for Marangoni number.

So far no attempt has been made to analyze the effects in
a composite layer with constant heat source/sink and uniform
and non-uniform temperature gradients in the presence of
a magnetic field and hence the present work is focused on
this.In the present paper an attempt is made to study the effect
of non-uniform temperature gradients on Bènard-Magneto-
Marangoni convection in a composite layer in the presence of
constant heat source (sink) in both the layers.

2. Formulation of the problem

Consider a horizontal single component, electrically con-
ducting fluid saturated isotropic densely packed porous layer
of thickness dm underlying a single component fluid layer
of thickness d with an imposed magnetic field intensity H0
in the vertical z-direction and with heat sources Φ and Φm
respectively. The lower surface of the porous layer rigid and
the upper surface of the fluid layer is free with surface tension
effects depending on temperature. A Cartesian coordinate sys-
tem is chosen with the origin at the interface between porous
and fluid layers and the z-axis, vertically upwards. The basic
equations for fluid and porous layer respectively governing
such a system are,

O.−→q = 0 (2.1)

O.
−→
H = 0 (2.2)

ρ0[
∂
−→q

∂ t
+(−→q .O)−→q ] =−OP+µO2−→q

+µp(
−→
H .O)

−→
H (2.3)

∂T
∂ t

+(−→q .O)T = κO2T +Φ (2.4)

∂
−→
H

∂ t
= O×−→q ×−→H +νmO

2−→H (2.5)
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Om.
−→qm = 0 (2.6)

Om.
−→
H = 0 (2.7)

ρ0[
1
ε

∂
−→qm

∂ t
+

1
ε2 (
−→qm.Om)

−→qm] =−OmPm−
µ

K
−→qm

+µp(
−→
H .Om)

−→
H (2.8)

A
∂Tm

∂ t
+(−→qm.Om)Tm = κmO

2
mTm +Φm (2.9)

ε
∂
−→
H

∂ t
= Om×−→qm×

−→
H +νemO

2
m
−→
H (2.10)

Where For fluid layer −→q is the velocity vector, ρ0 is the fluid

density, t is time, µ is fluid viscosity, P = p+ µpH2

2 is the total
pressure,

−→
H is the magnetic field, T is temperature, constant

heat source Φ , κ thermal diffusivity of the fluid, νm = 1
µpσ

is the magnetic viscosity and µp is the magnetic permeability
. For porous layer ε is the porosity , K permeability of the
porous medium, A =

(ρ0Cp)m
(ρ0Cp) f

ratio of heat capacities, Cp spe-
cific heat, κm thermal diffusivity , Φm is constant heat source,
νem = νm

ε
is the effective magnetic viscosity and the subscripts

′m′ and ′ f ′(in these equations) denotes the quantities in porous
layer and fluid layer respectively.

The aim of this paper is to investigate the stability of
infinitesimal perturbations superposed on the basic quiescent
state. The basic state of the liquid being quiescent is described
by

−→q =−→qb = 0,P = Pb(z),T = Tb(z),
−→
H = H0(z)

−→qm =−→qmb,Pm = Pmb(zm),Tm = Tmb(zm),
−→
H = H0(zm)

}
(2.11)

The basic state temperatures of Tb(z) and Tmb(zm) are obtained
as

Tb(z) =
−Φz(z−d)

2κ
+

(Tu−T0)h(z)
d

+T0

in 0≤ z≤ d

 (2.12)

Tmb(zm) =
−Φmzm(zm +dm)

2κm
+

(T0−Tl)hm(zm)

dm
+T0

in −dm ≤ zm ≤ 0

(2.13)

where T0 =
κdmTu +κmdTl

κdm +κmd
+

ddm(Φmdm +Φd)
2(κdm +κmd)

is the inter-

face temperature and h(z) and hm(zm) are temperature gradi-
ents in fluid and porous layer respectively and subscript ′b′

denote the basic state.
We superimpose infinitesimal disturbances on the basic state
for fluid and porous layer respectively

−→q =−→qb +
−→q ′,P = Pb +P′,

T = Tb(z)+θ ,
−→
H = H0(z)+

−→
H ′

}
(2.14)

−→qm =−→qmb +
−→qm
′,Pm = Pmb +P′m,

Tm = Tmb(zm)+θm,
−→
H = H0(zm)+

−→
H ′

}
(2.15)

Where the prime indicates the perturbation. Introducing (2.11)
into (2.1) - (2.10), operating curl twice and eliminate the
pressure term from equations (2.3) and (2.8), the resulting
equations then nondimensionalized.

The dimensionless equations are then subjected to normal
mode analysis as follows W

θ

H

=

 W (z)
θ(z)
H(z)

 f (x,y)ent (2.16)

 Wm
θm
H

=

 Wm(zm)
θm(zm)
H(zm)

 fm(xm,ym)enmt (2.17)

with O2
2 f + a2 f = 0 and O2

2m fm + a2
m fm = 0, where a and

am are the wave numbers, n and nm are the frequencies, W
and Wm are the dimensionless vertical velocities in fluid and
porous layer respectively and obtain the following equations
in 0≤ z≤ 1

(D2−a2 +
n

Pr
)(D2−a2)W

=−Qτ f mD(D2−a2)H (2.18)

(D2−a2 +n)θ +[h(z)+R∗I (2z−1)]W = 0 (2.19)
(τ f m(D2−a2)+n)H +DW = 0 (2.20)

in −1≤ zm ≤ 0

(1− β 2nm

Prm
)(D2

m−a2
m)Wm

= Qmτmmβ
2Dm(D2

m−a2
m)Hm (2.21)

(D2
m−a2

m +Anm)θm +[hm(zm)

+R∗Im(2zm +1)]Wm = 0 (2.22)
τmm(D2

m−a2
m +nmε)Hm +DmWm = 0 (2.23)

where for fluid layer, Pr =
ν

κ
is the prandtl number, Q =

µpH2
0 d2

µκτ f m
is the Chandrasekhar number, τ f m =

νmv

κ
is the dif-

fusivity ratio. For porous layer, Prm =
ενm

κm
is the prandtl

number, Qm =
µpH2

0 d2
m

µκmτmm
= Qε d̂2 is the Chandrasekhar num-

ber, τmm = νem
κm

is the diffusivity ratio. R∗I =
RI

2(T0−Tu)
,

R∗Im =
RIm

2(Tl−T0)
, here RI is the internal Rayleigh number

for fluid layer and RIm is the internal Rayleigh number for
porous layer. h(z) and hm(zm) are the non-dimensional tem-

perature gradients with
1∫
0

h(z)dz = 1 and
1∫
0

hm(zm)dzm = 1, θ

and θm are the temperature in fluid and porous layers respec-
tively,
substituting the equation (2.20) in (2.18) and (2.23) in (2.21)
and assume that the present problem satisfies the principle of
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exchange of instability, so putting n = nm = 0.
We get, in 0≤ z≤ 1

(D2−a2)2W = QD2W (2.24)
(D2−a2)θ +[h(z)+R∗I (2z−1)]W = 0 (2.25)

in −1≤ zm ≤ 0

(D2
m−a2

m)Wm =−Qmβ
2D2

mWm (2.26)
(D2

m−a2
m)θm +[hm(zm)+R∗Im(2zm +1)]Wm = 0 (2.27)

3. Boundary Conditions
The boundary conditions are nondimensionalized and then

subjected to normal mode expansion and are

D2W (1)+Ma2
θ(1) = 0,

W (1) = 0,Wm(−1) = 0, T̂W (0) =Wm(0),

T̂ d̂DW (0) = DmWm(0),

T̂ d̂3β
2(D3W (0)−3a2DW (0)) =−DmWm(0),

Dθ(1) = 0,θ(0) = T̂ θm(0),
Dθ(0) = Dmθm(0),Dmθm(−1) = 0 (3.1)

where

T̂ =
Tl−T0

T0−Tu
is the thermal ratio, M =−∂σt

∂T
(T0−Tu)d

µκ
is the

thermal Marangoni number, β =

√
K
d2

m
is the porous parame-

ter and d̂ =
dm

d
is the depth ratio.

4. Method of Solution
The solutions W and Wm are obtained by solving (2.24)

and (2.26) using the boundary conditions (3.1)

W (z) = A1[coshδ z+a1 sinhδ z+a2 coshζ z+a3 sinhζ z](4.1)
Wm(zm) = A1[a4 coshδmzm +a5 sinhδmzm](4.2)

where

δ =

√
Q−

√
Q+4a2

2
,ζ =

√
Q+

√
Q+4a2

2
,

δm =

√
a2

m

1+Qmβ 2 ,a1 =−
∆2a3

∆1
,a2 =

∆5∆7−∆8∆4

∆3∆7−∆6∆4
,

a3 =
∆5∆6−∆8∆3

∆4∆6−∆7∆3
,a4 = T̂ (1+ a2),a5 =

1
δm

(T̂ d̂a1δ + a3ζ )

∆1 = d̂2β 2(δ 3−3a2δ )+δ ,∆2 = d̂2β 2(ζ 3−3a2ζ )+ζ ,

∆3 = T̂ coshδm,∆4 =−
d̂T̂ sinhδm

δm
(ζ − ∆2δ

∆1
),

∆5 =−∆3,∆6 = coshζ ,
∆7 = sinhζ − (∆2

∆1
)sinhδ ,∆8 =−coshδ

4.1 Linear temperature profile
Consider the linear temperature profile of the form

h(z) = 1 and hm(zm) = 1 (4.3)

Substituting equation (4.3) into (2.25) and (2.27), the tempera-
ture distributions θ and θm are obtained using the temperature
boundary conditions, as follows

θ(z) = A1[c1 coshaz+ c2 sinhaz+g1(z)](4.4)
θm(zm) = A1[c3 coshamzm + c4 sinhamzm +gm1(zm)](4.5)

where
g1(z) = A1[δ1−δ2 +δ3−δ4],gm1(zm) = A1[δ5−δ6]

δ1 =
(E2z+E1)

(δ 2−a2)
(coshδ z+a1 sinhδ z)

δ2 =
2δE2

(δ 2−a2)2 (a1 coshδ z+ sinhδ z)

δ3 =
(E2z+E1)

(ζ 2−a2)
(a2 coshζ z+a3 sinhζ z)

δ4 =
2ζ E2

(ζ 2−a2)2 (a3 coshζ z+a2 sinhζ z)

δ5 =
(E1m +E2mzm)

(δ 2
m−a2

m)
(a4 coshδmzm +a5 sinhδmzm)

δ6 =
2E2mδm

(δ 2
m−a2

m)
2 (a5 coshδmzm +a4 sinhδmzm)

E1 = R∗I −1,E2 =−2R∗I ,E1m =−(R∗Im +1),
E2m =−2R∗Im,c1 = c3T̂ +∆10−∆11,
c2 =

1
a (c4am +∆12−∆13),

c3 =
∆16∆18−∆19∆14

−∆15∆18−∆17∆14
,c4 =

∆16∆17 +∆19∆15

∆14∆17 +∆18∆15
,

∆9 =−[δ7 +δ8 +δ9 +δ10],

δ7 =
δ (E2 +E1)

(δ 2−a2)
(a1 coshδ + sinhδ ),

δ8 = [
E2

(δ 2−a2)
− 2δ 2E2

(δ 2−a2)2 ](coshδ +a1 sinhδ ),

δ9 =
ζ (E2 +E1)

(ζ 2−a2)
(a3 coshζ +a2 sinhζ ),

δ10 = [
E2

(ζ 2−a2)

2ζ 2E2

(ζ 2−a2)2 ](a2 coshζ +a3 sinhζ ),

∆10 = T̂ [
E1ma4

(δ 2
m−a2

m)
− 2E2mδma5

(δ 2
m−a2

m)
2 ]

∆11 =
E1

(δ 2−a2)
− 2δa1E2

(δ 2−a2)2 +∆110

∆110 =
a2E1

(ζ 2−a2)
− 2ζ a3E2

(ζ 2−a2)2

∆12 = [
E2m

(δ 2
m−a2

m)
− 2δ 2

mE2m

(δ 2
m−a2

m)
2 ]a4 +

a5E1m

(δ 2
m−a2

m)

∆13 =
E1δa1 +E2

(δ 2−a2)
− 2E2δ 2

(δ 2−a2)2 +∆130

∆130 =
E1ζ a3 +E2a2

(ζ 2−a2)
− 2a2E2ζ 2

(ζ 2−a2)2 ,

∆14 = am cosham,∆15 = am sinham,

∆16 = [
−E2m

(δ 2
m−a2

m)
+

2δ 2
mE2m

(δ 2
m−a2

m)
2 ]∆160−∆161,

∆160 = (a4 coshδm−a5 sinhδm),

∆161 =
δm(E1m−E2m)

(δ 2
m−a2

m)
(a5 coshδm−a4 sinhδm),

∆17 = T̂ asinha,∆18 = am cosha,
∆19 = ∆9−a(∆10−∆11)sinha− (∆12−∆13)cosha

376



Effects of Heat Source/ Sink and non uniform temperature gradients on Darcian-Bènard-Magneto-Marangoni
convection in composite layer horizontally enclosed by adiabatic boundaries — 377/382

From the boundary condition (3.1), we have

M =
−D2W (1)

a2θ(1)

The thermal Marangoni number for the linear temperature
profile is as follows

M1 =
−Λ1

a2(c1 cosha+ c2 sinha+Λ2 +Λ3)
(4.6)

where
Λ1 = δ 2(coshδ +a1 sinhδ )+ζ 2(a2 coshζ +a3 sinhζ )

Λ2 =
(E2 +E1)

(δ 2−a2)
(coshδ +a1 sinhδ )−∆42

∆42 =
2δE2

(δ 2−a2)2 (a1 coshδ + sinhδ )

Λ3 =
(E2 +E1)

(ζ 2−a2)
(a2 coshζ +a3 sinhζ )−∆43

∆43 =
2ζ E2

(ζ 2−a2)2 (a3 coshζ +a2 sinhζ )

4.2 Parabolic temperature profile
Consider the Parabolic temperature profile of the form

h(z) = 2z and hm(zm) = 2zm (4.7)

Substituting (4.7) into (2.25) and (2.27), the temperature distri-
butions θ and θm are obtained using the temperature boundary
conditions is as follows

θ(z) = A1[c5 coshaz+ c6 sinhaz+g2(z)](4.8)
θm(zm) = A1[c7 coshamzm + c8 sinhamzm +gm2(zm)](4.9)

where
g2(z) = A1[δ11−δ12 +δ13−δ14],gm2(zm) = A1[δ15−δ16]

δ11 =
(E4z+E3)

(δ 2−a2)
(coshδ z+a1 sinhδ z)

δ12 =
2δE4

(δ 2−a2)2 (a1 coshδ z+ sinhδ z)

δ13 =
(E4z+E3)

(ζ 2−a2)
(a2 coshζ z+a3 sinhζ z)

δ14 =
2ζ E4

(ζ 2−a2)2 (a3 coshζ z+a2 sinhζ z)

δ15 =
(E3m +E4mzm)

(δ 2
m−a2

m)
(a4 coshδmzm +a5 sinhδmzm)

δ16 =
2E4mδm

(δ 2
m−a2

m)
2 (a5 coshδmzm +a4 sinhδmzm),

E3 = R∗I ,E4 =−2(R∗I +1),
E3m =−R∗Im,E4m =−2(R∗Im +1)
c5 = c7T̂ +∆21−∆22,c6 =

1
a (c8am +∆23−∆24),

c7 =
∆30∆25−∆27∆29

∆28∆25 +∆26∆29
,c8 =

∆30∆26 +∆27∆28

∆29∆26 +∆25∆28
,

∆20 =−[δ17 +δ18 +δ19 +δ20],

δ17 =
δ (E4 +E3)

(δ 2−a2)
(a1 coshδ + sinhδ ),

δ18 = [
E4

(δ 2−a2)
− 2δ 2E4

(δ 2−a2)2 ](coshδ +a1 sinhδ ),

δ19 =
ζ (E4 +E3)

(ζ 2−a2)
(a3 coshζ +a2 sinhζ ),

δ20 = [
E4

(ζ 2−a2)

2ζ 2E4

(ζ 2−a2)2 ](a2 coshζ +a3 sinhζ ),

∆21 = T̂ [
E3ma4

(δ 2
m−a2

m)
− 2E4mδma5

(δ 2
m−a2

m)
2 ],

∆22 =
E3

(δ 2−a2)
− 2δa1E4

(δ 2−a2)2 +∆220

∆220 =
a2E3

(ζ 2−a2)
− 2ζ a3E4

(ζ 2−a2)2 ,

∆23 = [
E4m

(δ 2
m−a2

m)
− 2δ 2

mE4m

(δ 2
m−a2

m)
2 ]a4 +

a5E3m

(δ 2
m−a2

m)

∆24 =
E3δa1 +E4

(δ 2−a2)
− 2E4δ 2

(δ 2−a2)2 +∆240

∆240 =
E3ζ a3 +E4a2

(ζ 2−a2)
− 2a2E4ζ 2

(ζ 2−a2)2 ,

∆25 = am cosham,∆26 = am sinham,

∆27 =−[
E4m

(δ 2
m−a2

m)
− 2δ 2

mE4m

(δ 2
m−a2

m)
2 ]∆160−∆270

∆270 =
δm(E3m−E4m)

(δ 2
m−a2

m)
(a5 coshδm−a4 sinhδm),

∆28 = aT̂ sinha,∆29 = am cosha,
∆30 = ∆20−a(∆21−∆22)sinha− (∆23−∆24)cosha
From the boundary condition (3.1), the thermal Marangoni
number for parabolic temperature profile is as follows

M2 =
−Λ1

a2(c5 cosha+ c6 sinha+Λ4 +Λ5)
(4.10)

where

Λ4 =
(E4 +E3)

(δ 2−a2)
(coshδ +a1 sinhδ )−∆44

∆44 =
2δE4

(δ 2−a2)2 (a1 coshδ + sinhδ )

Λ5 =
(E4 +E3)

(ζ 2−a2)
(a2 coshζ +a3 sinhζ )−∆45

∆45 =
2ζ E4

(ζ 2−a2)2 (a3 coshζ +a2 sinhζ )

4.3 Inverted Parabolic temperature profile
Consider the inverted Parabolic temperature profile of the
form

h(z) = 2(1− z) and hm(zm) = 2(1− zm) (4.11)

Substituting (4.11) into (2.25) and (2.27), the temperature
distributions θ and θm are obtained using the temperature
boundary conditions, as follows

θ(z) = A1[c9 coshaz+ c10 sinhaz+g3(z)] (4.12)
θm(zm) = A1[c11 coshamzm + c12 sinhamzm

+gm3(zm)] (4.13)

where
g3(z) = A1[δ21−δ22 +δ23−δ24],gm3(zm) = A1[δ25−δ26]

δ21 =
(E6z+E5)

(δ 2−a2)
(coshδ z+a1 sinhδ z)
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δ22 =
2δE6

(δ 2−a2)2 (a1 coshδ z+ sinhδ z)

δ23 =
(E6z+E5)

(ζ 2−a2)
(a2 coshζ z+a3 sinhζ z)

δ24 =
2ζ E6

(ζ 2−a2)2 (a3 coshζ z+a2 sinhζ z)

δ25 =
(E5m +E6mzm)

(δ 2
m−a2

m)
(a4 coshδmzm +a5 sinhδmzm)

δ26 =
2E6mδm

(δ 2
m−a2

m)
2 (a5 coshδmzm +a4 sinhδmzm),

E5 = R∗I −2,E6 = 2(1−R∗I ),
E5m =−2−R∗Im,E6m = 2(1−R∗Im)

c9 = c11T̂ +∆32−∆33,c10 =
1
a (c12am +∆34−∆35),

c11 =
∆36∆41−∆38∆40

∆39∆36 +∆37∆40
,c12 =

∆41∆37 +∆39∆38

∆40∆37 +∆36∆39
,

∆31 =−[δ27 +δ28 +δ29 +δ30],

δ27 =
δ (E6 +E5)

(δ 2−a2)
(a1 coshδ + sinhδ ),

δ28 = [
E6

(δ 2−a2)
− 2δ 2E6

(δ 2−a2)2 ](coshδ +a1 sinhδ ),

δ29 =
ζ (E6 +E5)

(ζ 2−a2)
(a3 coshζ +a2 sinhζ ),

δ30 = [
E6

(ζ 2−a2)

2ζ 2E6

(ζ 2−a2)2 ](a2 coshζ +a3 sinhζ ),

∆32 = T̂ [
E5ma4

(δ 2
m−a2

m)
− 2E6mδma5

(δ 2
m−a2

m)
2 ],

∆33 =
E5

(δ 2−a2)
− 2δa1E6

(δ 2−a2)2 +
a2E5

(ζ 2−a2)
− 2ζ a3E6

(ζ 2−a2)2 ,

∆34 = [
E6m

(δ 2
m−a2

m)
− 2δ 2

mE6m

(δ 2
m−a2

m)
2 ]a4 +

a5E5m

(δ 2
m−a2

m)

∆35 =
E5δa1 +E6

(δ 2−a2)
− 2E6δ 2

(δ 2−a2)2 +∆350

∆350 =
E5ζ a3 +E6a2

(ζ 2−a2)
− 2a2E6ζ 2

(ζ 2−a2)2 ,

∆36 = am cosham,∆37 = am sinham,

∆38 =−[
E6m

(δ 2
m−a2

m)
− 2δ 2

mE6m

(δ 2
m−a2

m)
2 ]∆160−∆380

∆380 =
δm(E5m−E6m)

(δ 2
m−a2

m)
(a5 coshδm−a4 sinhδm),

∆39 = aT̂ sinha,∆40 = am cosha,
∆41 = ∆31−a(∆32−∆33)sinha− (∆34−∆35)cosha
From the boundary condition (3.1), the thermal Marangoni
number for inverted parabolic temperature profile is as follows

M3 =
−Λ1

a2(c9 cosha+ c10 sinha+Λ6 +Λ7)
(4.14)

where

Λ6 =
(E6 +E5)

(δ 2−a2)
(coshδ +a1 sinhδ )−∆46

∆46 =
2δE6

(δ 2−a2)2 (a1 coshδ + sinhδ )

Λ7 =
(E6 +E5)

(ζ 2−a2)
(a2 coshζ +a3 sinhζ )−∆47

∆47 =
2ζ E6

(ζ 2−a2)2 (a3 coshζ +a2 sinhζ )

5. Results and Discussion

The thermal Marangoni number M is obtained as an ex-
pression of the depth ratio d̂ , the horizontal wave numbers a
and am both for the fluid and porous layers, the porous param-
eter β , the thermal ratio T̂ , RI and RIm the internal Rayleigh
numbers for the fluid and porous layers and the Chandrasekhar
number Q. This thermal Marangoni number M is drawn ver-
sus the depth ratio d̂. From the graphs it is evident that, for
smaller values of d̂, the thermal Marangoni number M re-
mains constant and then increases as the values of depth ratio
is further increased. The effects of the horizontal wave num-
ber a, the porous parameter β , the Chandrasekhar number Q,
RI internal Rayleigh number and the thermal ratio T̂ on the
thermal Marangoni are displayed in the following figures for
other fixed parameters.
Fig.1 exhibits the effects of the horizontal wave number a
on the values of thermal Marangoni number M for the fixed
parameters Q = 50,a = 1.0,ε = 1,β = 0.1, T̂ = 1.5,RI =−3
and RIm = 1. The values of a are 0.9,1.0 and 1.1 . From the
figure it is clear that for a fixed depth ratio, increase in the
values of a, decreases the thermal Marangoni number. Hence
the system becomes stable by decreasing the horizontal wave
number. Similar effects are observed for all the three profiles,
i.e., for linear, parabolic and inverted parabolic profiles.

Fig.2 depicts the effects of β , the porous parameter on the
thermal Marangoni number and it is for β = 0.1,0.2 and 0.3.
The curves are diverging, which indicates that the effect of the
porous parameter is dominant for larger values of d̂, i.e., the
effect of porous parameter is prominent for the porous layer
dominant systems and for a fixed values of d̂, the increase in
the value of β , shows the increase in the Marangoni number.
Hence the system can be stabilized by increasing the value of
β . Though there is more window for the fluid, the system still
remains stabilized, this may be due to presence of magnetic
field.

The effects of Chandrasekhar number Q is displayed in Fig.3
for the linear, parabolic and inverted parabolic temperature
profiles. The values of Q taken are 50,60 and 70. The curves
are for all the three profiles are slightly diverging indicating
the prominence of Q for larger depth ratio values i.e., for
porous layer dominant system. For a fixed depth ratio, the
increase in the value of Q increases the thermal Marangoni
number, hence the Darcy- Benard-Magneto-Marangoni con-
vection can be advanced by decreasing the values of Q and
hence the system can be destabilized.

The effect of internal Rayleigh number RI on the Marangoni
number is similar for all the three temperature profiles de-
picted the Fig. 4 for RI =−3,−4 and −5. Decreasing the val-
ues of RI , the Marangoni number increases, hence the Darcy-
Benard-Magneto-Marangoni convection can be delayed by
decreasing the values of RI . Hence the heat absorption makes
the system stable.
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(a) (b) (c)
Figure 1. Effects of horizontal wavenumber a

(a) (b) (c)
Figure 2. Effects of porous parameter β

(a) (b) (c)
Figure 3. Effects of Chandrasekhar number Q
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convection in composite layer horizontally enclosed by adiabatic boundaries — 380/382

(a) (b) (c)
Figure 4. Effects of internal Rayleigh number RI

(a) (b) (c)
Figure 5. Effects of thermal ratio T̂
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The effects of thermal ratio T̂ on the thermal Marangoni num-
ber is shown in the Fig.5 for all three temperature profiles.
The curves are diverging slightly for larger values of depth
ratio, which indicates that the effect of T̂ is effective only
for the larger values of d̂ and the increase in the value of T̂
increases the Marangoni number M hence, the system can be
stabilized by decreasing the value of T̂ .

6. Conclusion
Following conclusions are drawn from this study

• By decreasing the values of horizontal wavenumber a
and the internal Rayleigh numbers RI , one can delay
the Darcy-Benard-Magneto-Marangoni convection.

• By decreasing the values of porous parameter β , the
Chandrasekhar number Q and the thermal ratio T̂ , one
can advance Darcy-Benard-Magneto-Marangoni con-
vection.

• There is no effect of internal Rayleigh number RIm on
the Darcy-Benard-Magneto-Marangoni convection.

• The parameters β , Q and T̂ play an important role for
the porous layer dominant composite layer.

• The inverted parabolic temperature gradient is the highly
stable of all the three gradients.

• The effects of the physical parameters is similar for all
the three temperature gradients.
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