Global nonexistence of solutions for a system of viscoelastic wave equations with weak damping terms

Print   Print  

Authors :

Erhan Piskin

Author Address :

Dicle University, Department of Mathematics, 21280 Diyarbakır, Turkey.

Abstract :

This paper deals with the initial boundary value problem for the viscoelastic wave equations
egin{equation*}
left{
egin{array}{c}
u_{tt}-igtriangleup u+int olimits_{0}^{t}g_{1}left( t- au ight)
igtriangleup uleft( au ight) d au +u_{t}=f_{1}left( u,v ight) , \
v_{tt}-igtriangleup v+int olimits_{0}^{t}g_{2}left( t- au ight)
igtriangleup vleft( au ight) d au +v_{t}=f_{2}left( u,v ight)%
end{array}%
ight.
end{equation*}%
in a bounded domain. We obtain the global nonexistence of solutions by applying a lemma due to Y. Zhou [Global existence and nonexistence for a nonliear wave equation with damping and source terms, Math. Nacht, 278 (2005) 1341--1358].

Keywords :

Global nonexistence, viscoelastic wave equation.

DOI :

Article Info :

Received : June 26, 2014; Accepted : February 03, 2015.