On 3-Dissection property

Print   Print  

Authors :

M. P. Chaudharya,*  and  Salahuddinb

Author Address :

aInternational Scientific Research and Welfare Organization, New Delhi, India.

bP.D.M College of Engineering, Bahadurgarh, Haryana, India.

*Corresponding author.

Abstract :

The purpose of this paper is to derive 3- dissection for $(q^{2};q^{2})^{-1}_{infty}(q^{4};q^{4})^{-1}_{infty}$,~ $(q^{3};q^{3})^{-1}_{infty}(q^{6};q^{6})^{-1}_{infty}$ and linebreak $(q^{frac{1}{3}};q^{frac{1}{3}})^{-1}_{infty}(q^{frac{2}{3}};q^{frac{2}{3}})^{-1}_{infty}$.

Keywords :

Partition functions, Generating functions.

DOI :

Article Info :

Received : January 25, 2014; Accepted : February 15, 2014.