Ideals and IWI-ideals of residuated lattice Wajsberg algebras

A. Ibrahim and R. Shanmugapriya

Abstract
In this paper, we study WI-ideal of residuated lattice Wajsberg algebra and investigate some of their properties. Also, we announce the concept of implicative WI-ideal (IWI-ideal) of residuated lattice Wajsberg algebra. Further, we inspect some of its characterizations and attain some properties of residuated lattice H-Wajsberg algebra.

Keywords
Wajsberg algebra; Lattice Wajsberg algebra; Residuated lattice Wajsberg algebra; Residuated lattice H-Wajsberg algebra; WI-ideal; Lattice ideal; Ideal; Implicative WI-ideal.

AMS Subject Classification
03B60, 06B10, 06B20.

1,2 PG and Research Department of Mathematics, H.H. The Rajah's College, Pudukkottai–622001, Tamil Nadu, India.
2 Research Scholar, PG and Research Department of Mathematics, H.H. The Rajah's College, Pudukkottai–622 001, Tamil Nadu, India.
1,2 Affiliated to Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India.

*Corresponding author: ibrahimaadhil@yahoo.com; priyasanmu@gmail.com

Article History: Received 11 July 2020; Accepted 25 September 2020

©2020 MJM.

Contents
1 Introduction .. 1665
2 Preliminaries .. 1665
3 Main Results .. 1667
3.1 Properties of ideals of residuated lattice Wajsberg algebras ... 1667
3.2 Properties of IWI-ideal of residuated lattice Wajsberg algebras .. 1668
4 Conclusion .. 1669
References .. 1669

1. Introduction

Mordchaj Wajsberg [1] introduced the concept of Wajsberg algebras in 1935 and studied by Font, Rodriguez and Torrens [2]. Residuated lattices were announced by Ward and Dilworth [3]. Ibrahim and Shajitha Begum [4] and [5] introduced the notions of Wajsberg implicative ideal (WI-ideal), ideals and implicative WI-ideals of lattice Wajsberg algebras and also investigated their properties with suitable illustrations. The authors [6],[7] and [8] introduced the notion of Wajsberg implicative ideal (WI-ideal) and Fuzzy Wajsberg Implicative ideal (FWI-ideal) of residuated lattice Wajsberg algebras.

In this paper, we consider ideal of residuated lattice Wajsberg algebra and investigate some related properties. Also, we introduce the notion of IWI-ideal of residuated lattice Wajsberg algebra. Further, we investigate some of its characterizations and obtain some properties of residuated lattice H-Wajsberg algebra.

2. Preliminaries

In this section, we recall some basic definitions and properties which are helpful to develop our main results.

Definition 2.1 ([2]). Let \(\mathcal{R}, \to, \ast, 1 \) be an algebra with a binary operation \("\to" \) and a quasi complement \("\ast" \) is called a Wajsberg algebra. Then if it satisfied the following axioms for all \(x,y,z \in \mathcal{R} \),

\((i) \quad 1 \to x = x \)
\((ii) \quad (x \to y) \to y = ((y \to z) \to (x \to z)) = 1 \)
\((iii) \quad (x \to y) \to y = (y \to x) \to x \)
\((iv) \quad (x^\ast \to y^\ast) \to (y \to x) = 1 \).

Definition 2.2 ([2]). A Wajsberg algebra \(\mathcal{R}, \to, \ast, 1 \) satisfied the following axioms for all \(x,y,z \in \mathcal{R} \),

\((i) \quad x \to x = 1 \)
(ii) If \((x \to y) = (y \to x) = 1\) then \(x = y\)

(iii) \(x \to 1 = 1\)

(iv) \((x \to (y \to x)) = 1\)

(v) If \((x \to y) = (y \to z) = 1\) then \(x \to z = 1\)

(vi) \((x \to y) \to ((z \to x) \to (z \to y)) = 1\)

(vii) \(x \to (y \to z) = y \to (x \to z)\)

(viii) \(x \to 0 = x \to 1^\ast = x^\ast\)

(ix) \((x^\ast)^\ast = x\)

(x) \((x^\ast \to y^\ast) = y \to x\).

Definition 2.3 ([2]). A Wajsberg algebra \(R\) is called a lattice Wajsberg algebra, if it satisfied the following conditions for all \(x, y, z \in R\),

(i) The partial ordering \(\leq\) on a lattice Wajsberg algebra, such that \(x \leq y\) if and only if \(x \to y = 1\)

(ii) \(x \lor y = (x \to y) \to y\)

(iii) \(x \land y = ((x^\ast \to y^\ast) \to y^\ast)^\ast\).

Thus, \((R, \lor, \land, \ast, 0, 1)\) is a lattice Wajsberg algebra with lower bound 0 and upper bound 1.

Proposition 2.4 ([2]). A lattice Wajsberg algebra \((R, \to, \ast, 1)\) satisfied the following axioms for all \(x, y, z \in R\),

(i) If \(x \leq y\) then \(x \to z \geq y \to z\) and \(z \to x \leq z \to y\)

(ii) \(x \leq y \to z\) if and only if \(y \leq x \to z\)

(iii) \((x \land y)^\ast = (x^\ast \land y^\ast)\)

(iv) \((x \land y)^\ast = (x^\ast \lor y^\ast)\)

(v) \((x \lor y) \to z = (x \to z) \land (y \to z)\)

(vi) \(x \to (y \land z) = (x \to y) \land (x \to z)\)

(vii) \((x \to y) \lor (y \to x) = 1\)

(viii) \(x \to (y \lor z) = (x \to y) \lor (x \to z)\)

(ix) \((x \land y) \to z = (x \to z) \lor (y \to z)\)

(x) \((x \land y) \lor z = (x \lor z) \land (y \lor z)\)

(xi) \((x \land y) \to z = (x \to y) \to (x \to z)\).

Definition 2.5 ([3]). A residuated lattice \((R, \lor, \land, \ast, 0, 1)\) satisfied the following conditions for all \(x, y, z \in R\),

(i) \((R, \lor, \land, 0, 1)\) is a bounded lattice

(ii) \((R, \ast, 1)\) is commutative monoid

(iii) \(x \land y \leq z\) if and only if \(x \leq y \to z\).

Proposition 2.6 ([3]). Let \((R, \lor, \land, \ast, 0, 1)\) be a residuated lattice. Then the following are satisfied for all \(x, y, z \in R\),

(i) \((x \land y) \to z = x \to (y \to z)\)

(ii) \((x \land y) \lor z = x \lor (y \lor z)\)

(iii) \(x \land y = y \land x\).

Definition 2.7 ([2]). Let \((R, \lor, \land, \ast, 0, 1)\) be a lattice Wajsberg algebra. If a binary operation \(\ast\) on \(R\) satisfied \(x \ast y = (x \to y)^\ast\) for all \(x, y \in R\). Then \((R, \lor, \land, \ast, 0, 1)\) is called a residuated lattice Wajsberg algebra.

Definition 2.8 ([5]). The lattice Wajsberg algebra \(R\) is called a lattice \(H\)-Wajsberg algebra, if it satisfied \(x \lor y \lor ((x \land y) \to z) = 1\) for all \(x, y, z \in R\).

In a lattice \(H\)-Wajsberg algebra \(R\), the following are hold:

(i) \(x \to (x \to y) = (x \to y)\)

(ii) \(x \to (y \to z) = (x \to y) \to (x \to z)\).

Definition 2.9 ([7]). The residuated lattice Wajsberg algebra \(R\) is called a residuated lattice \(H\)-Wajsberg algebra if it satisfied \(x \lor y \lor ((x \land y) \to z) = 1\) for all \(x, y, z \in R\).

In a residuated lattice \(H\)-Wajsberg algebra \(R\), the following are hold:

(i) \(x \land y \in R\)

(ii) \((x \land y) \to (x \to y) = (x \land y)\)

(iii) \((x \land y) \lor (x \land z) \to (x \to z) = (x \land y) \to (x \to z)\), for all \(x, y, z \in R\).

Proposition 2.10 ([5]). Let \(R\) is a lattice \(H\)-Wajsberg algebra, then the following equality are hold

\[(x \to y)^\ast \to z = (x \to z)^\ast \to (y \to z)^\ast\] for all \(x, y, z \in R\).

Definition 2.11 ([2]). Let \(I\) be a non-empty subset of a lattice Wajsberg algebra \(R\). Then \(I\) is called a WI-ideal \(R\), if satisfied for all \(x, y \in R\),

(i) \(0 \in I\)

(ii) \((x \to y)^\ast \in I\) and \(y \in I\) imply \(x \in I\).

Definition 2.12 ([6]). Let \(I\) be a non-empty subset of a residuated lattice Wajsberg algebras \(R\). Then \(I\) is called a WI-ideal \(R\), if it satisfied the following for all \(x, y \in R\),

(i) \(0 \in I\)

(ii) \(x \land y \in I\) and \(y \in I\) imply \(x \in I\)

(iii) \((x \to y)^\ast \in I\) and \(y \in I\) imply \(x \in I\).

Definition 2.13 ([2]). Let \(R\) be a lattice. An ideal \(I\) of \(R\) is a nonempty subset of \(R\) is called a lattice ideal, if it satisfied the following axioms for all \(x, y \in R\),
Proof. Let \(T \) be an ideal of \(\mathcal{R} \). From (ii) of Definition 2.15 shows that \(T \) satisfies (i) of Definition 2.13. Now, \[
(x \lor y)^* \otimes y = ([((x \to y) \to y)^* \to y^*)^*]
\]
From (ii) of Definition 2.3
\[
= [y \to ((x \to y) \to y)]^*[From (ii) of Definition 2.2]
\]
\[
= [y \to ((y \to x) \to x)]^*[From (ii) of Definition 2.1]
\]
\[
= [(y \to (y \lor x))^*][From (ii) of Definition 2.3]
\]
\[
= ([((y \to y) \to (y \to x)) \to (y \to x))]^* [From (ii) of Definition 2.3]
\]
\[
= ([y \to (y \to (y \to x))] \to (y \to x))^* [From (ii) of Proposition 2.4]
\]
\[
= ([y \to (y \to x)] \to (y \to x))^* [From (i) of Definition 2.3]
\]
\[
= (y \to (y \to x))^* \to (y \to x)^* [From (ii) of Proposition 2.4]
\]
\[
= (y \to x) \to [(y \to y) \to (y \to x)] [From (x) of Definition 2.2]
\]
\[
= T \subseteq T[From (iv) of Definition 2.2]
\]
And
\[
(x \lor y)^* \to y = (((x \to y) \to y)^* \to y)
\]
From (i) of Definition 2.3
\[
= ([y \to ((x \to y) \to y)]^* \to y)
\]
\[
= (y^* \to (y^* \to x^*)) \to y
\]
\[
= [(y^* \to (y^* \to x^*)) \to y][From (iii) of Definition 2.1]
\]
\[
= ([x^\land y^*] \to y)[From (iii) of Definition 2.3]
\]
\[
= (x^\lor y^*) \to y)[From (iv) of Proposition 2.4]
\]
\[
= (x^* \to y) \land (y^* \to y)[From (v) of Proposition 2.4]
\]
\[
= x^* \to y \in T.
\]
Thus, we get
\[
(x \lor y)^* \otimes y = 1 \in T, (x \lor y)^* \to y = x^* \to y \in T.
\]
Since \(T \) is an ideal, \[
(x \lor y)^* \otimes y \in T, (x \lor y)^* \to y \in T
\]
imply \(x \lor y \in T \) and \(y \in T \). From Definition 2.13, we have \(T \) is a lattice ideal.

Example 3.4. Consider a set \(\mathcal{R} = \{0, p, q, r, x, y, z, 1\} \). Define

Table 1. Complement

<table>
<thead>
<tr>
<th>x</th>
<th>x^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>p</td>
<td>x</td>
</tr>
<tr>
<td>q</td>
<td>y</td>
</tr>
<tr>
<td>r</td>
<td>z</td>
</tr>
<tr>
<td>x</td>
<td>p</td>
</tr>
<tr>
<td>y</td>
<td>q</td>
</tr>
<tr>
<td>z</td>
<td>r</td>
</tr>
<tr>
<td>l</td>
<td>0</td>
</tr>
</tbody>
</table>

Then, a partial ordering “\(\leq \)” on \(\mathcal{R} \), such that \(0 \leq a \leq b \leq c \leq 1 \)
Table 2. Implication

<table>
<thead>
<tr>
<th>→ 0</th>
<th>p</th>
<th>q</th>
<th>r</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>p</td>
<td>x</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>q</td>
<td>y</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>r</td>
<td>z</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>x</td>
<td>p</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>y</td>
<td>q</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>z</td>
<td>r</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td>p</td>
<td>q</td>
<td>r</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
</tbody>
</table>

\(\Rightarrow (x \otimes y) \rightarrow y \in T, (x \rightarrow y)^* \rightarrow y \in T. \)

Therefore, \(x \otimes y \in T, (x \rightarrow y)^* \in T \) and \(y \in T \) imply \(x \in T. \)

Hence, we get \(T \) is a WI-ideal. \(\square \)

3.2 Properties of IWI-ideal of residuated lattice Wajsberg algebras

In this section, we introduce the concept of implicative WI-ideal \((\text{IWI-ideal})\) of residuated lattice Wajsberg algebra and we find some of its properties with illustrations.

Definition 3.7. Let \(I \) be a non-empty subset of residuated lattice wajsberg algebra \(\mathcal{A} \). Then, \(I \) is said to be a WI-IW idealf of \(\mathcal{A} \), if it satisfies the following axioms for all \(x, y \in \mathcal{A} \):

(i) \(0 \in I \)

(ii) \(y \otimes z \in I \) and \(((x \otimes y) \otimes z) \in I \) imply \(x \otimes z \in I \)

(iii) \((y \rightarrow z)^* \in I \) and \(((x \rightarrow y)^* \rightarrow z^*) \) imply \((x \rightarrow z)^* \).

Proposition 3.8. If \(I \) is a IWI-IW -ideal of residuated lattice Wajsberg algebra \(\mathcal{A} \) then \(I \) is a WI -ideal of \(\mathcal{A} \).

Proof. Let \(I \) be a IWI-ideal of \(\mathcal{A} \), then \(0 \in I, y \otimes z \in I \) (\(y \rightarrow z)^* \in I \) and \((x \otimes y) \otimes z) \in I \) imply \(x \otimes z \in I \), \((x \rightarrow y)^* \rightarrow z^* \) \(\in I \). If \(y \in I \) and \(x \otimes y \in I \), \((x \rightarrow y)^* \in I \) for all \(x, y \in \mathcal{A} \), we have \(y \otimes 0 = (y \rightarrow 0)^* = (y \rightarrow 0)^* = 1^* = 0 \in I \) [From Definition 2.8]

\(y \rightarrow 0)^* = (y^*)^* = y \in I \) [From(ii) of Definition 2.9].

Now, \((x \otimes y) \otimes z = ((x \rightarrow y)^* \rightarrow 0)^* \) [From Definition 2.8]
\(= ((x \rightarrow x)^* \rightarrow 1)^* = (1^* \rightarrow 1)^* = (0 \rightarrow 1)^* = 1^* = 0 \in I \)

and
\(((x \rightarrow y)^* \rightarrow 0)^* = (((x \rightarrow y)^*)^*)^* = (x \rightarrow y)^* \in I \) [From(ii) of Definition 2.9].

Since \(I \) is a IWI-ideal of \(\mathcal{A} \). Which follows that \(x = (x^*)^* = x \otimes 0 = (x \rightarrow 0)^* = (x \rightarrow 1)^* = 1^* = 0 \in I \),
[From Definition 2.8]
\(x = (x^*)^* = (x \rightarrow 0)^* = y^* = x \in I \). [From(ii) of Definition 2.9].

Hence, \(I \) is a WI-IW -ideal of \(\mathcal{A} \). \(\square \)

Example 3.9. Consider a set \(\mathcal{A} = \{0, p, q, r, s, t, 1\} \). Define a partial ordering \("\leq" \) on \(\mathcal{A} \), such that \(0 \leq a \leq b \leq c \leq d \leq 1 \) with a binary operations \(\otimes \) and \(\rightarrow \) and a quasi complement \("*" \) on \(\mathcal{A} \) as in following tables 3 and 4.

Define \(\vee \) and \(\wedge \) operations on \(\mathcal{A} \) as follows:
\((x \vee y) = (x \rightarrow y) \rightarrow y \)
\((x \wedge y) = (x^* \rightarrow y^*) \rightarrow (y \otimes x)^* \)

for all \(x, y \in \mathcal{A} \). Then, \(\mathcal{A} \) is a residuated lattice Wajsberg algebra. It is easy to verify that, \(I_2 = \{0, q, s, 1\} \) is a WI-IW -ideal of \(\mathcal{A} \).
Table 3. Complement

<table>
<thead>
<tr>
<th>x</th>
<th>x^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>p</td>
<td>s</td>
</tr>
<tr>
<td>q</td>
<td>r</td>
</tr>
<tr>
<td>s</td>
<td>q</td>
</tr>
<tr>
<td>t</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4. Complement

<table>
<thead>
<tr>
<th>x</th>
<th>p</th>
<th>q</th>
<th>r</th>
<th>s</th>
<th>t</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>p</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>q</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>r</td>
<td>q</td>
<td>q</td>
<td>q</td>
<td>q</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>s</td>
<td>q</td>
<td>q</td>
<td>q</td>
<td>q</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>t</td>
<td>0</td>
<td>q</td>
<td>q</td>
<td>s</td>
<td>s</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>p</td>
<td>q</td>
<td>r</td>
<td>s</td>
<td>t</td>
</tr>
</tbody>
</table>

Proposition 3.10. Every WI-ideal of a residuated lattice H-Wajsberg algebra is a IWI-ideal of \mathcal{R}.

Proof. Let \mathcal{R} be a residuated lattice H-Wajsberg algebra and let I be a WI-ideal of \mathcal{R} for all $x, y, z \in \mathcal{R}$. Then we have

$$y \otimes z, (x \otimes y) \otimes z \in I, (y \rightarrow z)^*, ((x \rightarrow y)^* \rightarrow z)^* \in I$$

and

$$((x \rightarrow z)^* \rightarrow (y \rightarrow z)^*)^* = ((x \rightarrow y)^* \rightarrow z)^* \in I$$

[From Proposition 2.6]

Since I is a WI-ideal of \mathcal{R}, $(x \rightarrow z)^* \in I$ hence, I is a IWI-ideal of \mathcal{R}. □

Proposition 3.11. If \mathcal{R} is a residuated lattice H-Wajsberg algebra if and only if every WI-ideal of \mathcal{R} is a IWI-ideal of \mathcal{R}.

Proof. We can easily prove from Proposition 3.10. □

Proposition 3.12. Let \mathcal{R} be a residuated lattice Wajsberg algebra and I be a subset of A. Define $I^* = \{x^* / x \in I\}$ is a IWI-ideal of \mathcal{R} if and only if I^* is an implicative filter of \mathcal{R}.

Proof. Let I be a IWI-ideal of \mathcal{R}, then $1 = 0^* \in I^*$, since $0 \in I$ for all $x, y, z \in \mathcal{R}$. If $x \otimes y, x \rightarrow y$ and $x \otimes (y \otimes z), x \rightarrow (y \rightarrow z) \in I^*$, then we have

$$(x \otimes y)^* = x \otimes y \in I, y^* = y \in I$$

and

$$(z^* \otimes (y^*)^*) = (z \otimes x) \otimes y = (x \otimes y) \otimes z \otimes x = x \otimes y \in I$$

[From (ii) of Proposition 2.6]

$$(z^* \otimes x^*) = (z \otimes x) \otimes y = (x \otimes y) \otimes z \otimes x = x \otimes y \in I$$

[From (ii) of Proposition 2.6]

$$(z^* \otimes y^*) = (z \otimes x) \otimes y = (x \otimes y) \otimes z \otimes x = x \otimes y \in I$$

[From (ii) of Proposition 2.6]

Thus, I^* is an implicative filter of \mathcal{R}, equivalently $(x \otimes z) \in I^*$, $(x \rightarrow z)^* \in I^*$. Therefore, I is a IWI-ideal of \mathcal{R}. □

4. Conclusion

In this paper, we have studied WI-ideal of residuated lattice Wajsberg algebra and investigated some of their properties. Also, we have announced the concept of implicative WI-ideal (IWI-ideal) of residuated lattice Wajsberg algebra. Further, we have inspected some of its characterizations and attained some properties of residuated lattice H-Wajsberg algebra.

References

ISSN(P):2319 – 3786
Malaya Journal of Matematik
ISSN(O):2321 – 5666
