Introduction of color class dominating sets in graphs

A. Vijayalekshmi¹* and A. E. Prabha²

Abstract
Let G = (V, E) be a graph. In this paper, we define a new graph parameter called color class domination number of G. A color class dominating set of G is a proper coloring χ of G with the extra property that every color class in χ is dominated by a vertex in G. A color class dominating set is said to be a minimal color class dominating set if no proper subset of χ is a color class dominating set of G. The color class domination number of G is the minimum cardinality taken over all minimal color class dominating sets of G and is denoted by γ_c(G). Here we also obtain γ_c(G) for Path graph, Cycle graph, Helm graph, Flower graph, Sunflower graph, Gear graph and Sunlet graph.

Keywords
Chromatic number, Domination number, Color class Dominating set, Color class domination number.

AMS Subject Classification
05C15, 05C69.

Contents
1 Introduction .. 2186
2 Main Results .. 2187
References .. 2189

1. Introduction

All graphs considered in this paper are finite, undirected graphs and we follow standard definitions of graph theory as found in [3].

Let G = (V, E) be a graph of order p. The open neighborhood N(v) of a vertex v ∈ V(G) consists of the set of all vertices adjacent to v. The closed neighborhood of v is N[v] = N(v) ∪ {v}. For a set S ⊆ V, the open neighborhood N(S) is defined to be ∪v∈SN(v) and the closed neighborhood of S is N[S] = N(S) ∪ S. For any set H of vertices of G, the induced sub graph <H> is the maximal sub graph of G with vertex set H.

A subset S of V is called a dominating set if every vertex in V − S is adjacent to some vertex in S. A dominating set is a minimal dominating set if no proper subset of S is a dominating set of G. The domination number γ(G) is the minimum cardinality taken over all minimal dominating sets of G. A γ-set is any minimal dominating set with cardinality γ. A proper coloring of G is an assignment of colors to the vertices of G such that adjacent vertices have different colors. The smallest number of colors for which there exists a proper coloring of G is called chromatic number of G and is denoted by χ(G).

The join G₁ + G₂ of Graphs G₁ and G₂ with disjoint vertex sets V₁ and V₂ and edge sets E₁ and E₂ is the graph union G₁ ∪ G₂ together with each vertex in V₁ is adjacent to every vertices in V₂. A path on n vertices denoted by Pₙ, is a connected graph with all but two vertices have degree 2 and V(Pₙ) = {vᵢ/1 ≤ i ≤ n} with vᵢvᵢ₊₁ ∈ E(Pₙ) for i < n. A cycle graph is a graph on n ≥ 3 vertices containing a single cycle through all vertices and is denoted by Cₙ. The Complete graph Kₙ has every pair of p vertices adjacent. A wheel graph on n + 1 vertices is denoted by W₁,n = K₁ + Cₙ. The helm graph Hₙ is the graph obtained from a wheel graph W₁,n by adjoining a pendant edge at each vertex of the cycle Cₙ. The flower graph Fₙm is the graph obtained from a helm graph by joining each pendant vertex to the central vertex of the helm. The Sunflower graph Sfₙ is the resultant graph obtained from the flower graph of wheel W₁,n by adding pendant edges to the
A color class dominating set is said to be a minimal color wheel graph. Let G be a graph of order n or γ_C is a proper coloring of G. Then for each color class \mathcal{C} is dominated by a vertex in G. A color class dominating set is said to be a minimal color class dominating set if no proper subset of \mathcal{C} is a color class dominating set of G. The color class dominating number of G is the minimum cardinality taken over all minimal color class dominating sets of G and is denoted by $\gamma_{\mathcal{C}}(G)$. This concept is illustrated by the following example.

Theorem 2.2. Let G be a graph of order p without isolated vertices. Then

(i) $\chi(G) \leq \gamma_{\mathcal{C}}(G)$

(ii) $\max\{\chi(G), \gamma(G)\} \leq \gamma_{\mathcal{C}}(G) \leq p$.

Proof. Since $\gamma_{\mathcal{C}}$-coloring of G is a proper coloring, $\chi(G) \leq \gamma_{\mathcal{C}}(G)$. Now, let $\gamma_{\mathcal{C}}$ be a $\gamma_{\mathcal{C}}$-coloring of G. Then for each color class \mathcal{C}_i, $1 \leq i \leq \gamma_{\mathcal{C}}(G)$, there exist a vertex $v_i \in V$ such that \mathcal{C}_i is dominated by v_i. Let $S = \{v_1, v_2, \ldots, v_{\gamma_{\mathcal{C}}(G)}\}$, where $v_i \in \mathcal{C}_i$, $1 \leq i \leq \gamma_{\mathcal{C}}(G)$. Now, we have to show that S is a γ-set. Let $y \in V - S$. Then $y \in \mathcal{C}_i$ for some i, $1 \leq i \leq \gamma_{\mathcal{C}}(G)$. By the definition of $\gamma_{\mathcal{C}}$-coloring of G, y is adjacent to the vertex v_i of S. Then S is a γ-set. Therefore $\gamma(G) \leq \gamma_{\mathcal{C}}(G)$. Since G is a graph of order p, G can be colored with at most p colors. Hence, $\max\{\chi(G), \gamma(G)\} \leq \gamma_{\mathcal{C}}(G) \leq p$.

Proposition 2.3. For the Wheel graph $W_{1,n}$, $n \geq 3$,

$$\gamma_{\mathcal{C}}(W_{1,n}) = \begin{cases} 3 & \text{if } n \text{ is even} \\ 4 & \text{if } n \text{ is odd} \end{cases}$$

Theorem 2.4. Let G be P_n or C_n. Then for $n > 3$,

$$\gamma_{\mathcal{C}}(P_n) = \gamma_{\mathcal{C}}(C_n) = \begin{cases} 2 & \text{if } n \equiv 0 \pmod{4} \\ n/2 + 1 & \text{if } n \equiv 2 \pmod{4} \\ n/2 + 3 & \text{if } n \equiv 1, 3 \pmod{4} \end{cases}$$

Proof. Let $V(P_n) = \{v_i \mid 1 \leq i \leq n\}$ and $v_iv_{i+1} \in E(P_n)$ for $i < n$. Let $n > 4$. Let \mathcal{C} be a $\gamma_{\mathcal{C}}$-coloring of P_n. We consider three cases.

Case (i): $n \equiv 0 \pmod{4}$. For $1, 2, \ldots, n/4$, let $H_i = < v_{4i-3}, v_{4i-2}, v_{4i-1}, v_{4i}>$ be the vertex induced sub graph of P_n. Then for each $i, 1 \leq i \leq n/4$, assign two distinct colors, say, $2i-1, 2i$ to the vertices $v_{4i-3}, v_{4i-2}, v_{4i-1}$, and v_{4i} respectively. Assign color $i + 1$ to the central vertex. Case (ii): $n \equiv 2 \pmod{4}$. Since $n - 2 \equiv 0 \pmod{4}$, P_{n-2} is obtained from P_{n-2} followed by P_2. So $\gamma_{\mathcal{C}}(P_n) = \gamma_{\mathcal{C}}(P_{n-2}) + \gamma_{\mathcal{C}}(P_2) = n/2 + 1$.

Case (iii): $n \equiv 1, 3 \pmod{4}$. When $n \equiv 1 \pmod{4}$, since $n - 1 \equiv 0 \pmod{4}$, P_n is obtained from P_{n-1} followed by P_1. So $\gamma_{\mathcal{C}}(P_n) = \gamma_{\mathcal{C}}(P_{n-1}) + \gamma_{\mathcal{C}}(P_1) = [n/2] + 1$. When $n \equiv 3 \pmod{4}$, as above $\gamma_{\mathcal{C}}(P_n) = \gamma_{\mathcal{C}}(P_{n-3}) + \gamma_{\mathcal{C}}(P_3) = [n/2] + 1$. This $\gamma_{\mathcal{C}}$-coloring is true for C_n also.

Theorem 2.5. For the Helm graph $G = H_n$, $n \geq 3$, $\gamma_{\mathcal{C}}(H_n) = n$.

Proof. Let H_n be a helm graph with

$$V(H_n) = \{v\} \cup \{v_i/1 \leq i \leq n\} \cup \{u_i/1 \leq i \leq n\}.$$

Assign colors 1, 2 and n to the vertices $\{v, u_n\}, \{u_1, v_2, v_n\}$ and $\{v_{n-1}, v\}$ respectively. Assign color $i(3 \leq i \leq n - 1)$ to the vertices $\{v_i, u_{i-1}\}$. The color classes $\mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_n$ are dominated by v_n, v_1, v_{n-1} respectively. Also the color class $\mathcal{C}_3(3 \leq i \leq n - 1)$ dominated by the vertex v_{i-1}. Hence $\gamma_{\mathcal{C}}(H_n) = n$.

Example 2.6.
Theorem 2.7. (i) If G is a flower graph F_{ln}, $n \geq 3$, then $$\gamma_k(F_{ln}) = \begin{cases} 3 & \text{if } n \text{ is even} \\ 4 & \text{if } n \text{ is odd} \end{cases}$$

(ii) If G is a sunflower graph S_{fn}, $n \geq 3$, then $$\gamma_k(S_{fn}) = \begin{cases} 3 & \text{if } n \text{ is even} \\ 4 & \text{if } n \text{ is odd} \end{cases}$$

Proof. (i)
By the definition of flower graph, F_{ln} is obtained from a helm graph by joining each pendant vertex to the central vertex. Let $V(F_{ln}) = \{v_1, v_2, \ldots, v_{2n+1}\}$, where v_1 be the central vertex, $v_i(2 \leq i \leq n+1)$ be the vertices on the cycle C_n and $v_i(n+2 \leq i \leq 2n+1)$ be the vertices on the pendant edges of H_n such that $v_i(2 \leq i \leq n+1)$ is adjacent to v_{n+i} and v_1. We consider two cases:

Case (i): n is even. Let $C = \{C_1, C_2, C_3\}$ be a proper coloring of F_{ln} in which $C_1 = \{v_1\}$, $C_2 = \{v_2, v_4, v_6, \ldots, v_{n}\} \cup \{v_{n+3}, v_{n+5}, \ldots, v_{2n+1}\}$, $C_3 = \{v_3, v_5, \ldots, v_{n}\} \cup \{v_{n+2}, v_{n+4}, \ldots, v_{2n+1}\}$. Then the color class C_1 is dominated by the vertex v_2 and the color classes C_2 and C_3 are dominated by the vertex v_1. Therefore, the coloring C is a γ_k-coloring of F_{ln} and hence

$$\gamma_k(F_{ln}) = \begin{cases} 3 & \text{if } n \text{ is even} \\ 4 & \text{if } n \text{ is odd} \end{cases}$$

(ii)
Let G be a sunflower graph S_{fn}. Then G is a flower graph with pendant edges attached to the central vertex. As in Theorem (2.7(i)), we assign the same proper coloring of F_{ln} with color 2 to the pendant vertices $\{v_{2n+2}, v_{2n+3}, \ldots, v_{3n+1}\}$ and we get the γ_k-coloring of S_{fn}. Hence

$$\gamma_k(S_{fn}) = \begin{cases} 3 & \text{if } n \text{ is even} \\ 4 & \text{if } n \text{ is odd} \end{cases}$$

Theorem 2.8. The gear graph G_n has $\gamma_k(G_n) = \lceil \frac{n}{2} \rceil + 1$.

Proof. Let $V(G_n) = \{u\} \cup \{u_1, u_2, \ldots, u_n\} \cup \{v_1, v_2, \ldots, v_n\}$, where v is the central vertex and $\deg(u_i) = 3$ and $\deg(v_j) = 2, 1 \leq i \leq n$. Assign distinct colors say, $1, 2, 3 \leq i \leq \lceil \frac{n}{2} \rceil$ to the vertices $\{v_{2i-1}, v_{2i}\}$ respectively. Also assign distinct colors say, $\lceil \frac{n}{2} \rceil$ and $\lceil \frac{n}{2} \rceil + 1$ to the vertices $\{u_1, u_2, \ldots, u_{n}\}$ and $\{v, v_n\}$ when n is odd and $\{u_1, u_2, \ldots, u_n\}$ and $\{v, v_{n-1}, v_n\}$ when n is even respectively, we get a γ_k-coloring. Hence,

$$\gamma_k(G_n) = \lceil \frac{n}{2} \rceil + 1.$$

Example 2.9.

Theorem 2.10. The Sunlet graph SC_n has $\gamma_k(SC_n) = n$.

Proof. Let $V(SC_n) = \{u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_n\}$ with $\deg(u_i) = 3(1 \leq i \leq n)$ and $\deg(v_j) = 1(1 \leq i \leq n)$. We consider two cases:

Case (i). When n is even, assume color i, where $i = 1, 3, 5, \ldots, n-1$ to the vertices $\{u_i, v_{i+1}\}$ and color j, where $j = 2, 4, \ldots, n$ to the vertices $\{u_j, v_{j-1}\}$ respectively, we get the γ_k-coloring of SC_n.

Case (ii). When n is odd, assign colors $1, 2$ and n to the vertices $\{u_1, v_n\}, \{u_2, u_n, v_1\}$ and $\{v_{n-1}\}$ respectively. Also assign color $i(3 \leq i \leq n-1)$ to the vertices $\{u_i, v_{i-1}\}$, we get a γ_k-coloring. Thus $\gamma_k(SC_n) = n$.

\[\square\]
Example 2.11.

![Figure 6. n odd and n even](image)

References

ISSN(P):2319 – 3786
Malaya Journal of Matematik
ISSN(O):2321 – 5666
