

Operation on $\hat{\Omega}$ **-closed sets**

S.M. Meenarani^{1*}, K. Poorani^{2*} and M. Anbuchelvi³

Abstract

This work is based on operation in a topological space. An operation has been extended to the class of $\hat{\Omega}$ -open sets. The new class of $\gamma_{\hat{\Omega}}$ -open sets has been introduced and two kinds of closures such as, $\gamma_{\hat{\Omega}}Cl$ and $(\hat{\Omega}Cl)_{\gamma}$ are studied. Necessary basic properties have been derived. Moreover, $\hat{\Omega}$ -regular operation on $\hat{\Omega}O(X,\tau)$ has been introduced in which intersection of any two $\gamma_{\hat{\Omega}}$ -closed sets is $\gamma_{\hat{\Omega}}$ -closed. Also three types of separation axioms are defined and few results on them have been derived.

Keywords

 $\gamma_{\hat{\Omega}}$ -open set, $\gamma_{\hat{\Omega}}Cl$, $(\hat{\Omega}Cl)_{\gamma}$, $\hat{\Omega}$ -regular operation, $\hat{\Omega}$ -open operation, $\gamma_{\hat{\Omega}}$ - T_i spaces (i = 0, 1, 2).

AMS Subject Classification 54A05, 54A10, 54D10.

^{1,3} Department of Mathematics, V.V.Vanniaperumal College for Women, Virudhunagar-626001, Tamil Nadu, India.
 *Corresponding author: , ²kannapadaas@gmail.com
 Article History: Received 21 December 2018; Accepted 11 February 2019

Contents

1	Introduction7
2	Preliminaries7
3	Operation on $\hat{\Omega}O(X, \tau)$
4	Basic properties of Closures9
5	Separation axioms11
6	Conclusion 11
	References 11

1. Introduction

Generalized open sets play a vital role in research area of General Topology. Levine [7] introduced the concept of semiopen sets in topology. In 1987, Bhattacharyya and Lahiri [3] used semi-open sets to define the notion of semi-generalized closed sets. Kasahara [8] introduced the notion of an α operation approaches on a class τ of sets and studied the concept of α -continuous functions with α -closed graphs and α -compact spaces. Jankovic [5] introduced the concept of α closure of a set in X via α -operation and investigated further characterizations of a function with α -closed graph. Later Ogata [10] defined and studied the concept of γ -open sets and applied it to investigate operation-functions and operationseparation. Recently several researchers developed many concepts of operation γ in a space X. Krishnan, Gangster and Balachandran [9] introduced and studied the concept of the operation γ on the class of all semiopen sets of (X, τ) and

defined the notion of semi γ -open sets and investigated some of their properties. An, Cuong and Maki [1] defined and investigated an operation γ on the class of all preopen sets of (X, τ) and introduced the notion of pre- γ -open sets and developed some of their properties. Asaad [2] defined the notion of an operation γ on the class of generalized open sets in (X, τ) and studied some of its applications. Recently, the concept of $\hat{\Omega}$ -closed set was introduced and investigated by Lellis Thivagar et al. [6]. In this paper, the concept of an operation γ has been extended to the class of $\hat{\Omega}$ -open sets and it leads to the introduction of the notion of $\gamma_{\hat{\Omega}}$ -open sets on a topological spaces (X, τ) . Furthermore, some basic properties of $\gamma_{\hat{\Omega}}$ -Closures have been derived. In last Section, $\gamma_{\hat{\Omega}}$ - T_i spaces where $i \in \{0, 1, 2\}$ are introduced and investigated using the operation γ on $\tau_{\hat{\Omega}}$.

©2019 MJM.

2. Preliminaries

In this section, some definitions and results that are used in this work have been dealt. Throughout this paper, (X, τ) or X represents a topological space on which no separation axioms are assumed, unless otherwise mentioned.

Definition 2.1. [7] A subset A of a topological space (X, τ) is called a **semi-open** set if $A \subseteq cl(int(A))$. SO(X) denotes the set of all semi-open sets in (X, τ) . It's complement is known as a **semi-closed** set on X.

Definition 2.2. ([11], Definition 2.2) A subset A of X is called a δ -closed set in a topological space (X, τ) if $A = \delta cl(A)$, where $\delta cl(A) = \{x \in X : int(cl(U)) \cap A \neq \emptyset, U \in O(X, x)\}$. The complement of a δ -closed set in (X, τ) is called a δ -open set in (X, τ) . The set of all δ -closed sets in X is denoted by $\delta C(X)$. From[4], lemma 3, $\delta cl(A) = \bigcap \{F \in \delta C(X) : A \subseteq F\}$ and from corollary 4, $\delta cl(A)$ is a δ -closed set for a subset A in a topological space (X, τ)

Definition 2.3. ([6], Definition 3.1) Let (X, τ) be a topological space. A is said to be $\hat{\Omega}$ -closed set if $\delta cl(A) \subseteq U$ when $A \subseteq U$, where U is a semi-open subset of X. The complement of $\hat{\Omega}$ -closed set is $\hat{\Omega}$ -open set.

Definition 2.4. ([6], Definition 5.1) Let A be a subset of a topological space (X, τ) . Then $\hat{\Omega}$ -closure of A is defined to be the intersection of all $\hat{\Omega}$ -closed sets containing A and it is denoted by $\hat{\Omega}cl(A)$. That is $\hat{\Omega}cl(A) = \bigcap \{F : A \subseteq F \text{ and } F \in \hat{\Omega}C(X)\}$. Always $A \subseteq \hat{\Omega}cl(A)$.

Remark 2.5. ([6], Remark 5.2) From the definition and Theorem 4.16, arbitrary intersection of $\hat{\Omega}$ -closed sets in a topological space (X, τ) is $\hat{\Omega}$ -closed set in (X, τ) , $\hat{\Omega}cl(A)$ is the smallest $\hat{\Omega}$ -closed set containing A.

Theorem 2.6. ([6], Theorem 5.3) Let A be any subset of a topological space (X, τ) . Then, A is a $\hat{\Omega}$ -closed set in (X, τ) if and only if $A = \hat{\Omega}cl(A)$.

Theorem 2.7. ([6], Theorem 5.11) In a topological space (X, τ) , for $x \in X$, $x \in \hat{\Omega}cl(A)$ if and only if $U \cap A \neq \emptyset$ for every $\hat{\Omega}$ -open set U containing x.

Definition 2.8. [8] Let (X, τ) be a topological space. An operation γ on the topology τ is a mapping from $\tau \to P(X)$ such that $V \subseteq V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of γ at V. It is denoted by $\gamma : \tau \to P(X)$.

Notation 2.9.

- *i*) $U \in \hat{\Omega}O(X, x)$ denotes the set of all $\hat{\Omega}$ -open sets in (X, τ) containing x.
- *ii*) $\hat{\Omega}O(X,\tau)$ or $\hat{\Omega}O(X)$ or $\tau_{\hat{\Omega}}$ denotes the set of all $\hat{\Omega}$ -open sets in a topological space (X,τ) .
- iii) The closure (res.interior, complement) of A is denoted by cl(A) (res.int(A), A^c).
- *iv*) SO(X) denotes the set of all semi-open sets in a topological space (X, τ) .

3. Operation on $\hat{\Omega}O(X, \tau)$

Definition 3.1. A function $\gamma : \hat{\Omega}O(X,\tau) \rightarrow P(X)$ is called an operation on $\hat{\Omega}O(X,\tau)$, if $U \subseteq \gamma(U)$ for every set $U \in \hat{\Omega}O(X,\tau)$.

Remark 3.2. For any operation $\gamma : \hat{\Omega}O(X, \tau) \rightarrow P(X), \gamma(X) = X$, and $\gamma(\emptyset) = \emptyset$.

Definition 3.3. A non-empty subset A of X is called $\gamma_{\hat{\Omega}}$ -open set if for each $x \in A$, there exists an $\hat{\Omega}$ -open set U such that $x \in U$ and $\gamma(U) \subseteq A$. The complement of $\gamma_{\hat{\Omega}}$ -open set is $\gamma_{\hat{\Omega}}$ closed set. Assume that the empty set \emptyset is always $\gamma_{\hat{\Omega}}$ -open for any operation γ on $\hat{\Omega}O(X, \tau)$. $\tau_{\gamma_{\hat{\Omega}}}$ denotes the set of all $\gamma_{\hat{\Omega}}$ -open sets on (X, τ) . $\tau_{\gamma_{\hat{\Omega}}} = \{\emptyset\} \bigcup \{A / \text{ for each } x \in A \text{ there}$ exists an $\hat{\Omega}$ -open set $U \ni x \in U$ and $\gamma(U) \subseteq A$.}

Example 3.4. $X = \{a, b, c, d\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}, \hat{\Omega}O(X) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}. \gamma \text{ is defined}$ by $\gamma(\emptyset) = \emptyset, \gamma(\{a\}) = \{a\}, \gamma(\{b\}) = \{a, b\}, \gamma(\{a, b\}) = \{a, b, d\}, \gamma(X) = X.$ Here, γ is an operation on $\tau_{\hat{\Omega}}$; $\{\emptyset, \{a\}, \{a, b\}, X\}$ are $\gamma_{\hat{\Omega}}$ -open sets.

Theorem 3.5. Arbitrary union of γ_{Ω} -open sets is a γ_{Ω} -open set in a topological space X.

Proof. Let $\{A_{\alpha}\}_{\alpha \in J}$ be any family of $\gamma_{\hat{\Omega}}$ -open sets in a space (X, τ) . Let $A = \bigcup_{\alpha \in J} A_{\alpha}$ and $x \in A$ be arbitrary. Then $x \in A_{\alpha}$ for some $\alpha \in J$. By the definition of $\gamma_{\hat{\Omega}}$ -open, there exist $U \in \hat{\Omega}O(X, x)$ such that $\gamma(U) \subseteq A_{\alpha} \subseteq \bigcup_{\alpha \in J} A_{\alpha} = A$. Therefore, *A* is $\gamma_{\hat{\Omega}}$ -open.

Remark 3.6. Arbitrary intersection of $\gamma_{\hat{\Omega}}$ -closed sets is a $\gamma_{\hat{\Omega}}$ -closed set in a topological space X.

Example 3.7. The intersection of any two $\gamma_{\hat{\Omega}}$ -open sets is not necessarily an $\gamma_{\hat{\Omega}}$ -open set in (X, τ) . Let $X = \{a, b, c\}$ and $P(X) = \hat{\Omega}O(X, \tau)$. Define an operation $\gamma : \hat{\Omega}O(X, \tau) \to P(X)$ as follows. For every $U \in \hat{\Omega}O(X, \tau)$

$$\gamma(U) = \begin{cases} U & \text{for } U \neq \{a\}\\ \{a, b\} & \text{for } U = \{a\} \end{cases}$$

Here $\{a,b\}$ and $\{a,c\}$ are $\gamma_{\hat{\Omega}}$ -open sets but $\{a\}$ is not a $\gamma_{\hat{\Omega}}$ -open set.

Proposition 3.8. Every $\gamma_{\hat{\Omega}}$ -open set is $\hat{\Omega}$ -open in a space X.

Proof. Let *A* be any $\gamma_{\hat{\Omega}}$ -open subset of *X*. Let $x \in A$ be arbitrary. Then there exists $\hat{\Omega}$ -open set U_x containing *x* such that $U_x \subseteq \gamma(U_x) \subseteq A$. Then $\bigcup \{U_x/x \in A\} = A$. By ([6], Theorem 4.16), *A* is $\hat{\Omega}$ -open subset of *X*.

Remark 3.9. From Example 3.7, every $\hat{\Omega}$ -open is not necessarily $\gamma_{\hat{\Omega}}$ -open as $\{a\} \in \hat{\Omega}O(X)$ and $\{a\} \notin \tau_{\gamma_{\hat{\Omega}}}$. It turns out to find a space in which $\hat{\Omega}O(X) = \tau_{\gamma_{\hat{\Omega}}}$.

Definition 3.10. A space (X, τ) with an operation γ on $\hat{\Omega}O(X, \tau)$ is called $\gamma_{\hat{\Omega}}$ -regular if for each $x \in X$ and for each $U \in \hat{\Omega}O(X, x)$, there exists an $\hat{\Omega}$ -open set V such that $x \in V$ and $\gamma(V) \subseteq U$.

Example 3.11. $X = \{a, b, c, d\}, \tau = \{\emptyset, \{b, c\}, \{a, b, c\}, \{b, c, d\}, X\}, \hat{\Omega}O(X) = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}. \gamma \text{ is defined by } \gamma(\emptyset) = \emptyset, \gamma(\{b\}) = \{b\}, \gamma(\{c\}) = \{c\}, \gamma(\{b, c\}) = \{b, c, d\}, \gamma(X) = X.$ Here, the operation γ on $\tau_{\hat{\Omega}}$ is $\gamma_{\hat{\Omega}}$ -regular.

Theorem 3.12. Let (X, τ) be a topological space and γ : $\hat{\Omega}O(X, \tau) \rightarrow P(X)$ be an operation on $\hat{\Omega}O(X, \tau)$. Then the following conditions are equivalent:

- i) Every $\hat{\Omega}$ -open set is $\gamma_{\hat{\Omega}}$ -open set.
- *ii*) X is an $\gamma_{\hat{O}}$ -regular space.
- iii) For every $x \in X$ and for every $U \in \hat{\Omega}O(X,x)$, there exists an $\gamma_{\hat{\Omega}}$ -open set V of (X, τ) containing x such that $V \subseteq U$.

Proof. i) \Rightarrow *ii*) Let $x \in X$ be arbitrary and $U \in \hat{\Omega}O(X, x)$. By hypothesis, there exists $V \in \hat{\Omega}O(X, x)$ such that $\gamma(V) \subseteq U$. *ii*) \Rightarrow *iii*) Let x be any point of X and $U \in \hat{\Omega}O(X, x)$. By hypothesis, there exists $\hat{\Omega}$ -open set V such that $x \in V$ and $\gamma(V) \subseteq U$. Again apply hypothesis to the set V. Then, there exists $\hat{\Omega}$ -open set $V_1 \in \hat{\Omega}O(X, x)$ such that $\gamma(V_1) \subseteq V$. Then, V is $\gamma_{\hat{\Omega}}$ -open set containing x such that $V \subseteq U$.

iii) \Rightarrow *i*) Let *U* be any $\hat{\Omega}$ -open set in *X* and $x \in U$ be arbitrary. By hypothesis, there exists $\gamma_{\hat{\Omega}}$ -open set V_x containing x such that $V_x \subseteq U$. By Theorem 3.5, $U = \bigcup_{x \in U} V_x$ is $\gamma_{\hat{\Omega}}$ -open. \Box

Definition 3.13. Let (X, τ) be any topological space. an **operation** γ on $\hat{\Omega}O(X, \tau)$ is called $\hat{\Omega}$ -**open** if for each $x \in X$ and for every $U \in \hat{\Omega}O(X, x)$, there exists an $\gamma_{\hat{\Omega}}$ -open set V containing x such that $V \subseteq \gamma(U)$.

Example 3.14. $X = \{a, b, c, d\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}, \hat{\Omega}O(X) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}.$ γ is defined by $\gamma(\emptyset) = \emptyset, \gamma(\{a\}) = \{a\}, \gamma(\{b\}) = \{a, b\}, \gamma(\{a, b\}) = \{a, b, d\}, \gamma(X) = X$. Here, the operation γ on $\tau_{\hat{\Omega}}$ is $\hat{\Omega}$ -open.

Definition 3.15. Let (X, τ) be any topological space. An operation γ on $\hat{\Omega}O(X, \tau)$ is called $\hat{\Omega}$ -regular if for each $x \in X$ and for every pair of sets $U_1, U_2 \in \hat{\Omega}O(X, x)$, there exists a set $V \in \hat{\Omega}O(X, x)$ such that $\gamma(V) \subseteq \gamma(U_1) \cap \gamma(U_2)$.

Example 3.16. $X = \{a, b, c, d\}, \tau = \{\emptyset, \{a, b\}, X\}, \hat{\Omega}O(X) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}.$ γ is defined by $\gamma(\emptyset) = \emptyset, \gamma(\{a\}) = \{a, b\}, \gamma(\{b\}) = \{a, b\}, \gamma(\{a, b\}) = \{a, b\}, \gamma(X) = X.$ Here, an operation γ on $\tau_{\hat{\Omega}}$ is $\hat{\Omega}$ -regular.

Proposition 3.17. Intersection of any two $\gamma_{\hat{\Omega}}$ -open sets is a $\gamma_{\hat{\Omega}}$ -open in a $\hat{\Omega}$ -regular operation on $\hat{\Omega}O(X, \tau)$.

Proof. Let *U* and *V* be any two $\gamma_{\hat{\Omega}}$ -open sets in *X*. Let $x \in U \cap V$ be any point. Then, $x \in U$ and $x \in V$. By the definition, there exists $U_1 \in \hat{\Omega}O(X, x)$ such that $\gamma(U_1) \subseteq U$. Similarly for the set *V*, there exists $U_2 \in \hat{\Omega}O(X, x)$ such that $\gamma(U_2) \subseteq V$. Now $\gamma(U_1) \cap \gamma(U_2) \subseteq U \cap V$. By hypothesis, there exists $\hat{\Omega}$ -open set *W* containing *x* such that $\gamma(W) \subseteq \gamma(U_1) \cap \gamma(U_2) \subseteq U \cap V$. Hence $U \cap V$ is $\gamma_{\hat{\Omega}}$ -open subset of *X*.

Remark 3.18. By Proposition 3.17, the family of all $\gamma_{\hat{\Omega}}$ -open sets satisfy the axioms topology provided an operation γ is a $\hat{\Omega}$ -regular.

4. Basic properties of Closures

Definition 4.1. Let γ be an operation on $\hat{\Omega}O(X, \tau)$. then for any subset A of X, $\gamma_{\hat{\Omega}}$ -closure is denoted by $\gamma_{\hat{\Omega}}Cl(A)$, defined as $\gamma_{\hat{\Omega}}Cl(A) = \bigcap \{F/A \subseteq F, X \setminus F \in \tau_{\gamma_{\hat{\Omega}}}\}$. It follows that $A \subseteq$ $\gamma_{\hat{\Omega}}Cl(A)$, $\gamma_{\hat{\Omega}}Cl(\emptyset) = \emptyset$ and $\gamma_{\hat{\Omega}}Cl(X) = X$. Moreover, $\gamma_{\hat{\Omega}}Cl(A)$ is $\gamma_{\hat{\Omega}}$ -closed as any intersection of $\gamma_{\hat{\Omega}}$ -closed sets is $\gamma_{\hat{\Omega}}$ -closed.

Proposition 4.2. A is $\gamma_{\hat{\Omega}}$ -closed if and only if $\gamma_{\hat{\Omega}}Cl(A) = A$ for any subset A of X.

Proof. It follows straight forward from the definition. \Box

Theorem 4.3. Let A be any subset of a topological space (X, τ) and γ be an operation on $\hat{\Omega}O(X, \tau)$. Then, $x \in \gamma_{\hat{\Omega}}Cl(A)$ iff every $\gamma_{\hat{\Omega}}$ -open set containing x meets A.

Proof. Necessary: Let *A* be any subset of (X, τ) . Assume that there exists $\gamma_{\hat{\Omega}}$ -open set *U* containing *x* such that $U \cap A = \emptyset$. Then U^c is an $\gamma_{\hat{\Omega}}$ -closed set such that $A \subseteq U^c$. By the definition of $\gamma_{\hat{\Omega}}Cl(A), A \subseteq \gamma_{\hat{\Omega}}Cl(A) \subseteq U^c$. Now $x \notin U^c$ implies $x \notin \gamma_{\hat{\Omega}}Cl(A)$.

Sufficiency: Assume that $x \notin \gamma_{\hat{\Omega}}Cl(A)$. Then, there exists a $\gamma_{\hat{\Omega}}$ -closed set *F* such that $A \subseteq F$ and $x \notin F$. Now, F^c is an $\gamma_{\hat{\Omega}}$ -open set containing *x* such that $A \cap F^c = \emptyset$.

Proposition 4.4. If A and B are any two subsets of the space X, then the following statements hold.

i)
$$A \subseteq B$$
, then $\gamma_{\hat{O}}Cl(A) \subseteq \gamma_{\hat{O}}Cl(B)$

ii) $\gamma_{\hat{\Omega}}Cl(A \cap B) \subseteq \gamma_{\hat{\Omega}}Cl(A) \cap \gamma_{\hat{\Omega}}Cl(B)$

iii) $\gamma_{\hat{\Omega}}Cl(A) \cup \gamma_{\hat{\Omega}}Cl(B) \subseteq \gamma_{\hat{\Omega}}Cl(A \cup B)$

- $iv) \ \gamma_{\hat{\Omega}}Cl(\gamma_{\hat{\Omega}}Cl(A)) = \gamma_{\hat{\Omega}}Cl(A).$
- *Proof. i*) If *U* is any $\gamma_{\hat{\Omega}}$ -open subset of *X* containing *x*, then by Theorem 4.3 and hypothesis $B \cap U \neq \emptyset$. Again by Theorem 4.3, $x \in \gamma_{\hat{\Omega}}$ Cl(B)
 - *ii*) Suppose that $x \notin (\gamma_{\hat{\Omega}}Cl(A)) \cap (\gamma_{\hat{\Omega}}Cl(B))$. Then, there are two possibilities such as, either $x \notin \gamma_{\hat{\Omega}}Cl(A)$ or $x \notin \gamma_{\hat{\Omega}}Cl(B)$. If $x \notin \gamma_{\hat{\Omega}}Cl(A)$, then by Theorem 4.3,there exists $\gamma_{\hat{\Omega}}$ -open set U of X containing x such that $U \cap A = \emptyset$. It follows that U does not meet $A \cap B$. Again by Theorem 4.3, $x \notin \gamma_{\hat{\Omega}}Cl(A \cap B)$. Similarly for the case $x \notin \gamma_{\hat{\Omega}}Cl(B)$.
 - *iii*) Proof is analogous to that of *ii*).
 - *iv*) If follows from proposition 4.2.

Definition 4.5. For a subset A of a topological space X, $\hat{\Omega}$ closure with respect to an operation γ is denoted by $(\hat{\Omega}Cl)_{\gamma}(A)$ and defined as $(\hat{\Omega}Cl)_{\gamma}(A) = \{x \in X \mid \gamma(U) \cap A \neq \emptyset \text{ for each } U \in \hat{\Omega}O(X,x)\}$. Always, $(\hat{\Omega}Cl)_{\gamma}(\emptyset) = \emptyset$ and $(\hat{\Omega}Cl)_{\gamma}(X) = X$.

Lemma 4.6. $(\hat{\Omega}Cl)_{\gamma}(A)$ is $\hat{\Omega}$ -closed set in X for any subset A of X.

Proof. Let *A* be any subset of *X* and $F = (\hat{\Omega}Cl)_{\gamma}(A)$. Always, $F \subseteq (\hat{\Omega}Cl)_{\gamma}(F)$. If $x \notin F$, then there exists $U \in \hat{\Omega}O(X,x)$ such that $\gamma(U) \cap F = \emptyset$. Then, $U \cap F = \emptyset$. By Theorem 2.7, $x \notin \hat{\Omega}Cl(F)$. Therefore, $F = \hat{\Omega}Cl(F)$. By Theorem 2.6, *F* is $\hat{\Omega}$ -closed.

Lemma 4.7. In a topological space (X, τ) with an operation γ on $\hat{\Omega}O(X, \tau)$, the following statements hold for any two subsets A and B of X.

- *i*) $A \subseteq (\hat{\Omega}Cl)_{\gamma}(A) \subseteq \gamma_{\hat{\Omega}}Cl(A)$.
- *ii*) A is $\gamma_{\hat{\Omega}}$ -closed if and only if $(\hat{\Omega}Cl)_{\gamma}(A) = A$.
- *iii*) If $A \subseteq B$, $(\hat{\Omega}Cl)_{\gamma}(A) \subseteq (\hat{\Omega}Cl)_{\gamma}(B)$.
- *iv*) $(\hat{\Omega}Cl)_{\gamma}(A \cap B) \subseteq (\hat{\Omega}Cl)_{\gamma}(A) \cap (\hat{\Omega}Cl)_{\gamma}(B).$

v)
$$(\hat{\Omega}Cl)_{\gamma}(A) \cup (\hat{\Omega}Cl)_{\gamma}(B) \subseteq (\hat{\Omega}Cl)_{\gamma}(A \cup B).$$

- *Proof.* i) Let $x \in A$ be arbitrary. If $U \in \hat{\Omega}O(X, x)$, then by [Theorem 5.11] $U \cap A \neq \emptyset$. Thus $\gamma(U) \cap A \neq \emptyset$. By the definition, $x \in (\hat{\Omega}Cl)_{\gamma}(A)$. For another part, assume that $x \notin \gamma_{\hat{\Omega}}Cl(A)$. Then there exists $\gamma_{\hat{\Omega}}$ -closed set *F* such that $A \subseteq F$ and $x \notin F$. Since every $\gamma_{\hat{\Omega}}$ -closed set is $\hat{\Omega}$ -closed, *F* is $\hat{\Omega}$ -closed subset of *X*. Then, $F^c \in \hat{\Omega}O(X, x)$ such that $F^c \cap A = \emptyset$. Thus, $x \notin (\hat{\Omega}Cl)_{\gamma}(A)$.
 - *ii*) Assume that *A* is $\gamma_{\hat{\Omega}}$ -closed. If $x \notin A$, then $x \in A^c = U(say)$. Now *U* is $\gamma_{\hat{\Omega}}$ -open subset of *X* containing *x*. By the definition, there exists $V \in \hat{\Omega}O(X, x)$ such that $\gamma(V) \subseteq U = A^c$. Thus $\gamma(V) \cap A = \emptyset$ says $x \notin (\hat{\Omega}Cl)_{\gamma}(A)$
 - *iii*) Let $x \in (\hat{\Omega}Cl)_{\gamma}(A)$ and Let U be any $\hat{\Omega}$ -open set containing x. By hypothesis, $\gamma(U) \cap A \neq \emptyset$ and hence $\gamma(U) \cap B = \emptyset$. Thus $x \in (\hat{\Omega}Cl)_{\gamma}(B)$. Therefore, $(\hat{\Omega}Cl)_{\gamma}(A) \subseteq (\hat{\Omega}Cl)_{\gamma}(B)$.
 - *iv*) Suppose that x ∉ ((ÂCl)_γ(A)) ∩ ((ÂCl)_γ(B)). Then, there are two possibilities such as, either x ∉ (ÂCl)_γ(A) or x ∉ (ÂCl)_γ(B). If x ∉ (ÂCl)_γ(A), then there exists Â-open set U of X containing x such that γ(U) ∩A = Ø. It follows that γ(U) does not meet A ∩ B. By the definition, x ∉ (ÂCl)_γ(A ∩ B). Similarly for the case x ∉ (ÂCl)_γ(B).
 - v) Proof is analogous to that of iv).

Theorem 4.8. If γ is an $\hat{\Omega}$ -regular operation on $\hat{\Omega}O(X, \tau)$, then for any two subsets A, B of X the following results hold.

i) $\gamma_{\hat{\Omega}}Cl(A) \cup \gamma_{\hat{\Omega}}Cl(B) = \gamma_{\hat{\Omega}}Cl(A \cup B).$ *ii*) $(\hat{\Omega}Cl)_{\gamma}(A) \cup (\hat{\Omega}Cl)_{\gamma}(B) = (\hat{\Omega}Cl)_{\gamma}(A \cup B)$

- *Proof.* i) Always $\gamma_{\Omega}Cl(A) \cup \gamma_{\Omega}Cl(B) \subseteq \gamma_{\Omega}Cl(A\cup B)$. For other inclusion, if $x \notin \gamma_{\Omega}Cl(A) \cup \gamma_{\Omega}Cl(B)$, then there exist γ_{Ω} -open sets U and V containing x such that $A \cap U = \emptyset$ and $B \cap V = \emptyset$. By proposition 3.17, $U \cap V$ is γ_{Ω} -open set in X such that $(U \cap V) \cap (A \cup B) = \emptyset$. Therefore, $x \notin \gamma_{\Omega}Cl(A \cup B)$.
 - *ii*) Always $(\hat{\Omega}Cl)_{\gamma}(A) \cup (\hat{\Omega}Cl)_{\gamma}(B) \subseteq (\hat{\Omega}Cl)_{\gamma}(A\cup B)$. For other inclusion, if $x \notin (\hat{\Omega}Cl)_{\gamma}(A) \cup (\hat{\Omega}Cl)_{\gamma}(B)$, then $x \notin (\hat{\Omega}Cl)_{\gamma}(A)$ and $x \notin (\hat{\Omega}Cl)_{\gamma}(B)$. By the definition, $\gamma(U_1) \cap A = \emptyset = \gamma(U_2) \cap B$ for some $U_1, U_2 \in \hat{\Omega}O(X, x)$. By the definition of $\hat{\Omega}$ -regular operation, there exists $V \in \hat{\Omega}O(X, x)$ such that $\gamma(V) \subseteq \gamma(U_1) \cap \gamma(U_2) \subseteq (A \cup B)$. Then, $(A \cup B) \cap \gamma(V) = \emptyset$ implies $x \notin (\hat{\Omega}Cl)_{\gamma}(A \cup B)$.

Theorem 4.9. Let A be any subset of a topological space (X, τ) . If γ is an $\hat{\Omega}$ -open operation on $\hat{\Omega}O(X, \tau)$, then the following statements are true.

- i) $(\hat{\Omega}Cl)_{\gamma}(A) = \gamma_{\hat{\Omega}}Cl(A)$
- *ii*) $(\hat{\Omega}Cl)_{\gamma}((\hat{\Omega}Cl)_{\gamma}(A)) = (\hat{\Omega}Cl)_{\gamma}(A)$
- *iii*) $(\hat{\Omega}Cl)_{\gamma}(A)$ is $\gamma_{\hat{\Omega}}$ -closed set in X.
- *Proof.* i) Always $(\hat{\Omega}Cl)_{\gamma}(A) \subseteq \gamma_{\hat{\Omega}}Cl(A)$. Let $x \notin (\hat{\Omega}Cl)_{\gamma}(A)$. Then there exists an $U \in \hat{\Omega}O(X, x)$ such that $\gamma(U) \cap A = \emptyset$. By the choice of γ , there exists an $\gamma_{\hat{\Omega}}$ -open set V containing x such that $V \subseteq \gamma(U)$. Now $V \cap A \subseteq \gamma(U) \cap A = \emptyset$. By Theorem 4.3, $x \notin \gamma_{\hat{\Omega}}Cl(A)$. So, $\gamma_{\hat{\Omega}}Cl(A) \subseteq (\hat{\Omega}Cl)_{\gamma}(A)$. Hence $(\hat{\Omega}Cl)_{\gamma}(A) = \gamma_{\hat{\Omega}}Cl(A)$.
 - *ii*) By *i*) and Proposition 4.4.(iv), $(\hat{\Omega}Cl)_{\gamma}((\hat{\Omega}Cl)_{\gamma}(A)) = (\hat{\Omega}Cl)_{\gamma}(A)$.
 - *iii*) It follows from *i*) and by the result that $\gamma_{\hat{\Omega}}Cl(A)$ is $\gamma_{\hat{\Omega}}$ -closed.

Theorem 4.10. Let A be any subset of a topological space (X, τ) and γ be an operation on $\hat{\Omega}O(X, \tau)$. Then the following statements are equivalent.

- i) A is γ_Ω-open set.
 ii) (ΩCl)_γ (X \ A) = X \ A.
 iii) γ_ΩCl(X \ A) = X \ A.
 iv) X \ A is γ_Ω-closed set.
- *Proof.* It follows from the definition.

Theorem 4.11. Let (X, τ) be a topological space and γ be an $\hat{\Omega}$ -regular operation on $\hat{\Omega}O(X, \tau)$. Then $\gamma_{\hat{\Omega}}Cl(A) \cap U \subseteq \gamma_{\hat{\Omega}}Cl(A \cap U)$ holds for every $\gamma_{\hat{\Omega}}$ -open set U and every subset A of X.

 \square

Proof. Assume that $x \in \gamma_{\hat{\Omega}}Cl(A) \cap U$ for every $\gamma_{\hat{\Omega}}$ -open set U and every subset A of X. Let V be any $\gamma_{\hat{\Omega}}$ -open subset of X containing x. By Proposition 3.17, $U \cap V$ is $\gamma_{\hat{\Omega}}$ -open set containing x. Since, $x \in \gamma_{\hat{\Omega}}Cl(A)$, $A \cap (U \cap V) \neq \emptyset$. That is, $(A \cap U) \cap V \neq \emptyset$. By Theorem 4.3, $x \in \gamma_{\hat{\Omega}}Cl(A \cap U)$.

5. Separation axioms

Definition 5.1. A topological space (X, τ) with an operation γ on $\hat{\Omega}O(X, \tau)$ is called $\gamma_{\hat{\Omega}}$ - T_0 if for any two points x, y in X such that $x \neq y$ there exists an $U \in \hat{\Omega}O(X, \tau)$, such that $x \in U$ and $y \notin \gamma(U)$ or $y \in U$ and $x \notin \gamma(U)$.

Definition 5.2. A topological space (X, τ) with an operation γ on $\hat{\Omega}O(X, \tau)$ is called $\gamma_{\hat{\Omega}}$ - T_1 if for any two points x, y in X such that $x \neq y$, there exist two $\hat{\Omega}$ -open sets U and V containing x and y respectively such that $y \notin \gamma(U)$ and $x \notin \gamma(V)$.

Definition 5.3. A topological space (X, τ) with an operation γ on $\hat{\Omega}O(X, \tau)$ is called $\gamma_{\hat{\Omega}}$ - T_2 if for any two points x, y in X such that $x \neq y$ there exist two $\hat{\Omega}$ -open sets U and V containing x and y respectively such that $\gamma(U) \cap \gamma(V) = \emptyset$.

Theorem 5.4. Let γ be an $\hat{\Omega}$ -open operation on $\hat{\Omega}O(X, \tau)$. Then (X, τ) is an $\gamma_{\hat{\Omega}}$ - T_0 space iff $(\hat{\Omega}Cl)_{\gamma}(\{x\}) \neq (\hat{\Omega}Cl)_{\gamma}(\{y\})$ for every pair x, y of X with $x \neq y$.

Proof. Let *x*, *y* be any two distinct points of an $\gamma_{\hat{\Omega}}$ - T_0 space (X, τ) . Then, there exists a $\gamma_{\hat{\Omega}}$ -open set *U* such that $x \in U$ and $y \notin \gamma(U)$. Since γ is an $\hat{\Omega}$ -open, there exists a $\gamma_{\hat{\Omega}}$ -open set *V* such that $x \in V$ and $V \subseteq \gamma(U)$. Therefore, $y \in X \setminus \gamma(U) \subseteq X \setminus V$. Now $X \setminus V$ is an $\gamma_{\hat{\Omega}}$ -closed set in (X, τ) such that $(\hat{\Omega}Cl)_{\gamma}(\{y\}) \subseteq X \setminus V$. Thus $(\hat{\Omega}Cl)_{\gamma}(\{x\}) \neq (\hat{\Omega}Cl)_{\gamma}(\{y\})$. Conversely, if *x*, *y* are any two distinct points of *X* then, $(\hat{\Omega}Cl)_{\gamma}(\{x\}) \neq (\hat{\Omega}Cl)_{\gamma}(\{y\})$. Choose $z \in X$ such that $z \in (\hat{\Omega}Cl)_{\gamma}(\{x\})$, and $z \notin (\hat{\Omega}Cl)_{\gamma}(\{y\})$. If $x \in (\hat{\Omega}Cl)_{\gamma}(\{y\})$, then $(\hat{\Omega}Cl)_{\gamma}(\{x\}) \subseteq (\hat{\Omega}Cl)_{\gamma}(\{y\})$. That is, $z \in (\hat{\Omega}Cl)_{\gamma}(\{y\})$, which is a contradiction. So, $x \notin (\hat{\Omega}Cl)_{\gamma}(\{y\})$. Then, there exists an $\hat{\Omega}$ -open set *U* containing *x* such that $\gamma(U) \cap \{y\} = \emptyset$. Now, $x \in U$ and $y \notin \gamma(U)$ that satisfy the condition of $\gamma_{\hat{\Omega}}$ - T_0 space.

Theorem 5.5. The space (X, τ) is $\gamma_{\hat{\Omega}}$ - T_1 if and only if for every point $x \in X$, $\{x\}$ is an $\gamma_{\hat{\Omega}}$ -closed set.

Proof. Let (X, τ) be a $\gamma_{\hat{\Omega}}$ - T_1 space and x be any point of X. Then for any point $y \in X$ such that $x \neq y$, there exists an $\hat{\Omega}$ open set V_y such that $y \in V_y$ but $x \notin \gamma(V_y)$. Thus, $y \in \gamma(V_y) \subseteq X \setminus \{x\}$. This implies that $X \setminus \{x\} = \bigcup \{\gamma(V_y) : y \in X \setminus \{x\}\}$. Now $X \setminus \{x\}$ is $\gamma_{\hat{\Omega}}$ -open set in (X, τ) and hence $\{x\}$ is $\gamma_{\hat{\Omega}}$ closed set in (X, τ) .

Conversely, let $x, y \in X$ such that $x \neq y$. By hypothesis, we get $X \setminus \{y\}$ and $X \setminus \{x\}$ are $\gamma_{\hat{\Omega}}$ -open sets such that $x \in X \setminus \{y\} = U$ (say) and $y \in X \setminus \{x\} = V$ (say). Therefore, there exist $\hat{\Omega}$ -open sets U and V such that $x \in U, y \in V, \gamma(U) \subseteq X \setminus \{y\}$ and $\gamma(V) \subseteq X \setminus \{x\}$. So, $y \notin \gamma(U)$ and $x \notin \gamma(V)$. This implies that (X, τ) is $\gamma_{\hat{\Omega}}$ - T_1 .

Theorem 5.6. For any topological space (X, τ) and any operation γ on $\tau_{\hat{O}}$, the following properties hold.

- *i*) Every $\gamma_{\hat{\Omega}}$ - T_2 space is $\gamma_{\hat{\Omega}}$ - T_1 .
- *ii*) Every $\gamma_{\hat{\Omega}}$ - T_1 space is $\gamma_{\hat{\Omega}}$ - T_0 .

Proof. It follows from definitions.

6. Conclusion

In this paper, an attempt has been made to define operation on the class of $\hat{\Omega}$ -open sets. with the help of this operation,the new class of $\gamma_{\hat{\Omega}}$ -open sets has been introduced and two kinds of closures such as, $\gamma_{\hat{\Omega}}Cl$ and $(\hat{\Omega}Cl)_{\gamma}$ studied. Their basic properties have been derived. Moreover, it is shown by an example that intersection of any two $\gamma_{\hat{\Omega}}$ -closed sets is not necessarily a $\gamma_{\hat{\Omega}}$ -closed but that holds in a $\hat{\Omega}$ -regular operation on $\hat{\Omega}O(X, \tau)$ has been derived.

References

- [1] An, T.V., Cuong, D.X., and Maki, H., On operationpreopen sets in topological spaces, *Scientiae Mathematicae Japonicae*, 68(1)(2008), 11–30.
- [2] Asaad, B.A., Some Applications of Generalized Open sets via Operations, *New Trends in Mathematical Sciences.*, 5(1)(2017), 145–157.
- [3] Bhattacharyya, P., and Lahiri, B.K., Semi-generalized closed sets in topology, *Indian J.Math.*, 29(3)(1987), 375– 382.
- [4] Ekici, E, On δ-semiopen sets and a generalizations of functions, *Bol. Soc. Param Mat. (3S).*, 23(1-2)(2005), 73–84.
- [5] Jankovic, D.S., On functions with α-closed graphs, *Glas-nik Matematicki.*, 18(38)(1983), 141–148.
- ^[6] Lellis Thivagar, M., and Anbuchelvi, M., Note on $\hat{\Omega}$ closed sets in topological spaces, *Mathematical Theory and Modeling.*, (2012), 50-58.
- [7] Levine, N., Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly*, 70(1)(1963), 36–41.
- [8] Kasahara, S., Operation compact spaces, *Math. Japonica.*, 24(1)(1979), 97–105.
- [9] Krishnan,G.S.S., Ganster, M., and Balachandran, K., Operation approaches on semi-open sets and applications, *Kochi Journal of Mathematics.*, 2(2007), 21–33.
- ^[10] Ogata, H., Operation on topological spaces and associated topology, *Math. Japonica.*, 36(1)(1991), 175–184.
- [11] Velicko, N.V., H-closed topological spaces, Amer. Math. Soc. Transl., 78(2)(1968), 103–118.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

