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Abstract. This article introduces θf -approximations of sets in fuzzy proximal relator space where θ ∈ [0, 1).
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1. Introduction

Efremovič discovered the proximity spaces in 1951 [2]. He defined proximity space using with proximity
relation for proximity of arbitrary subsets of a set. In [10], one can find a list of publications on proximity spaces.
A proximity measure is a measure of the closeness or nearness between two nonempty sets.

A relator is a set of binary relations on a nonempty set X that is denoted by R. A relator space is defined as
the pair (X,R). In 2016, Peters introduced the concept of proximal relator space (X,Rδ) where Rδ is a family
of proximity relations on X [14].

Zadeh defined fuzzy sets in 1965, which he interpreted as a generalization of set. A fuzzy set A in a universe
X is a mapping A : X → [0, 1] [23]. For some applications of fuzzy sets please see [16, 17, 19]. Fuzzy similarity
measure between fuzzy sets are given in [22]. Fuzzy similarity measure between sets using with fuzzy proximity
relation µR and fuzzy proximal relator space (X,µR) are introduced in [11]. Studies in the field of algebraic
topology were also discussed with a different perspective on these issues, and semitopological δ-groups were
published in 2023 [7].

Fuzzy similarity measures and fuzzy proximity relations are useful tools for applications in the applied
sciences such as digital image processing and computer vision. A digital image endowed with fuzzy proximity
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relation µR is fuzzy proximal relator space. Therefore one can working on pixels in digital images to obtain
classifications or approximations.

Let A ⊆ X . A descriptively upper approximation of A is defined with

Φ∗A = {x ∈ X | xδΦA}.

It means, descriptively upper approximation of A consists of all elements in X that only have exactly the same
properties as elements in A. But sometimes more sensitive calculations may be needed.

For more sensitive approach to compute upper approximations of subsets, we can also consider elements with
somewhat similar properties, even if they do not have the same properties. To do this, the concept of fuzzy set
is one of the most effective mathematical tool. Therefore, θf -approximations of sets in fuzzy proximal relator
space are developed. Main advantages of this study is that it effectively uses the concepts of fuzzy sets, proximity
relations and upper approximation of sets together.

In section 2, definitions of Efremovic̆ proximity, set description, descriptively near sets, descriptively upper
approximation of sets, fuzzy proximity relation and fuzzy proximal relator space are given.

In section 3, θf -approximations of sets in fuzzy proximal relator space are introduced, where θ ∈ [0, 1).
θf -approximation provides a more sensitive approach for the upper approximations of subsets or subimages.
θf -approximation of a subimage are given with an example in digital images. Furthermore, θf -approximately
groupoid and semigroup in fuzzy proximal relator space are introduced.

2. Preliminaries

Definition 2.1. [2, 3] Let X be a nonempty set and δ be a relation on P (X). δ is called an Efremovic̆ proximity
that satisfy following axioms:

(A1) A δ B implies B δ A,
(A2) A δ B implies A ̸= ∅ and B ̸= ∅,
(A3) A ∩B ̸= ∅ implies A δ B,
(A4) A δ (B ∪ C) iff A δ B or A δ C,
(A5) {x} δ {y} iff x = y,
(A6) A δ B implies ∃E ⊆ X such that A δ E and Ec δ B

for all A,B,C ∈ P (X) and all x, y ∈ X . Efremovic̆ proximity relation is denoted by δE .

Definition 2.2. [9] Let X be a nonempty set and δ be a relation on P (X). δ is called a Lodato proximity that
satisfy the axioms (A1)− (A5) and

(A7) A δ B and {b} δ C (∀b ∈ B) implies A δ C for all A,B,C ∈ P (X). Lodato proximity relation is
denoted by δL.

Let X be a nonempty set and R be a set of relations on X . R and (X,R) is called a relator and a relator space,
respectively [20]. Let Rδ be a family of proximity relations on X . Then (X,Rδ) is a proximal relator space. As
in [14], Rδ contains proximity relations such as basic proximity δB [18], Efremovic̆ proximity δE [2, 3], Lodato
proximity δL [9], Wallman proximity δω [21], descriptive proximity δΦ [12, 15].

In a discrete space, a non-abstract point has a location and features. Features can be measured using probe
functions [8]. Let X be a nonempty set of non-abstract points in a proximal relator space (X,RδΦ).

In this space, a function Φ : X → Rn, Φ(x) = (φ1(x), · · · , φn(x)) is an object description represents a
feature vector of x ∈ X where each φi : X → R is a probe function (1 ≤ i ≤ n) that describes feature of a
non-abstract point such as pixel in a digital image.

Throughout this work, nonempty set of non-abstract points X was considered. Efremovic̆ proximity δE [3]
and descriptive proximity δΦ in defining a descriptive proximal relator space (X,RδΦ) were considered. Also,
instead of the notions proximal relator space and fuzzy proximal relator space, the terms PR-space and FPR-
space were used briefly, respectively.
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Definition 2.3. [10] Let Φ be an object description and A ⊆ X . Then the set description of A is defined as

Q(A) = {Φ(a) | a ∈ A}.

Definition 2.4. [10, 13] Let A,B ⊆ X . Then the descriptive (set) intersection of A and B is defined as

A ∩
Φ
B = {x ∈ A ∪B | Φ (x) ∈ Q (A) and Φ (x) ∈ Q (B)} .

Definition 2.5. [12] Let δΦ ∈ RδΦ and A,B ⊆ X . If Q(A) ∩ Q(B) ̸= ∅, then A is called a descriptively near
B and denoted by AδΦB. If Q(A) ∩Q(B) = ∅, then A δΦ B reads A is descriptively far from B.

Definition 2.6. [22] Let X be an universal set and F(X) be a class of all fuzzy sets of X . A function µ :

F(X)×F(X) −→ [0, 1] is called a fuzzy similarity measure if the following axioms satisfy:
(µ1) µ(A, ∅) = 0 and µ(A,A) = 1,
(µ2) µ (A,B) = µ (B,A),
(µ3) A ⊆ B ⊆ C implies µ (A,B) ≥ µ (A,C) and µ (B,C) ≥ µ (A,C)

for all A,B,C ∈ F(X).

Definition 2.7. [11] Let (X,R) be a PR-space,

µR : P(X)× P(X) −→ [0, 1]

(A,B) 7−→ µR (A,B)

be a fuzzy relation and A,B ⊆ X . Then µR is called a fuzzy proximity relation if it satisfies the following
axioms:

(µR)1 µR (A, ∅) = 0,
(µR)2 µR (A,B) = µR (B,A),
(µR)3 µR (A,B) ̸= 0 implies A is fuzzy proximal to B,
(µR)4 µR (A,B ∪ C) ̸= 0 implies µR (A,B) ̸= 0 or µR (A,C) ̸= 0

for all A,B,C ∈ P (X).
The set of all fuzzy proximity relations on P(X) is denoted by PµR (X). Therefore µR(A,B) is called a

fuzzy proximity measure of A with B.
If µR (A,B) > 0, then A is fuzzy proximal to B. Also, if µR (A,B) > θ, then A is θ-fuzzy proximal to B for

θ ∈ (0, 1).

Definition 2.8. [11] Let (X,R) be a PR-space and µR be a fuzzy proximity relation. Then (X,R, µR) is called
a FPR-space and shortly denoted by (X,µR).

3. θf -Approximations and θf -Approximately Semigroups

Definition 3.1. Let (X,µR) be a FPR-space and A ⊆ X . A θf -approximation of A is determined with

Aθ
µR

=
⋃

µR(A,B)>θ

B,

where B ∈ P(X) and θ ∈ [0, 1).

For clarify the mechanism of θf -approximation please see Example 3.3.

Example 3.2. Let X be a digital image and x, y be pixels of X . Probe functions φ(x) = (Rx, Gx, Bx) and
φy = (Ry, Gy, By) are represent the RGB codes of pixels x, y. Let

µR : X ×X −→ [0, 1]

(x, y) 7−→ µR (x, y) =
|765−Dx,y|

765
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be a fuzzy relation where
Dx,y =

√
2 ∆R2 + 4 ∆G2 + 3 ∆B2

is a weighted Euclidean distance of pixels with respect to RGB such that ∆R = Rx − Ry , ∆G = Gx −Gy

and ∆B = Bx −By . In the definition of µR, 765 is the maximum value of Dx,y .
Furthermore, fuzzy relationship between x and y ∪ z means that

µR (x, y ∪ z) =
|765−min {Dx,y, Dx,z}|

765

for all x, y, z ∈ X .
Now lets show that µR is a fuzzy proximity relation.
(µR)1 Since there is no similarity between x ∈ X and ∅, it is clear that µR (x, ∅) = 0.
(µR)2 µR (x, y) = µR (y, x) by Dx,y = Dy,x for all x, y ∈ X .
(µR)3 Obviously µR (x, y) ̸= 0 implies A is fuzzy proximal to B.
(µR)4 Let µR (x, y) = 0 and µR (x, z) = 0 for all x, y, z ∈ X . Then µR (x, y) =

|765−Dx,y|
765 = 0, that

is, Dx,y = 765. Similarly Dx,z = 765. Hence Dx,y = Dx,z = 765 and so min {Dx,y, Dx,z} = 765. Thus
µR (x, y ∪ z) =

|765−min{Dx,y,Dx,z}|
765 = 0. Therefore µR (x, y ∪ z) ̸= 0 implies µR (x, y) ̸= 0 or µR (x, z) ̸= 0

for all x, y, z ∈ X .
Consequently, µR is a fuzzy proximity relation from Definition 2.7.

Example 3.3. Let X be a digital image consists of 16 pixels as in Fig. 1. Also, digital image X endowed with
fuzzy proximity relation µR from Example 3.2 is a FPR-space by Definition 2.8.

Figure 1: Digital image X

In digital image X , a pixel xij is an element at position (i, j) (row and column). Table 1 lists the RGB codes
for each pixel.

Table 1. RGB codes for each pixel in X.

x11 x12 x13 x14 x21 x22 x23 x24

Red 117 91 91 180 180 110 132 117

Green 213 165 149 227 227 161 188 213

Blue 215 227 227 228 228 230 234 215

x31 x32 x33 x34 x41 x42 x43 x44

Red 183 91 226 180 117 226 117 226

Green 253 165 226 227 213 226 213 226

Blue 233 227 226 228 215 226 215 226

From Example 3.2, values of fuzzy proximity relation µR are given in Table 2.
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Table 2. Values of fuzzy proximity relation µR.

µR x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34 x41 x42 x43 x44

x11 1 0.863 0.823 0.874 0.874 0.859 0.916 1 0.834 0.863 0.794 0.874 1 0.794 1 0.794

x12 0.863 1 0.958 0.769 0.769 0.963 0.902 0.862 0.714 1 0.704 0.769 0.863 0.704 0.863 0.704

x13 0.823 0.958 1 0.738 0.738 0.952 0.872 0.824 0.679 0.958 0.679 0.738 0.874 0.915 0.874 0.915

x14 0.874 0.769 0.738 1 1 0.784 0.864 0.874 0.931 0.769 0.915 1 0.874 0.915 0.874 0.915

x21 0.874 0.769 0.738 1 1 0.784 0.864 0.874 0.931 0.769 0.915 1 0.874 0.915 0.874 0.915

x22 0.859 0.963 0.952 0.784 0.784 1 0.918 0.859 0.724 0.963 0.726 0.784 0.859 0.726 0.859 0.726

x23 0.916 0.902 0.872 0.864 0.864 0.918 1 0.917 0.806 0.902 0.799 0.864 0.917 0.799 0.917 0.799

x24 1 0.862 0.824 0.874 0.874 0.859 0.917 1 0.834 0.863 0.794 0.874 1 0.794 1 0.794

x31 0.834 0.714 0.679 0.931 0.931 0.724 0.806 0.834 1 0.714 0.893 0.931 0.834 0.893 0.834 0.893

x32 0.863 1 0.958 0.769 0.769 0.963 0.902 0.863 0.714 1 0.704 0.769 0.863 0.703 0.863 0.704

x33 0.794 0.704 0.679 0.915 0.915 0.726 0.799 0.794 0.893 0.704 1 0.915 0.778 1 0.794 1

x34 0.874 0.769 0.738 1 1 0.784 0.864 0.874 0.931 0.769 0.915 1 0.874 0.915 0.874 0.915

x41 1 0.863 0.824 0.874 0.874 0.859 0.917 1 0.834 0.863 0.778 0.874 1 0.905 0.884 0.794

x42 0.794 0.704 0.679 0.915 0.915 0.726 0.799 0.794 0.893 0.703 1 0.915 0.905 1 0.794 1

x43 1 0.863 0.824 0.874 0.874 0.859 0.917 1 0.834 0.863 0.794 0.874 0.884 0.794 1 0.794

x44 0.794 0.704 0.679 0.915 0.915 0.726 0.799 0.794 0.893 0.704 1 0.915 0.794 1 0.794 1

Figure 2: Subimage S

Let S = {x13, x23, x32} be a subimage of X as in Fig. 2 and θ = 0.92. From Definition 3.1, θf -
approximation of S is

Sθ
µR

=
⋃

µR(S,x)>θ

x = {x13, x23, x32, x12, x22}

where x ∈ X . Hence θf -approximation of subimage S consists of θ-fuzzy proximal pixels with S as in Fig. 3.

Figure 3: θf -approximation of subimage S

Lemma 3.4. Let (X,µR) be a FPR-space, A ⊆ X and θ ∈ [0, 1). Then the following statements hold:
(i) ∅θµR

= ∅,
(ii) A ⊆ Aθ

µR
,

(iii) Xθ
µR

= X .
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Ebubekİr İNAN, Mustafa UÇKUN

Proof. It is straightforward. ■

Theorem 3.5. Let (X,µR) be a FPR-space, A,B ⊆ X and θ ∈ [0, 1). Then the following statements hold:
(i) If A ⊆ B, then Bθ

µR
⊆ Aθ

µR
,

(ii)
(
Aθ

µR

)θ
µR

= Aθ
µR

,

(iii) Aθ
µR

∩Bθ
µR

⊆ (A ∩B)
θ
µR

,

(iv) (A ∪B)
θ
µR

⊆ Aθ
µR

∪Bθ
µR

.

Proof. (i) Let A ⊆ B and x ∈ Bθ
µR

where θ ∈ [0, 1). Then µR(B, x) > θ and hence µR(A, x) > θ since
A ⊆ B. Thus x ∈ Aθ

µR
. Therefore Bθ

µR
⊆ Aθ

µR
.

(ii) It is clear that
(
Aθ

µR

)θ
µR

⊆ Aθ
µR

from (i). Also, Aθ
µR

⊆
(
Aθ

µR

)θ
µR

by Lemma 3.4 (ii) and so
(
Aθ

µR

)θ
µR

=

Aθ
µR

.
(iii) Since A ∩ B ⊆ A and A ∩ B ⊆ B, from (i) Aθ

µR
⊆ (A ∩B)

θ
µR

and Bθ
µR

⊆ (A ∩B)
θ
µR

. Thus

Aθ
µR

∩Bθ
µR

⊆ (A ∩B)
θ
µR

.

(iv) Because of A ⊆ A∪B and B ⊆ A∪B, (A ∪B)
θ
µR

⊆ Aθ
µR

and (A ∪B)
θ
µR

⊆ Bθ
µR

from (i). Therefore

(A ∪B)
θ
µR

⊆ Aθ
µR

∪Bθ
µR

. ■

Theorem 3.6. Let (X,µR) be a FPR-space, Ai ⊆ X (i = 1, 2, · · · , n), n ∈ N and θ ∈ [0, 1). Then the
following statements hold:

(i)
⋂
i

(Ai)
θ
µR

⊆
(⋂

i

Ai

)θ

µR

,

(ii)
(⋃

i

Ai

)θ

µR

⊆
⋃
i

(Ai)
θ
µR

.

Theorem 3.7. Let (X,µR) be a FPR-space, A ⊆ X and θi ∈ [0, 1) (i = 1, 2, · · · , n), n ∈ N. Then
(i) If θ1 > θ2, then Aθ1

µR
⊆ Aθ2

µR
,

(ii) If θ1 > θ2 > · · · > θn, then Aθ1
µR

⊆ Aθ2
µR

⊆ · · · ⊆ Aθn
µR

.

Proof. (i) Let θ1 > θ2 and x ∈ Aθ1
µR

. Then µR(A, x) > θ1 and so µR(A, x) > θ2 since θ1 > θ2. Hence
x ∈ Aθ2

µR
. Consequently, Aθ1

µR
⊆ Aθ2

µR
.

(ii) It is easily obtained from (i). ■

Theorem 3.8. Let (X,µR) be a FPR-space, A ⊆ X , θi ∈ [0, 1), n ∈ N and
∧
i

θi = α,
∨
i

θi = β. Then

(i)
⋃
i

Aθi
µR

= Aα
µR

,

(ii)
⋂
i

Aθi
µR

= Aβ
µR

.

Proof. (i) Let x ∈
⋃
i

Aθi
µR

. Then x ∈ Aθi
µR

and so µR(A, x) > θi for at least i. Hence µR(A, x) > α from∧
i

θi = α. Thus x ∈ Aα
µR

. Therefore
⋃
i

Aθi
µR

⊆ Aα
µR

. Similarly, we can show that Aα
µR

⊆
⋃
i

Aθi
µR

. As a results,⋃
i

Aθi
µR

= Aα
µR

for all i.

(ii) Let x ∈
⋂
i

Aθi
µR

. Then x ∈ Aθi
µR

and so µR(A, x) > θi for all i. Hence µR(A, x) > β from
∨
i

θi = β.

Thus x ∈ Aβ
µR

. Therefore
⋂
i

Aθi
µR

⊆ Aβ
µR

. Similarly, we can show that Aβ
µR

⊆
⋂
i

Aθi
µR

. Consequently,⋂
i

Aθi
µR

= Aβ
µR

for all i. ■

Definition 3.9. Let (X,µR) be a FPR-space and let “·” be a binary operation defined on X . G ⊆ X is called
a θf -approximately groupoid in FPR-space if x · y ∈ Gθ

µR
for all x, y ∈ G.
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Let we consider G is a θf -approximately groupoid with the operation “·” in (X,µR), g ∈ G and A,B ⊆ G.
The subsets g ·A,A · g,A ·B ⊆ Gθ

µR
⊆ X are described as follows:

g ·A = gA = {ga|a ∈ A},

A · g = Ag = {ag|a ∈ A},

A ·B = AB = {ab|a ∈ A, b ∈ B}.

Definition 3.10. Let (X,µR) be a FPR-space, “·” be a binary operation on X and S ⊆ X . S is named a
θf -approximately semigroup in FPR-space if the conditions mentioned below are obtained:

(1) x · y ∈ Sθ
µR

,
(2) (x · y) · z = x · (y · z) property satisfy on Sθ

µR

for all x, y, z ∈ S.

If θf -approximately semigroup has approximately identity element eθ ∈ Sθ
µR

such that x ·eθ = eθ ·x = x for
all x ∈ S, then S is called a θf -approximately monoid in FPR-space. If x · y = y · x property holds in Sθ

µR
for

all x, y ∈ S, then S is commutative θf -approximately semigroup in FPR-space.

Example 3.11. Assume X is a 16 pixel digital image, as shown in Fig. 1 and S = {x13, x23, x32} be a subimage
of X . From Example 3.3, θf -approximation of S is

Sθ
µR

= {x13, x23, x32, x12, x22}

where θ = 0.92.
Let

· : X ×X −→ X

(xij , xkl) 7−→ xij · xkl = xpr

be a binary operation on X such that p = min {i, k} and r = min {j, l}.
By Definition 3.10, since
(1) xij · xkl ∈ Sθ

µR
,

(2) (xij · xkl) · xmn = xij · (xkl · xmn) property satisfy on Sθ
µR

for all xij , xkl, xmn ∈ S

are satisfied, S is indeed a θf -approximately semigroup in FPR-space (X,µR) with “ · ”.
Also, since xij · xkl = xkl · xij for all xij , xkl ∈ S property satisfies in Sθ

µR
, S is a commutative θf -

approximately semigroup.

Definition 3.12. Let (X,µR) be a FPR-space, S ⊆ X be a θf -approximately semigroup and T ⊆ S (T ̸= ∅).
T is called a θf -approximately subsemigroup if T is a θf -approximately semigroup with the operation in S.

Theorem 3.13. Let S be a θf -approximately semigroup and T ⊆ S (T ̸= ∅). If T θ
µR

is a θf -approximately
groupoid and T θ

µR
⊆ Sθ

µR
, then T is a θf -approximately subsemigroup of S .

Proof. Since T θ
µR

is a θf -approximately groupoid, thus x · y ∈ T θ
µR

for all x, y ∈ T . Furthermore, (x · y) · z =

x · (y · z) property satisfies on T θ
µR

for all x, y, z ∈ T , since S is a θf -approximately semigroup and T θ
µR

⊆ Sθ
µR

.
Consequently, T is a θf -approximately subsemigroup of S. ■

Definition 3.14. Let (X,µR) be a FPR-space, S ⊆ X be a θf -approximately semigroup and I ⊆ S.
(1) I is called a θf -approximately left ideal of S if IθµR

is a left ideal of S, i.e., S(IθµR
) ⊆ IθµR

.
(2) I is called a θf -approximately right ideal of S if IθµR

is a right ideal of S, i.e., (IθµR
)S ⊆ IθµR

.
(3) I is called a θf -approximately bi-ideal of S if IθµR

is a bi-ideal of S, i.e., (IθµR
)S(IθµR

) ⊆ IθµR
.

Example 3.15. In Example 3.11, let we use θf -approximately semigroup S = {x13, x23, x32}. From Definition
3.14, obviously S ⊆ S is a θf -approximately left ideal, θf -approximately right ideal and also θf -approximately
bi-ideal of S.
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Theorem 3.16. Let (X,µR) be a FPR-space and S ⊆ X . If S is a semigroup in X , then S is a θf -approximately
semigroup in FPR-space.

Proof. Assume that S ⊆ X be a semigroup. Using Lemma 3.4 (ii), S ⊆ Sθ
µR

is obtained. Hence x · y ∈ Sθ
µR

and (x · y) ·z = x · (y · z) condition is also accurate in Sθ
µR

for all x, y, z ∈ S. After that S is a θf -approximately
semigroup in FPR-space. ■

The Theorem 3.16 shows that θf -approximately semigroup is a generalization of a semigroup.

Theorem 3.17. Let (X,µR) be a FPR-space and S ⊆ X . If I is a left (right) ideal of θf -approximately
semigroup S and

(
Sθ
µR

) (
IθµR

)
⊆ IθµR

(
(
IθµR

) (
Sθ
µR

)
⊆ IθµR

), then I is a θf -approximately left (right) ideal of
S.

Proof. Let we consider I be a left ideal of θf -approximately semigroup S, that is, SI ⊆ I . We know that
S ⊆ Sθ

µR
. Hence, from the hypothesis

(
Sθ
µR

) (
IθµR

)
⊆ IθµR

,

S
(
IθµR

)
⊆

(
Sθ
µR

) (
IθµR

)
⊆ IθµR

.

As a results, IθµR
is a left ideal of S and so I is a θf -approximately left ideal of S. Also, It is obviously if I

is a right ideal of θf -approximately semigroup S and
(
IθµR

) (
Sθ
µR

)
⊆ IθµR

, I is a θf -approximately right ideal of
S. ■

4. Conclusions

This work proposed θf -approximations of sets in fuzzy proximal relator space to provide more sensitive approach
for approximations or clustering. From the examples and results, it was verified that θf -approximation is able to
classify the pixels in digital images more precisely according to the selected θ ∈ [0, 1). Other results about
θf -approximately algebraic structures provides a theoretical basis for further studies. Future studies should
investigate the performance of this theory with experimental studies in any applied fields.
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[7] E. İNAN AND M. UÇKUN, Semitopological δ-Groups, Hacet. J. Math. Stat., 52(1)(2023), 163–170.
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