

https://doi.org/10.26637/MJM0901/0033

Color class dominations sets in various classes of graphs

A. Vijayalekshmi¹* and A. E. Prabha²

Abstract

Let $G = (V, E)$ be a graph. A color class dominating set of G is a proper coloring $\mathscr C$ of G with the extra property that every color class in $\mathscr C$ is dominated by a vertex in G . A color class dominating set is said to be a minimal color class dominating set if no proper subset of $\mathscr C$ is a color class dominating set of G. The color class domination number of *G* is the minimum cardinality taken over all minimal color class dominating sets of *G* and is denoted by γ^χ (*G*). Here we also obtain γ^χ (*G*) for Multi-star graph, Windmill graph, Barbell graph, Lollipop graph, Complete *m*-partite graph, Fan graph, Crown graph and Cocktail party graph.

Keywords

Chromatic number, domination number, color class dominating set, color class domination number.

AMS Subject Classification

05C15, 05C69.

1,2*Department of Mathematics, S.T.Hindu College, Nagercoil-629 002, Tamil Nadu, India.* ***Corresponding author**: ¹vijimath.a@gmail.com **Article History**: Received **14** November **2020**; Accepted **12** January **2021** c 2021 MJM.

Contents

1 [Introduction](#page-0-0) . 195 2 [Main Results](#page-1-0) . 196 [References](#page-3-0) . 198

1. Introduction

All graphs considered in this paper are finite, undirected graphs and we follow standard definitions of graph theory as found in [4]. Let $G = (V, E)$ be a graph of order p. The open neighborhood $N(v)$ of a vertex $v \in V(G)$ consist of the set of all vertices adjacent to *v*.The closed neighborhood of *v* is $N[v] = N(v) \cup \{v\}$. For a set *S* ⊆ *V*, the open neighborhood $N(S)$ is defined to be $\bigcup_{v \in S} N(v)$, and the closed neighborhood of *S* is $N[S] = N(S) \cup S$.

A subset *S* of *V* is called a dominating set if every vertex in *V* − *S* is adjacent to some vertex in *S*. A dominating set is minimal dominating set if no proper subset of *S* is a dominating set of *G*. The domination number $\gamma(G)$ is the minimum cardinality taken over all minimal dominating sets of *G*. A γ set is any minimal dominating set with cardinality γ . A proper coloring of *G* is an assignment of colors to the vertices of *G*, such that adjacent vertices have different colors. The smallest number of colors for which there exists a proper coloring of *G* is called chromatic number of *G* and is denoted by $\chi(G)$. A color class dominating set of *G* is a proper coloring $\mathscr C$ of *G* with the extra property that every color classes in $\mathscr C$ is dominated by a vertex in *G*. A color class dominating set is said to be a minimal color class dominating set if no proper subset of $\mathscr C$ is a color class dominating set of G. The color class domination number of *G* is the minimum cardinality taken over all minimal color class dominating sets of *G* and is denoted by $\gamma_{\chi}(G)$. This concept was introduced by A. Vijayalekshmi et all [2]. The join $G_1 + G_2$ of Graphs G_1 and G_2 with disjoint vertex sets V_1 and V_2 and edge sets E_1 and E_2 is the graph union $G_1 \cup G_2$ together with each vertex in V_1 is adjacent to every vertices in V_2 . A path on *n* vertices denoted by P_n , is a connected graph with all but two vertices have degree 2 and $V(P_n) = \{v_i/1 \le i \le n\}$ with $v_i v_{i+1} \in E(P_n)$ for $i < n$.

The Complete graph K_p has every pair of p vertices adjacent. A complete bipartite graph is a bipartite graph with disjoint vertex sets V_1 and V_2 in which every pair of vertices in the two sets are adjacent and is denoted by *Km*,*n*. The Multi-star graph $K_{m(a_1, a_2, \ldots, a_m)}$ is formed by joining a_i end vertices to each vertex x_i of a complete graph K_m ($1 \le i \le m$) where $V(K_m) = \{x_1, x_2, \ldots, x_m\}$. The windmill graph $W_n^{(m)}$ is the graph obtained by taking *m*-copies of the complete graph *Kⁿ* with a vertex in common. The n-barbell graph B_n is the simple graph obtained by connecting two copies of a complete graph K_n by a bridge. The (m, n) -lollipop graph $L_{m,n}$ is the graph obtained by joining a complete graph *K^m* to a path graph *Pⁿ*

with a bridge. The complete *m*-partite graph K_{a_1, a_2, \dots, a_m} is a simple graph whose vertices can be partitioned into *m* disjoint nonempty sets V_1, V_2, \ldots, V_m , such that each vertex in one partite set, say, V_i is adjacent to every vertices in other partite sets

$$
V_1, V_2, \ldots, V_{i-1}, V_{i+1}, V_{i+2}, \ldots, V_m
$$

with $|V_i| = a_i (1 \le i \le n)$. The Fan graph $F_{m,n}$ is defined as the graph join $\overline{K_m} + P_n$ where $\overline{K_m}$ is the complement of K_m with vertex set $\{u_1, u_2, \ldots, u_m\}$ and P_n is a path with vertex set $\{v_1, v_2, \ldots, v_n\}$. The crown graph S_n^0 for an integer $n \geq 3$ is the graph with vertex set $\{u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_n\}$ and edge set

$$
\{(u_i,v_j)/1\leq i,j\leq n,i\neq j\}.
$$

The cocktail party graph of order 2*n* is the graph consisting of two rows of paired paths $P_n^{(1)}, P_n^{(2)}$ such that each vertex in $P_n^{(1)}$ is adjacent to all vertices in $P_n^{(2)}$ except the corresponding paired vertex and is denoted by *Tv*.

2. Main Results

Theorem 2.1. *Let G be a connected graph of order p*. *Then* $\gamma_{\chi}(G) = p$ *if and only if* $G \cong K_p$ *, for* $p \geq 2$

Proof. Let *G* be a non-complete graph with $\delta(G) > 0$. We show that $\gamma_{\chi}(G) < p$. Let $u_1u_2 \notin E(G)$. We consider the following two cases.

Case(1): Let u_1 and u_2 are adjacent to a same vertex u_3 . Then we allot color 1 to u_1 and u_2 and colors $2, 3, \ldots, p$ - 1to the remaining $p-2$ vertices. This is clearly a γ_{χ} -coloring of G. **Case(2):** Let u_1 and u_2 are not adjacent to a same vertex. Then there must be a path connecting u_1 and u_2 and in that path there are two non-adjacent vertices as in case (1). Proceed as in case (1), we show that $\gamma_{\chi}(G) < p$. The Converse is obvious.

Proposition 2.2. *For the Complete bipartite* graph $K_{m,n}$ *, m,* $n \geq 2$,

$$
\gamma_{\chi}(K_{m,n})=2.
$$

Theorem 2.3. *The multi-star graph* $K_{m(a_1, a_2, \ldots, a_m)}$ *has*

$$
\gamma_{\chi}\left(K_{m(a_1,a_2,\ldots,a_m)}\right)=m.
$$

Proof. Let $K_{m(a_1, a_2, \ldots, a_m)}$ be the multi-star graph, and let

$$
V\left(K_{m(a_1, a_2, ..., a_m)}\right) = \{v_1^i \mid 1 \le i \le m\} \cup \{u_i^j/1 \le i \le m, 1 \le j \le a_i\}
$$

with each v_1^i , $1 \le i \le m$, is adjacent to v_1^j $j \atop 1$ for $j \neq i, 1 \leq i \leq m$ and u_i^j , $1 \le j \le a_i$. For $1 \le i \le m-1$, assign color *i* to the vertices $\{v_1^i\} \cup \{u_i^j\}$ $\left\{\n \begin{array}{c}\n j \\
i+1\n \end{array}\n \right\}$, where $1 \leq j \leq a_{i+1}$ and color *m* to the vertices $\{v_1^m\} \cup \left\{u_1^j\right\}$ $\begin{cases} j \\ 1 \end{cases}$, where $1 \le j \le a_1$ respectively. Then clearly, each color class \mathcal{C}_i , $1 \le i \le m-1$ is dominated

by the vertex v_1^{i+1} and the color class \mathcal{C}_m is dominated by the vertex v_1^1 . So

$$
\gamma_{\chi}\left(K_{m(a_1,a_2,\ldots,a_m)}\right)=m.
$$

Theorem 2.5. For the windmill graph $G = W_n^{(m)}$, $\gamma_\chi (W_n^{(m)}) =$ *n.*

Proof. Let $G = W_n^{(m)}$ be the windmill graph with $n, m \geq 3$ formed by *m*-copies of the complete graph K_n with $V\left(W_n^{(m)}\right) =$ $\{v_{ij}/1 \le i \le m, 1 \le j \le n\}$ with $v_{11} = v_{21} = \cdots = v_{n1}$ is a common vertex, say, v_{11} and assign distinct colors $1, 2, 3, \ldots, n$ to the vertices $v_{11}, \{v_{i2}/1 \le i \le m\}, \{v_{i3}/1 \le i \le m\}, \ldots, \{v_{in}$ $/1 \le i \le m$ } respectively, we get a γ_{χ} − coloring. Thus $\gamma_{\chi}\left(W_n^{(m)}\right)=n.$ \Box

Example 2.6.

Example 2.4.

 \Box

Theorem 2.7. *The Barbell graph* B_n *with* $n \geq 3$ *has* $\gamma_\chi(B_n) =$ 2*n*−2*.*

Proof. Let *Bⁿ* be the n-Barbell graph with

$$
V(B_n) = \{v_1, v_2, \ldots, v_n\} \cup \{v_{n+1, v_{n+2} \ldots, v_{2n}\}.
$$

Assign color i (1 ≤ i ≤ 2*n*−2) to the vertices {(v_1, v_{n+2}), v_2, v_3 , ..., v_{n-1} , (v_n, v_{n+1}) v_{n+3} , v_{n+4} , ..., v_{2n} } respectively, we get a γ_{χ} -coloring of B_n . Hence $\gamma_{\chi}(B_n) = 2n - 2$. \Box

Example 2.8.

Theorem 2.9. *The Lollipop graph* $L_{m,n}$ *,* $m \geq 3$ *has*

$$
\gamma_{\chi}(L_{m,n}) = \begin{cases}\n m + \left(\frac{n-2}{2}\right) & \text{if } n \equiv 2 \pmod{4} \\
m + \frac{n}{2} & \text{if } n \equiv 0 \pmod{4} \\
m + \left[\frac{n-2}{2}\right] & \text{if } n \equiv 1,3 \pmod{4}\n\end{cases}
$$

Proof. Let

$$
V(L_{m,n}) = \{v_1, v_2, \ldots, v_m, v_{m+1}, v_{m+2}, \ldots, v_{m+n}\}\
$$

with deg(v_i) = $m-1$ ($1 \le i \le m-1$), deg(v_m) = m , deg(v_i) = $2(m + 1 \le i \le m + n - 1)$ and $\deg(v_{m+n}) = 1$. Assign the colors $i(1 \le i \le m)$ to the vertices $\{v_i/1 \le i \le m-2\}$, $(v_{m-1},$ v_{m+1}) and (v_m, v_{m+2}) respectively. Also the induced subgraph < *vm*+3, *vm*+4,..., *vm*+*ⁿ* >∼= *Pn*−2. So

$$
\gamma_{\chi}(L_{m,n}) = m + \gamma_{\chi}(P_{n-2}) = \begin{cases} m + \left(\frac{n-2}{2}\right) & \text{if } n \equiv 2 \pmod{4} \\ m + \frac{n}{2} & \text{if } n \equiv 0 \pmod{4} \\ m + \left[\frac{n-2}{2}\right] & \text{if } n \equiv 1, 3 \pmod{4} \end{cases}
$$

Example 2.10.

Theorem 2.11. *The complete m-partite graph* K_{a_1, a_2, \dots, a_m} has $\gamma_{\chi} (K_{a_1, a_2, ..., a_m}) = m.$

Proof. Let

$$
V(K_{a_1,a_2,...,a_m}) = \left\{v_i^j/1 \leq i \leq m, 1 \leq j \leq a_i\right\}.
$$

Assign distinct colors $i(1 \le i \le m)$ to the vertices

$$
\left\{v_i^j/1 \leq i \leq m, 1 \leq j \leq a_i\right\},\
$$

we get a γ_{χ} -coloring of $K_{a_1, a_2, ..., a_m}$. Hence γ_{χ} ($K_{a_1, a_2, ..., a_m}$) = *m*.

Example 2.12.

Theorem 2.13. *For the Fan graph* $F_{m,n}$ *,* $m \geq 1$ *,* $n \geq 2$ *,*

$$
\gamma_{\chi}(F_{m,n})=3
$$

Proof. Let,

$$
F_{m,n} = \{v_1, v_2, \ldots, v_n\} \cup \{u_1, u_2, \ldots, u_m\},\
$$

where v_1, v_2, \ldots, v_n be the vertices of the path P_n and u_1, u_2, \ldots , u_m be the vertices of $\overline{K_m}$ Consider a proper coloring $\mathscr{C} = {\mathscr{C}_1,$ $\mathcal{C}_2, \ldots, \mathcal{C}_m$ in which $\mathcal{C}_1 = \{u_1, u_2, \ldots, u_m\}$ and when *n* is odd, $\mathcal{C}_2 = \{v_1, v_3, \ldots, v_n\}, \mathcal{C}_3 = \{v_2, v_4, \ldots, v_{n-1}\},\$ when *n* is even $\mathcal{C}_2 = \{v_1, v_3, \dots, v_{n-1}\}$ and $\mathcal{C}_3 = \{v_2, v_4, \dots, v_n\}$. Then

 \Box

the color class \mathcal{C}_1 is dominated by each vertex in the path P_n and the color classes \mathcal{C}_2 and \mathcal{C}_3 are dominated by the vertices u_1, u_2, \ldots, u_m . Therefore $\mathcal C$ is a γ_χ -coloring of $F_{m,n}$ with 3 colors and so $\gamma_{\chi}(F_{m,n}) = 3$.

Example 2.14.

the vertices $\left\{ v_i^{(2)}/i = 1, 3, ..., n \text{ if } n \text{ is odd } \right\}$ or $\left\{ v_i^{(2)}/i = 1, 3, ..., n \text{ if } n \text{ is odd } \right\}$ 1,3,...,*n* − 1 if *n* is even $\}$ and $\{v_i^{(2)}/i = 2, 4, ..., n$ if *n* is even $\}$ or $\{v_i^{(2)}/i = 2, 4, ..., n-1$ if *n* is odd $\}$ respectively. So, $\gamma_{\chi}(T_{\nu}) = 4$. \Box

Example 2.18.

Theorem 2.15. *For the Crown Graph* $S_n^0, n \ge 2, \gamma_\chi(S_n^0) = 4$ *.*

Proof. Let *G* be a Crown graph. Let

$$
(S_n^0) = \{u_1, u_2, \ldots, u_n\} \cup \{v_1, v_2, \ldots, v_n\}.
$$

Let $\mathcal{C}_1 = \{u_1, u_2, \ldots, u_{n-1}\}, c_2 = \{v_1, v_2, \ldots, v_{n-1}\}, c_3 =$ $\{u_n\}$ and $\mathcal{C}_4 = \{v_n\}$ be the γ_χ -coloring of S_n^0 . Because \mathcal{C}_1 , \mathcal{C}_2 , \mathcal{C}_3 , \mathcal{C}_4 are dominated by the vertices v_n , u_n , u_n , v_n respectively. Hence γ , $(S^0) = 4$. respectively. Hence $\gamma_{\chi} (S_n^0) = 4$.

Example 2.16.

Theorem 2.17. *For the Cocktail party Graph* T_v , $\gamma_\chi(T_v) = 4$ *.*

Proof. Let $V(T_v) = \{v_i^{(1)}, v_i^{(2)}/1 \le i \le n\}$. We assign two distinct colors, say, 1 and 2 to the vertices $\left\{v_i^{(1)}\right\}$ $i^{(1)}/i = 1, 3, \ldots, n$ if *n* is odd $\}$ or $\{v_i^{(1)}\}$ $i^{(1)}/i = 1, 3, ..., n-1$ if *n* is even $\}$ and $\left\{v_i^{(1)}\right\}$ $\left\{ \frac{1}{i} \right\}$ /*i* = 2,4,...,*n* if *n* is even $\left\}$ or $\left\{ v_i^{(1)} \right\}$ $i^{(1)}/i = 2, 4, \ldots, n-1$ if *n* is odd $\}$ respectively. Also we assign colors 3 and 4 to

References

- [1] A. Vijayalekshmi, Total Dominator Colorings in Graphs, *International Journal of Advancements in Research and Technology,* 1(4), 2012.
- [2] A. Vijayalekshmi, A. E. Prabha, *Introduction of Color Class Dominating Sets in Graphs* [Accepted].
- [3] R. M. Gera, *On Dominator Colorings in Graphs*, New York, Network Academy of Sciences, 2007.
- [4] F. Harrary, *Graph Theory*, Addition-Wesley Reading Mass, 1969.
- [5] Terasa W. Haynes, Stephen T. Hedetniemi, Peter J Slater, *Domination in Graphs*, Marcel Dekker, New york, 1998.

* * * * * * * * * ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 *********

