

https://doi.org/10.26637/MJM0901/0049

On β^* -open and β^* -closed sets in fuzzy topological space

R. Thangappan¹

Abstract

A new concept of fuzzy β^* -open and fuzzy β^* -closed sets in fuzzy topological space is presented in this paper. Also some basic concepts and properties of them are investigated. Some theorems and examples for β^* -open and β^* -closed sets are introduced.

Keywords

 β^* -open, β^* -closed, β -closure, fuzzy open.

¹Department of Mathematics, Rajah Serfoji Government Arts College (Autonomous), (Affiliated to Bharathidasn University, Trichirappalli), Thanjavur, Tamil Nadu, India.

*Corresponding author: 1 thangappan.tnj@gmail.com

Article History: Received 08 December 2020; Accepted 19 January 2021

©2021 MJM.

Contents

1	Introduction and Preliminaries
2	Fuzzy Topological Space291
3	Fuzzy β^* -open Sets in Fuzzy Topological Space . 292
4	Fuzzy β^* -Closed Sets in Fuzzy Topological Space292
5	Conclusion
	References

1. Introduction and Preliminaries

The method of fuzzy set was introduced by Zedeh [1]. Chang [2] has added fuzzy topological space. Khalik [3] has made a study on certain types of fuzzy separation axioms in fuzzy topological space on fuzzy sets. Singal [4] introduced regularly open sets in fuzzy topological spaces and Lee [5] introduced fuzzy delta separation axioms. Zahran [6] further added the new class of fuzzy open sets: there are fuzzy β -open sets, fuzzy β -closed sets, fuzzy regular open sets and fuzzy regular closed sets. In the present work, some properties and theorems are explored.

 β^* -open set and β^* -closed set in fuzzy topological space are introduced based on work of Mubarki [7]. Also some properties and some theorems are investigated.

The present paper (X, τ) , (Y, σ) (or simply X, Y) represents non-empty fuzzy topological spaces. Let μ be a fuzzy subset of a space X. The fuzzy closure of μ , fuzzy interior of μ , fuzzy δ -closure of μ and the fuzzy δ -interior of μ are denoted by $cl(\mu)$, $int(\mu)$, $cl_{\delta}(\mu)$ and $int_{\delta}(\mu)$ respectively. The

fuzzy δ -interior of fuzzy subset μ of X is the union of all fuzzy regular open sets contained in μ . A fuzzy subset μ is called fuzzy δ -open [8] if $\mu = int_{\delta}(\mu)$. The complement of fuzzy δ -open set is called fuzzy δ -closed (i.e, $\mu = cl_{\delta}(\mu)$).

2. Fuzzy Topological Space

Definition 2.1. A family $\tau \subseteq I^X$ of fuzzy subsets is called a fuzzy topology (in the sense of Chang [2]) for X if it satisfies the following conditions:

- (*i*) $0_X, 1_X \in \tau$.
- (ii) $\lambda, \mu \in \tau$, then $\wedge \mu \in \tau$.
- (iii) $\lambda_i \in \tau$ for each $i \in \mathscr{F}$, then $\forall_{i \in \mathscr{F}} \lambda_i \in \tau$.

Members of τ are called fuzzy open subsets and the complement of fuzzy open subsets is called fuzzy closed subsets on fuzzy topological space (X, τ) .

Definition 2.2. A fuzzy set μ of (X, τ) is called as follows [9–13]:

- (i) Fuzzy semi open if $\mu \leq cl(int(\mu))$.
- (*ii*) Fuzzy α -open if $\mu \leq int(cl(int(\mu)))$.
- (iii) Fuzzy pre-open (fuzzy pre-closed)) if $\mu \leq int(cl(\mu))(cl(int(\mu)) \leq \mu)$.
- (iv) Fuzzy regular open if $\mu = cl(int(\mu) \ (\mu = int(cl(\mu)) \ closed).$
- (v) Fuzzy e-open if $\mu \leq cl(int_{\delta}(\mu)) \vee int(cl_{\delta}(\mu))$ $(\mu \geq cl(int_{\delta}(\mu)) \wedge int(cl_{\delta}(\mu)) closed).$

3. Fuzzy β^* -open Sets in Fuzzy Topological Space

In this section a new open set in fuzzy topological space is introduced.

Definition 3.1. A fuzzy subset μ of a fuzzy topological space (X, τ) is said to be β^* -open set if $\mu \leq cl(int(cl(\mu))) \lor int(cl_{\delta}(\mu)).$

Example 3.2. $X = \{x, y, z\}$ and the fuzzy topology

$$\tau = \{0, 1, \{x_{0.2}, y_{0.1}, z_{0.1}\}, \{x_{0.4}, y_{0.1}, z_{0.1}\}, \{x_{0.6}, y_{0.9}, z_{0.9}\}, \{x_{0.6}, y_{0.5}, z_{0.7}\}, \{x_{0.8}, y_{0.9}, z_{0.9}\}\} and$$

$$\tau^{c} = \{0, 1, \{x_{0.8}, y_{0.9}, z_{0.9}\}, \{x_{0.6}, y_{0.9}, z_{0.9}\}, \{x_{0.4}, y_{0.1}, z_{0.1}\}, \{x_{0.4}, y_{0.5}, z_{0.3}\}, \{x_{0.2}, y_{0.1}, z_{0.1}\}\}.$$
Let $\mu = \{x_{0.6}, y_{0.9}, z_{0.9}\}, cl(int(cl(\mu))) \lor int(cl_{\delta}(\mu))) = \{x_{0.6}, y_{0.9}, z_{0.9}\}.$

i.e., μ *is* β^* *-open set.*

Remark 3.3. From the definitions I obtain the following diagram holds for each a subset of μ of X.

Result 3.4.

- (*i*) Fuzzy β^* -open is fuzzy δ -preopen if $cl(int(cl(\mu))) = 0.$
- (ii) Fuzzy β^* -open is β -open if $\operatorname{int}(\operatorname{cl}_{\delta}(\mu)) = 0.$

Proposition 3.5. If μ is fuzzy δ -pre open and λ is fuzzy β -open then $\mu \lor \lambda$ is fuzzy β^* -open.

Proof. Obvious from Definition 3.1.

Proposition 3.6. Let (X, τ) be a fuzzy topological space. Then the union of any two fuzzy β^* -open sets is an β^* -open set.

Proof. Let
$$\mu_1, \mu_2$$
 be two fuzzy β^* -open sets,
 $\mu_1 \leq cl(int(cl(\mu_1))) \lor int(cl_{\delta}(\mu_1))$ and
 $\mu_2 \leq cl(int(cl(\mu_2))) \lor int(cl_{\delta}(\mu_2))$ (by Definition 3.1)

Then we have,

$$\begin{split} \mu_1 &\lor \mu_2 \leq \mathrm{cl}\Big(\mathrm{int}\big(\mathrm{cl}(\mu_1)\big)\Big) \lor \mathrm{int}\big(\mathrm{cl}_{\delta}(\mu_1)\big) \\ &\lor \mathrm{cl}\Big(\mathrm{int}\big(\mathrm{cl}(\mu_2)\big)\Big) \lor \mathrm{int}\big(\mathrm{cl}_{\delta}(\mu_2)\big). \\ \mu_1 &\lor \mu_2 \leq \mathrm{cl}\big(\mathrm{int}\big(\mathrm{cl}(\mu_1 \lor \mu_2)\big) \lor \mathrm{int}\big(\mathrm{cl}_{\delta}(\mu_1 \lor \mu_2)\big) \end{split}$$

Since, the arbitrary union of fuzzy β^* -open sets is fuzzy β^* -open set.

Theorem 3.7. Let (X, τ) be a fuzzy topological space and let $\{\mu_{\alpha}\}_{\alpha \in \mathscr{F}}$ be the collection of fuzzy β^* -open sets in fuzzy topological space X, then $\forall_{\alpha \in \mathscr{F}}(\mu_{\alpha})$ is fuzzy β^* -open set.

Proof. Let \mathscr{F} be the collection of fuzzy β^* -open sets in fuzzy topological space (X, τ) .

For each $\alpha \in \mathscr{F}$, $\mu_{\alpha} \leq cl(int(cl(\mu_{\alpha}))) \vee int(cl_{\delta}(\mu_{\alpha}))$. Thus,

$$\begin{split} & \forall_{\alpha \in \mathscr{F}}(\mu_{\alpha}) \leq \lor_{\alpha \in \mathscr{F}} \mathrm{cl}\Big(\mathrm{int}\big(\mathrm{cl}(\mu_{\alpha})\big)\Big) \lor \mathrm{int}\big(\mathrm{cl}_{\delta}(\mu_{\alpha})\big). \\ & \forall_{\alpha \in \mathscr{F}}(\mu_{\alpha}) \leq \mathrm{cl}\bigg(\mathrm{int}\Big(\mathrm{cl}\big(\lor_{\alpha \in \mathscr{F}}\big)(\mu_{\alpha})\Big) \\ & \qquad \qquad \lor \mathrm{int}\Big(\mathrm{cl}_{\delta}\big(\lor_{\alpha \in \mathscr{F}}(\mu_{\alpha})\big)\Big) \end{split}$$

Since, the arbitrary union of fuzzy β^* -open sets is fuzzy β^* -open set.

Theorem 3.8. Let (X, τ) and (X, σ) be any two fuzzy topological spaces such that X is product related to Y. Then the product $\mu_1 \times \mu_2$ of a fuzzy β^* -open set μ_1 of X and fuzzy β^* -open set μ_2 of Y is fuzzy β^* -open set of the fuzzy product space $X \times Y$.

Proof. Let μ_1 , μ_2 are two fuzzy β^* -open sets of X and Y respectively, From Definition 3.1,

$$\mu_{1} \leq cl\left(int(cl(\mu_{1}))\right) \vee int(cl_{\delta}(\mu_{1})) \text{ and } \\ \mu_{2} \leq cl\left(int(cl(\mu_{2}))\right) \vee int(cl_{\delta}(\mu_{2})).$$

Then we have,

$$\begin{split} \mu_1 \times \mu_2 &\leq \mathrm{cl}\Big(\mathrm{int}\big(\mathrm{cl}(\mu_1)\big)\Big) \vee \mathrm{int}\big(\mathrm{cl}_{\delta}(\mu_1)\big) \\ &\times \mathrm{cl}\Big(\mathrm{int}\big(\mathrm{cl}(\mu_2)\big)\Big) \vee \mathrm{int}\big(\mathrm{cl}_{\delta}(\mu_2)\big). \\ \mu_1 \times \mu_2 &\leq \mathrm{cl}\big(\mathrm{int}(\mathrm{cl}(\mu_1 \times \mu_2)\big) \vee \mathrm{int}(\mathrm{cl}_{\delta}(\mu_1 \times \mu_2)) \end{split}$$

 $\mu_1 \times \mu_2$ is fuzzy β^* -open in the fuzzy product space $X \times Y$.

4. Fuzzy β^* -Closed Sets in Fuzzy Topological Space

In this section a new closed set in fuzzy topological space is introduced.

Definition 4.1. A fuzzy subset μ of a fuzzy topological space (X, τ) is said to be β^* -closed set if $\mu \ge int(cl(int(\mu))) \land cl(int_{\delta}(\mu)).$

Example 4.2. $X = \{x, y, z\}$. And the fuzzy topology

 $\tau = \{0, 1, \{x_{0.2}, y_{0.1}, z_{0.1}\}, \{x_{0.4}, y_{0.1}, z_{0.1}\}, \\ \{x_{0.6}, y_{0.9}, z_{0.9}\}, \{x_{0.6}, y_{0.5}, z_{0.7}\}, \\ \{x_{0.8}, y_{0.9}, z_{0.9}\}\}$

and

$$egin{aligned} & m{ au}^c = ig\{0, 1, \{x_{0.8}, y_{0.9}, z_{0.9}\}, \{x_{0.6}, y_{0.9}, z_{0.9}\}, \ & \{x_{0.4}, y_{0.1}, z_{0.1}\}, \{x_{0.4}, y_{0.5}, z_{0.3}\}, \ & \{x_{0.2}, y_{0.1}, z_{0.1}\}ig\}. \end{aligned}$$

Let $\mu = \{x_{0.6}, y_{0.9}, z_{0.9}\},\$ int $(cl(int(\mu))) \land cl(int_{\delta}(\mu)) = \{x_{0.6}, y_{0.9}, z_{0.9}\}.\$ μ is β^* -closed set.

Result 4.3.

- (i) Fuzzy β^* -closed is fuzzy δ -semi open if $cl(int(cl(\mu))) = 0.$
- (ii) Fuzzy β^* -closed is α -open if $\operatorname{cl}(\operatorname{int}_{\delta}(\mu)) = 0$.

Proposition 4.4. If μ is fuzzy δ -semi open and λ is fuzzy α -open then $\mu \wedge \lambda$ is fuzzy β^* -closed.

Proof. Obvious from Definition 4.1. \Box

Proposition 4.5. Let (X, τ) be a fuzzy topological space. Then the intersection of two fuzzy β^* -closed sets is a β^* closed set in the fuzzy topological space (X, τ) .

Proof. Let μ_1 , μ_2 be two fuzzy β^* -closed sets. $\mu_1 \ge \operatorname{int}(\operatorname{cl}(\operatorname{int}(\mu_1))) \land \operatorname{cl}(\operatorname{int}_{\delta}(\mu_1))$. And $\mu_2 \ge \operatorname{int}(\operatorname{cl}(\operatorname{int}(\mu_2))) \land \operatorname{cl}(\operatorname{int}_{\delta}(\mu_2))$ by Definition 4.1. Then we have,

$$\begin{split} \mu_1 \wedge \mu_2 &\geq \operatorname{int} \Big(\operatorname{cl} \big(\operatorname{int} (\mu_1) \big) \Big) \wedge \operatorname{cl} \big(\operatorname{int}_{\delta} (\mu_1) \big) \wedge \\ &\qquad \operatorname{int} \big(\operatorname{cl} \big(\operatorname{int} (\mu_2) \big) \Big) \wedge \operatorname{cl} \big(\operatorname{int}_{\delta} (\mu_2) \big) . \\ \mu_1 \wedge \mu_2 &\geq \operatorname{int} \Big(\operatorname{cl} \big(\operatorname{int} (\mu_1 \wedge \mu_2) \big) \Big) \wedge \operatorname{cl} \big(\operatorname{int}_{\delta} (\mu_1 \wedge \mu_2) \big) . \end{split}$$

Therefore, $\mu_1 \wedge \mu_2$ is fuzzy β^* -closed set.

Theorem 4.6. Let (X, τ) be a fuzzy topological space and let $\{\mu_{\alpha}\}_{\alpha \in \mathscr{F}}$ be the collection of fuzzy β^* -closed sets in fuzzy topological space X, then $\wedge_{\alpha \in \mathscr{F}}(\mu_{\alpha})$ is fuzzy β^* -closed set.

Proof. Let \mathscr{F} be the collection of fuzzy β^* -closed sets in fuzzy topological space (X, τ) .

For each
$$\alpha \in \mathscr{F}$$
, $\mu_{\alpha} \geq \operatorname{int} \left(\operatorname{cl}(\operatorname{int}(\mu_{\alpha})) \right) \wedge \operatorname{cl}(\operatorname{int}_{\delta}(\mu_{\alpha}))$. Thus,

$$\begin{split} \wedge_{\alpha \in \mathscr{F}}(\mu_{\alpha}) &\geq \wedge_{\alpha \in \mathscr{F}} \mathrm{int}\Big(\mathrm{cl}\big(\mathrm{int}(\mu_{\alpha})\big)\Big) \wedge \mathrm{cl}\big(\mathrm{int}_{\delta}(\mu_{\alpha})\big). \\ \wedge_{\alpha \in \mathscr{F}}(\mu_{\alpha}) &\geq \mathrm{int}\Big(\mathrm{cl}\big(\mathrm{int}\big(\wedge_{\alpha \in \mathscr{F}}(\mu_{\alpha})\big)\Big)\Big) \\ &\wedge \mathrm{cl}\Big(\mathrm{int}_{\delta}\big(\wedge_{\alpha \in \mathscr{F}}(\mu_{\alpha})\big)\Big). \end{split}$$

Since, the arbitrary intersection of fuzzy β^* -closed sets is fuzzy β^* -closed set.

Theorem 4.7. Let (X, τ) and (X, σ) be any two fuzzy topological spaces such that X is product related to Y. Then the product $\mu_1 \times \mu_2$ of a fuzzy β^* -closed set μ_1 of X and fuzzy β^* -closed set μ_2 of Y is fuzzy β^* -closed set of the fuzzy product space $X \times Y$.

Proof. Let μ_1 , μ_2 are two fuzzy β^* -closed sets of *X* and *Y* respectively. From Definition 4.1,

 $\mu_1 \ge \operatorname{int} \left(\operatorname{cl}(\operatorname{int}(\mu_1))) \wedge \operatorname{cl}(\operatorname{int}_{\delta}(\mu_1)) \right). \text{ And} \\ \mu_2 \ge \operatorname{int} \left(\operatorname{cl}(\operatorname{int}(\mu_2)) \right) \wedge \operatorname{cl}(\operatorname{int}_{\delta}(\mu_2)).$

 $\mu_2 \ge \inf\left(\operatorname{cr}(\operatorname{Int}(\mu_2))\right) / \operatorname{cr}(\operatorname{Int}_{\delta}(\mu_2))$ Then we have,

$$\begin{split} \mu_1 \times \mu_2 &\geq \operatorname{int} \left(\operatorname{cl} \left(\operatorname{int} (\mu_1) \right) \right) \wedge \operatorname{cl} \left(\operatorname{int}_{\delta} (\mu_1) \right) \\ &\times \operatorname{int} \left(\operatorname{cl} \left(\operatorname{int} (\mu_2) \right) \right) \wedge \operatorname{cl} \left(\operatorname{int}_{\delta} (\mu_2) \right) \\ \mu_1 \times \mu_2 &\geq \operatorname{int} \left(\operatorname{cl} \left(\operatorname{int} (\mu_1 \times \mu_2) \right) \right) \wedge \operatorname{cl} \left(\operatorname{int}_{\delta} (\mu_1 \times \mu_2) \right) . \end{split}$$

 $\mu_1 \times \mu_2$ is fuzzy β^* -closed in the fuzzy product space $X \times Y$.

5. Conclusion

In this paper, a new class of open and closed sets in fuzzy topological space, namely β^* -open and β^* -closed sets is introduced. Then some new examples and theorems in separation axioms on fuzzy topological space are developed.

References

- Zadeh, L. A. Fuzzy sets. Information and control, 8(3)(1965), 338–353.
- [2] Chang, C. L. Fuzzy topological spaces. Journal of mathematical Analysis and Applications, 24(1)(1968), 182– 190.
- ^[3] Khalik, A. P. D. M. A., and Hussein, A. K. G. A. On Some Types of Fuzzy Separation Axioms in Fuzzy Topological Space on Fuzzy Sets.
- [4] Singal, M. K., and Rajvanshi, N. Regularly open sets in fuzzy topological spaces. Fuzzy sets and systems, 50(3)(1992), 343–353.

- [5] Lee, S. J., and Yun, S. M. Fuzzy delta separation axioms. In 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011)(2011, June) 595–602.
- [6] Zahran, A. M. Fuzzy δ-continuous, Fuzzy almost Regularity (Normality) on Fuzzy Topology No Fuzzy Sets.
 Fuzzy Mathematics, 3(1)(1995), 89–96.
- ^[7] Mubarki, A. M., Al-Rshudi, M. M., and Al-Juhani, M. A. β^* -Open sets and β^* -continuity in topological spaces. Journal of Taibah University for Science, 8(2)(2014), 142–148.
- [8] Velicko, N. V. H-closed topological spaces. Amer. Math. Soc. Transl, 78(1968), 103–118.
- [9] Al-Hawary, T. Fuzzy M-open sets. Theory and Applications of Mathematics & Computer Science, 7(1)(2017), 72–77.
- ^[10] Azad, K. K. On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity. Journal of mathematical analysis and applications, 82(1)(1981), 14–32.
- [11] El-Shafei, M. E., and Zakari, A. Theta-Generalized closed sets in fuzzy topological spaces. Arabian Journal for Science and Engineering, 31(2)(2006), 197.
- ^[12] Hanafy, I. M. Fuzzy γ -open sets and fuzzy γ -continuity. J. Fuzzy Math, 7(2)(1999), 419–430.
- [13] Othmana, H. A. On fuzzy θ-generalized-semi-closed sets. Journal of Advanced Studies in Topology, 7(2)(2016), 84– 92.

