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1. Introduction and Preliminaries

The method of fuzzy set was introduced by Zedeh [1]. Chang [2]
has added fuzzy topological space. Khalik [3] has made a
study on certain types of fuzzy separation axioms in fuzzy
topological space on fuzzy sets. Singal [4] introduced reg-
ularly open sets in fuzzy topological spaces and Lee [5] in-
troduced fuzzy delta separation axioms. Zahran [6] further
added the new class of fuzzy open sets: there are fuzzy f3-open
sets, fuzzy B-closed sets, fuzzy regular open sets and fuzzy
regular closed sets. In the present work, some properties and
theorems are explored.

B*-open set and B*-closed set in fuzzy topological space
are introduced based on work of Mubarki [7]. Also some
properties and some theorems are investigated.

The present paper (X, ), (Y,0) (or simply X,Y) repre-
sents non-empty fuzzy topological spaces. Let i be a fuzzy
subset of a space X. The fuzzy closure of u, fuzzy interior of
U, fuzzy 8-closure of u and the fuzzy d-interior of u are de-
noted by cl(u), int(¢t), cls(¢) and intg(u) respectively. The

fuzzy O-interior of fuzzy subset u of X is the union of all
fuzzy regular open sets contained in y. A fuzzy subset U is
called fuzzy §-open [8] if 4 = intg(u). The complement of
fuzzy &-open set is called fuzzy d-closed (i.e, L = clg(u).

2. Fuzzy Topological Space

Definition 2.1. A family © C IX of fuzzy subsets is called a
fuzzy topology (in the sense of Chang [2]) for X if it satisfies
the following conditions:

(i) Ox, 1x €.
(ii) A,L € T, then \LL € T.
(iii) A; € Tforeachi€ .F, then ViczA; € T.

Members of T are called fuzzy open subsets and the comple-
ment of fuzzy open subsets is called fuzzy closed subsets on
Juzzy topological space (X, 7).

Definition 2.2. A fuzzy set | of (X, 7) is called as follows [9—
13]:

(i) Fuzzy semi open if it < cl(int(w).
(ii) Fuzzy a-open if p < int(cl(int(u)).
(iii) Fuzzy pre-open (fuzzy pre-closed)) if
p < int(cl(u)) (cl(int(u)) < p).
(iv) Fuzzy regular open if
= cl(int(p) (1 = int(cl(i)) closed).

(v) Fuzzy e-open if it < cl(ints (1)) Vint(cls(u))
(1 > cl(ints(p)) Aint(cls(p)) closed).



On p*-open and 3*-closed sets in fuzzy topological space — 292/294

3. Fuzzy *-open Sets in Fuzzy
Topological Space

In this section a new open set in fuzzy topological space is
introduced.

Definition 3.1. A fuzzy subset L of a fuzzy topological space
(X, 7) is said to be B*-open set if
u<cl (int(cl(u))) Vint(cls(u)).

Example 3.2. X = {x,y,z} and the fuzzy topology

7=1{0,1,{x02,50.1,20.1 }> {X0.4, 0.1, 20.1 },

{%0.6550.9,20.9},{%0.6,Y0.5,20.7} »
{x08,509,200}} and

7€ ={0,1,{x0.8,0.9,20.9}, {*0.6,¥0.9,20.9 },
{x0.4,50.1,20.1}, {X0.4,Y0.5,20.3 }»
{x02,y0.1,201} }-

Let it = {x0.6,Y09,20.9},cl(int(cl(1))) Vint(cls (1))
= {x0.6,509,209}-

i.e., L is B*-open set.

Remark 3.3. From the definitions I obtain the following dia-
gram holds for each a subset of UL of X.

Fuzzy regular open

i}
Fuzzy 8-open

1

Fuzzy open— Fuzzy semi open—Fuzzy y-open— Fuzzy B-open

1

Fuzzy &-pre open = Fuzzy B*-open

Fuzzy e—lopen ///}

Result 3.4.

(i) Fuzzy B*-open is fuzzy 8-preopen if
el (int(el () ) =0.

(ii) Fuzzy B*-open is B-open if
int(cls(u)) = 0.

Proposition 3.5. If U is fuzzy 8-pre open and A is fuzzy
B-open then WV A is fuzzy B*-open.

Proof. Obvious from Definition 3.1. U

Proposition 3.6. Let (X,7) be a fuzzy topological space.
Then the union of any two fuzzy B*-open sets is an B*-open
ser.

Proof. Let i, lp be two fuzzy B*-open sets,
Uy < cl(int(cl(ul))) Vint(clg (1)) and
1w <l (int(cl(uz))) Vint(cls(t2)) (by Definition 3.1)
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Then we have,

WV < cl(int(cl(/.l,l))) Vvint(cls (1))
\/cl(int(cl(uz))) Vint(cls (1))
iV o < cl(int(cl(py V ip)) Vint(clg (i V f12)).

Since, the arbitrary union of fuzzy B*-open sets is fuzzy *-
open set. O

Theorem 3.7. Let (X,7) be a fuzzy topological space and
let { Lo } qe.7 be the collection of fuzzy B*-open sets in fuzzy
topological space X, then V qc 7 (Uq) is fuzzy B*-open set.

Proof. Let % be the collection of fuzzy *-open sets in fuzzy
topological space (X, 7).

For each a € .7, ug < cl(int(cl(,ua))) Vint(cls(ta))-
Thus,

Vaes (Ha) < Vaezcl (int (Cl(ﬂa))) Vint (C16 (/Ja)) .
Vaez (Ha) <cl (int (Cl( Vaesz ) (ﬂa))
Vint (CIS ( Vaecs (Hoc)))

Since, the arbitrary union of fuzzy B*-open sets is fuzzy *-
open set. O

Theorem 3.8. Let (X,7) and (X,0) be any two fuzzy topo-
logical spaces such that X is product related to Y. Then the
product ) X W of a fuzzy B*-open set Ly of X and fuzzy
B*-open set Wy of Y is fuzzy B*-open set of the fuzzy product
space X X Y.

Proof. Let Wy, W are two fuzzy B*-open sets of X and Y
respectively, From Definition 3.1,

u <cl (int(cl(ul))) \/int(clg(,ul)) and
o <cl (int(cl(uz))) vint(cls(12)).

Then we have,

W Xty < cl(int(cl(ul))) \/int(clg(,u]))
x ¢l (int(cl(ug))) \/int(clg(uz)).
W X Uy < cl(int(cl(,u] X ‘U,z)) Vint(clg (W X Wp)).

W1 X Uy is fuzzy B*-open in the fuzzy product space X x Y.
O

4. Fuzzy 3*-Closed Sets in Fuzzy
Topological Space

In this section a new closed set in fuzzy topological space is
introduced.
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Definition 4.1. A fuzzy subset U of a fuzzy topological space
(X, 1) is said to be B*-closed set if

u> int(cl(int(,u))) Acl(intg ().
Example 4.2. X = {x,y,z}. And the fuzzy topology

7={0,1,{x02,50.1,20.1 }> {X0.4:Y0.1,20.1 }»
{x0.6,50.9,209}, {x0.6,50.5,20.7}

{x0.8:09,209} }

and

7 ={0,1,{x0.8,%0.9,20.9}, {*0.6,¥0.9:20.9 },
{x0.4,50.1,20.1}, {X0.4, 505,203 }

{x02,50.1,20.1 } }-

Let 1t = {x0.6,50.9,209},
int(cl(int(u))) Acl(ints (1)) = {X0.6,09, 20}
W is B*-closed set.

Result 4.3.
(i) Fuzzy B*-closed is fuzzy 6-semi open if
cl(int(cl(u))) =0.
(ii) Fuzzy B*-closed is o.-open ifcl(intg(u)) =0.

Proposition 4.4. If W is fuzzy 6-semi open and A is fuzzy
o-open then LA A is fuzzy B*-closed.

Proof. Obvious from Definition 4.1. O

Proposition 4.5. Let (X,7) be a fuzzy topological space.
Then the intersection of two fuzzy B*-closed sets is a B*-
closed set in the fuzzy topological space (X, T).

Proof. Let uy, U be two fuzzy B*-closed sets.
Uy > int (cl(int(/.tl ))) Acl(ints(p1)). And

Uz > int (cl (int(,uz))) Acl(ints((2)) by Definition 4.1.
Then we have,

M AUy > int(cl(int(ul))) /\cl(int5 (ul))/\
int(cl(int(uz))) Acl(ints(12)).
U1 At > int (cl(int(ul /\Nz))) Acl(ints (U A 2)).

Therefore, (; A i, is fuzzy B*-closed set. O

Theorem 4.6. Let (X, 7) be a fuzzy topological space and let
{Ua} ez be the collection of fuzzy B*-closed sets in fuzzy
topological space X, then Nge g (W) is fuzzy B*-closed set.
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Proof. Let .Z be the collection of fuzzy B*-closed sets in
fuzzy topological space (X, ).
Foreach @ € .7, g > int(cl (int(,ua))) Acl(ints (o). Thus,

Nae7 (Ha) > Ngezint (Cl (int(ﬂoc))) Nl (int5 (Noc)) :
Naes (Ho) > int (cl (int( Nae7 (w))))
Acl (int3 ( NaeF (Ua))) .

Since, the arbitrary intersection of fuzzy B*-closed sets is
fuzzy B*-closed set. O

Theorem 4.7. Let (X,7) and (X,0) be any two fuzzy topo-
logical spaces such that X is product related to Y. Then the
product [y X Uy of a fuzzy B*-closed set 1y of X and fuzzy B*-
closed set [y of Y is fuzzy B*-closed set of the fuzzy product
space X X Y.

Proof. Let Uy, Wy are two fuzzy B*-closed sets of X and Y
respectively. From Definition 4.1,

Wy > int (Cl (int(i1))) Acl(ints(11)). And
w > int(cl(int(uﬁ)) Acl(intg(12)).

Then we have,

W X tp > int(cl(int(ul))) Acl(ints (1))
X int (cl (int(uﬁ)) Acl(ints(12)).
Uy X Uy > int(cl(int(,ul X ,LLQ))) /\Cl(intg(/.tl X /.12))

U1 X My is fuzzy B*-closed in the fuzzy product space X x Y.
O

5. Conclusion

In this paper, a new class of open and closed sets in fuzzy
topological space, namely 3*-open and f3*-closed sets is intro-
duced. Then some new examples and theorems in separation
axioms on fuzzy topological space are developed.
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