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Nadaraya-Watson estimation of a nonparametric autoregressive model
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Abstract. We investigate the asymptotic behavior of the Nadaraya-Watson (NW) estimator of the regression function of a
τ−mixing process. We prove the strong consistency and the asymptotic normality of this estimator and we illustrate these
two properties using simulated data.
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1. Introduction

From the seminal works by Rosenblatt [20], nonparametric function estimation has been widely investigated.
Parzen [19] proposed a family of kernels for nonparametric density function estimation. He obtained the same
result as Rosenblatt [20]. These different works allowed Nadaraya [17] and Watson [22] to independently propose
a nonparametric estimator of the regression function. This is the Nadaraya-Watson (NW) estimator. Theoretical
and practical aspects of this estimator have been studied. Interesting properties have been obtained. For an
overview on the question, we refer to Bercu et al. [2], Li et al. [15] and the references therein. The NW estimation
method was initially restricted to independent and identically distributed data (see, for example, [16, 18, 21] and
the references therein). Then, it has been adapted by several studies to the α−, β− and φ−mixing processes (see,
for example, [5, 7, 12] and the references therein). There are very few studies suitable for τ−mixing processes.
This paper presents itself as one of the few contributions on the estimation of the regression function of τ−mixing
process. We refer the reader to Dedecker and Prieur [6] for the definition of a τ−mixing process.
More recently, Hong and Linton [13] proposed an infinite dimensional NW type estimator for the regression
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function of an α−dependent process. In our paper, we use a NW estimator, as Hong and Linton [13] , to
estimate the regression function of a p−Markov process. These processes are generally β−dependant. However,
there are some that are neither α−dependent nor β−dependent (but τ−dependent) (see [1]). Among these, we
can mention some nonparametric autoregressive (NAR) processes. According to Fan and Yao [10] (p. 19), a
sequence (Xt)t∈Z is a NAR process if it is a solution of (2.1). In our study, we show the strong consistency and
the asymptotic normality of the NW estimator of the regression function of NAR process under the assumption
of a τ−mixing condition on the sample. Our results go further than those of Hong and Linton ([13] , Theorem 1)
since we get the strong consistency.
The remainder of this paper is organized as follows. Section 2 discusses the model and the assumptions. Section
3 contains the main results and their proof. Section 4 is devoted to a small simulation.

2. Notations and Assumptions

In this paper, we shall use the following notations : ‖z‖ := sup
16i6p

|zi|, for any z = (z1, z2, . . . , zp)
′ ∈ Rp where

Z
′

denotes the transpose of Z. For any v ∈ R, [v] denotes the largest integer close to v;
Let (Xt)t∈Z be a stochastic process satisfying :

Xt = f(Yt) + ξt, t ∈ Z; (2.1)

where Xt ∈ R, Yt = (Xt−1, Xt−2, ..., Xt−p)
′
∈ Rp, (ξt)t∈Z is a sequence of independent identically distributed

random variables with E(ξt) = 0 and σ2(ξt) > 0, t ∈ Z. The random variable ξt is independent of Xi, for i < t

and f(.) : Rp → R, z 7−→ E(Xt|Yt = z), t ∈ Z, is an unknown measurable function.
Let x ∈ Rp, we observe (X1, Y1), ..., (XT , YT ) and estimate f(x) by :

f̂T (x) =



T∑
t=1

Kt(x)Xt

T∑
t=1

Kt(x)

; if
T∑

t=1

Kt(x) 6= 0

0, otherwise;

(2.2)

where Kt(x) = K

(∥∥∥∥h−1
T (x− Yt)

∥∥∥∥), t = 1, ..., T ; K(.) denotes the kernel function and hT > 0.

Our goal is to establish the consistency and the asymptotic normality of f̂T (x). Zhu and Politis [23] have done
this for nonparametric functional autoregression models. Hong and Linton [13] also proved it for α−dependent
processes.
The assumptions needed for the theoretical results are stated below.

(A1) : There exists an Orlicz function Φ(.) such that :

Φ(uv) 6 Φ(u)Φ(v), for all u, v ∈ R+;

and for all y, z ∈ Rp,

|f(y)− f(z)| 6
p∑

j=1

$j |yj − zj |,

where ($j)16j6p is a sequence of nonnegative real numbers such that $ =

p∑
j=1

$j < 1,

|f(0, 0, ..., 0)| + ‖ξ1‖Φ < ∞ and ‖.‖Φ denotes the Orlicz norm associated with Φ(.) (see [9] for the
definition of the Orlicz norm).
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(A2) : The kernel K : [0,+∞[−→ [0,+∞[ is bounded and has compact support, that is, there exists λ > 0

such that K(υ) = 0 for all υ > λ. There exists two real constants 0 < C1 < C2 < ∞ such that
C1 6 K(υ) 6 C2, υ ∈ [0, λ] and

∫
RK(ν)dν = 1.

(A3) : For t = 1, ..., T , ϕx(λhT ) := P(‖h−1
T (Yt − x)‖ 6 λ) > 0 (λ is defined in Assumption (A2)) and

hT −→ 0 as T −→∞.

From Assumption (A1), Doukhan and Wintenberger [9] show the existence of a strongly stationary and
τ−dependent solution of (2.1) such that τ(i) = O(ai), 0 < a < 1 (see Corollary 3.1 of [9]). According to
Remark 3.1 of Doukhan and Wintenberger [9], this solution is an ergodic process. So (Yt)t∈Z and (Xt, Yt)t∈Z
are strongly stationary and ergodic processes (see Theorem 36.4 of [3]). Assumption (A1) also reflects the
continuity of the application f (.). Assumption (A2) was borrowed from Hong and Linton [13] (Assumption
B3). Assumption (A3) expresses the possibility of observing the sample in a neighbourhood of x. This is a
classic assumption in the nonparametric framework. It naturally extends the hypothesis of the strictly positive
density of the explanatory variable.

3. Main Results

Theorem 3.1. Under Assumptions (A1), (A2) and (A3), for T big enough,

f̂T (x) = f(x) + o(1) almost surely (a.s.) (3.1)

Proof. According to Assumption (A3); we have, for t = 1, ..., T , P
(
‖x−Yt‖

hT
6 λ

)
> 0, so E

(
Kt(x)

)
> 0.

Let :

f̂1,T (x) =

1

T

T∑
t=1

Kt(x)Xt

E(K1(x))
and f̂2,T (x) =

1

T

T∑
t=1

Kt(x)

E(K1(x))
. (3.2)

According to Equation (20) of Hong and Linton [13], we can write :

f̂T (x)− f(x) =
E
(
f̂1,T (x)

)
− f(x)

f̂2,T (x)
+
f̂1,T (x)− E

(
f̂1,T (x)

)
f̂2,T (x)

−
f(x)

(
f̂2,T (x)− 1

)
f̂2,T (x)

.

(3.3)

Let us study the asymptotic behavior of f̂T (x) − f(x). To do it, we shall study the asymptotic behaviors of
f̂2,T (x), E

(
f̂1,T (x)

)
− f(x) and f̂1,T (x)− E

(
f̂1,T (x)

)
.

We start with the asymptotic behavior of f̂2,T (x).
According to Assumption (A1), (Xt)t∈Z is strongly stationary and ergodic. Since Kt(x) is a measurable
transformation of (Xt−1, ..., Xt−p)′ and E(K1(x)) < +∞ (see Assumption (A2)), we have by Krengel [14],
for T big enough,

1

T

T∑
t=1

Kt(x) −→ E(K1(x)) a.s.

So, we have for T big enough :

f̂2,T (x) −→ 1 a.s. (3.4)
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According to Assumptions (A1) and (A2), |E(K1(x)X1)| < ∞. And Kt(x)Xt is a measurable transformation
of (Xt, Xt−1, ..., Xt−p)′. Therefore, we show as in (3.4), for T big enough :

1

T

T∑
t=1

Kt(x)Xt −→ E(K1(x)X1) a.s.

Therefore, for T big enough :

f̂1,T (x)− E
(
f̂1,T (x)

)
−→ 0 a.s. (3.5)

Using the same reasoning as the proof of Equation (53) in Hong and Liton [13] (see also the proof of Lemma 6.2
of [11]), we show, for T big enough :

E
(
f̂1,T (x)

)
− f(x) −→ 0. (3.6)

Gathering (3.3), (3.4), (3.5) and (3.6), we get (3.1). �

Theorem 3.2. Under Assumptions (A1), (A2) and (A3), for T big enough,

ς2 := lim
T→∞

1

T
V ar

(
T∑

t=1

Xt

)
< +∞. (3.7)

And

√
TE(K1(x))

(
f̂T (x)− f(x) + o(1)

)
+ o

(√
ln ln(T )

)
d−→ N(0, ς2), (3.8)

where d−→ denotes convergence in distribution.

Proof. According to (3.3), (3.4) and (3.6), we have a.s., for T big enough :

f̂T (x)− f(x) = f̂1,T (x)− E
(
f̂1,T (x)

)
+ o(1)

=
1

TE(K1(x))

T∑
t=1

(
Kt(x)Xt − E(K1(x)X1)

)
+ o(1)

=
1

TE(K1(x))

T∑
t=1

{
(Kt(x)− 1)Xt − E

(
(K1(x)− 1)X1

)}

+
1

TE(K1(x))

T∑
t=1

(
Xt − E(X1)

)
+ o(1).

(3.9)

Since (Kt(x)− 1)Xt is a measurable transformation of (Xt, Xt−1, ..., Xt−p)′, so we have, for T big enough :

1

T

T∑
t=1

{
(Kt(x)− 1)Xt − E

(
(K1(x)− 1)X1

)}
−→ 0 a.s.

we have a.s., for T big enough :

f̂T (x)− f(x) =
1

TE(K1(x))

T∑
t=1

(
Xt − E(X1)

)
+ o(1). (3.10)
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The function s 7−→ |s|2 ln(1 + |s|) is measurable. So (|Xt − E(X1)|2 ln(1 + |Xt − E(X1)|))t is stationary
because (Xt)t is strongly stationary and ergodic. Therefore E(|Xt − E(X1)|2 ln(1 + |Xt − E(X1)|)) <∞.
According to the Hypothesis (A1), the mixing coefficient τ(.) of the process (Xt)t∈Z is such that τ(i) = O(ai),
0 < a < 1.
From item 3 of Corollary 2 of Dedecker and Prieur [6], we have (3.7) and there exists a sequence (Zt)16t6T of
independent N(0; ς2)−distributed random variables such that :

T∑
t=1

(
Xt − E(X1)

)
=

T∑
t=1

Zt + o

(√
T ln ln(T )

)
a.s.; (3.11)

where ς2 is defined in (3.7).
According to (3.10) and (3.11), we have, for T big enough :

√
TE(K1(x))

(
f̂T (x)− f(x) + o(1)

)
+ o

(√
ln ln(T )

)
=

1√
T

T∑
t=1

Zt a.s. (3.12)

From the Central Limit Theorem, we have for T big enough :

1√
T

T∑
t=1

Zt
d−→ N(0, ς2).

Back to (3.12), we get (3.8). �

4. Simulation study

In this section we present some results of our simulation study. We first (Section 4.1) focus on the strong
consistency of estimator of regression function defined in (2.2). And we verify numerically the asymptotic
normality of this estimator in Section 4.2. The simulation study was performed using R software and the results
presented in these simulations correspond to 200 replications. Here, the Orlicz space is L1(R) and we use the
absolute value function as Orlicz function.
Let f be the function from R to R defined by :

f : x 7−→ 0.2x. (4.1)

We consider :

Xt = f(Xt−1) + ξt, t = 1, ..., T ; (4.2)

where X0 = 0 and (ξt)t is a sequence of independent identically uniformly distributed on [−0.3, 0.3].

We choose the uniform kernel on [0, 1]; for the bandwidth, we choose hT = T−1/6. We numerically verify (3.1)
and (3.8) at point 0.

4.1. Simulation of strong consistency of f̂T (0)

The samples are taken with size which varies between 100 and 500 observations. Table 4.1 reports the root mean
square error (RMSE). The RMSE is calculated from the following formula :

RMSE =

√√√√1

r

r∑
i=1

(f̂T,r(0)− f(0))2,
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where r denotes the number of replications (here r = 200) and f̂T,r(0), the value of f̂T (0) at the rth replication
(see (2.2) for the definition of f̂T (0)).
As it can be seen in Table 4.1, the RMSE decreases when the sample size increases. This corroborates the
convergence of estimator.

T RMSE
100 0.018896
200 0.011016
500 0.007764

Table 4.1 : RMSE values

4.2. Simulation of asymptotic normality of f̂T (0)

The purpose of this subsection is to illustrate the asymptotic normality of estimator f̂T (0) (see (3.8)). To this
purpose, we randomly generate samples of size T ∈ {100, 300, 500} of f̂T (0). Figure 4.1 shows the histogram
and the Q − Q plot of the estimator f̂500(0). In addition to these graphical representations, we performed a
Shapiro-Wilk normality test. The results of the test are presented in Table 4.2 where W refers to the test statistic.

Figure 4.1 : Graphical illustration of the normality of f̂500(0).

Figure 4.1 is composed of two sub-figures: an histogram (on the left) and a Q−Q plot (on the right). On the left
side of Figure 4.1, we have plotted the histogram of f̂500(0) (orange colour). The shape of the histogram reminds
us of the graphical representation of the density of normal distribution. This presumption is accentuated with the
quantile cloud of dots. On the right side of Figure 4.1, we have plottedQ−Q plot in red and Henry’s line in blue.
Most of the points seem to line up with Henry’s line. And the extremities of the cloud seem to move away from
it. Figure 4.1 therefore shows a presumption of normality of the sample. To confirm the normality of sample, we
have performed the Shapiro-Wilk test. The test results show high values of p− value. This value increases when
the sample size increases. In view of results, we can confirm the normality of these samples .
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T W p-value
100 0.98869 0.5604
300 0.98961 0.6334
500 0.99248 0.8547

Table 4.2 : Shapiro-Wilk normality test on f̂T (0), T ∈ {100, 300, 500}.
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