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A study of SIQR model with Holling type–II incidence
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Abstract
In this study, we propose an SIQR epidemic model with a Holling type-II incidence rate. In this model, the
total population N is divided into five compartments; namely susceptible individual class (S), infective individual
class (I), quarantine from susceptible individual class (Q1), quarantine from infective individual class (Q2), and
recovered individual class (R). The basic reproduction number (R0) of the model is found by the next generation
method and then disease-free (DF) and endemic equilibrium points of the system are found and their existence
conditions are presented. This study concludes that if the basic reproduction number R0 is less than one, the
disease-free equilibrium is globally asymptotically stable and if the basic reproduction number R0 is greater
than one, then the endemic equilibrium exists and globally. In this study, we also discuss the behavior of the
disease-free equilibrium points by using manifold theory when the basic reproduction number R0 is equal to one.
This study is very helpful in those pandemic diseases wherein the quarantine process of an infected individual is
one of the most effective solutions to get recover from the disease and also to control the spreading of disease
from an infected individual to uninfected individuals. The numerical simulation is given, and to analyze the found
results, at the last conclusion is also given.
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1. Introduction
Looking at the present situation, spreading and controlling
infectious diseases is very important for the interest of soci-
ety. There is a huge role of Mathematical models for making
policies, health-economy policy, emergency planning, risk
assessment, control program evaluation, and for optimizing

various detection. Many authors [3–5, 7, 10] considered the
various incidence rates in their literature, and the reproduction
numbers and subthreshold endemic equilibrium for compart-
mental models of disease transmission are discussed by Van
den Driessche and Watmough [8].

Treatment is a key to controlling the spread of diseases
such as measles and an epidemic model with non-monotonic
incidence rate under treatment is considered by Kar and
Batabyal [4]. Wang and Ruan [9] discussed on the piece-
wise treatment function in their research work

T (I) =
{

r I > 0,
0 I = 0.

where r is a constant removal rate of the infectives

2. Preliminaries
Definition 2.1. Susceptible Individuals (S(t)). Susceptible
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people are those who are healthy and can be infected under
appropriate conditions.

Definition 2.2. Infected Individuals (I(t)). These are indi-
viduals who have already been infected with the virus and can
transfer it to individuals who are susceptible.

Definition 2.3. Quarantine Individuals (Q(t)). These are
individuals who have isolated from susceptible and infected
and then return to the recovered class.

Definition 2.4. Recovered Individuals (R(t)). These are
individuals who have recovered from the infection and are
believed to be immune.

Definition 2.5. Basic reproduction number (Q(t)). The ba-
sic reproductive number or simply the reproductive number
R0 is the average number of secondary infections produced by
one infected individuals during the mean course of infection
(infectious period) in a completely susceptible population.

Definition 2.6. Holling type-II incidence function. A func-
tion βSI

1+αI with α > 0, is called the Holling type II incidence
function, where I is the number of infectious individuals and
β is the effective contact rate (the average number of contacts
sufficient for transmitting infection).

Definition 2.7. Routh Hurwitz’s criterion. The Eigen val-
ues of a (m×m) matrix A are the roots of an mth degree
polynomial and hence cannot be conveniently evaluated ana-
lytically. However, there are some useful mathematical theo-
rems which provide necessary and sufficient conditions for all
Eigen values of a matrix to have negative real parts without
involving explicit calculations of Eigen values.

Let the characteristics equation of variation matrix of
order m×m interacting species as

λ
m +a1λ

m−1 +a2λ
m−2 ++a3λ

m−3 + . . .+am = 0.

The stability conditions (known as Routh-Hurwitz criteria)
now involve only these coefficients and are stated in the fol-
lowing table (for m≤ 5):

S. No. Number of Stability Criteria
Species

01 2 a1 > 0,a2 > 0
02 3 a1 > 0,a2 > 0,a1a2−a3 > 0
03 4 a1 > 0,a3 > 0, a4 > 0,

a1a2a3 > a2
3 +a2

1a4
04 5 ai > 0, for all i

a1a2a3 > a2
3 +a2

1a4
(a1a4−a5)(a1a2a3−a2

3−a2
1a4)> 0

05 6 · · ·

The Routh-Hurwitz stability criteria for a multi-species
model with small numbers of species the inequalities are
readily evaluated and they constitute one of the most powerful
and widely used theoretical tools in deterministic modeling.

In this study, we consider an SIQR epidemic model with
Holling type-II incidence rate. In the main results, we present
the mathematical model and the basic reproduction number
R0 is calculated after that equilibrium points of the system
are found and their existence conditions are presented and
atlast of the main results, we prove some theorems for the
global stability of the disease-free and endemic equilibrium
points. In section 4, we give an example that demonstrates
the validity of the main results. In the last section, we give a
conclusion.

3. Main Results
In this section, we shall discuss about the formulation of the
model, basic properties of the model, disease free equilibrium,
the basic reproduction number, endemic equilibrium of the
system and stability of the equilibriums.

Formulation of the model
Here, the total population N is partitioned into five divi-

sions; symbolically in (S), (I), (Q1), (Q2) and (R). Susceptible
people are those who are healthy and can be infected under ap-
propriate conditions. Quarantine from susceptible people who
will never get the infection by separating from susceptible
and Quarantine from infected people are those who will never
infect the susceptible by separating from the infected class.
Let us π be the constant recruitment rate of susceptible i.e.
it may be birth rate or immigration rate. Let the susceptible
individuals are moving in quarantine from susceptible class at
a rate ϕ1, hence ϕ1 defines the rate of quarantine of suscepti-
ble individuals and β is the transmission rate of susceptible
to infected individuals, α is the measure of inhibition taken
by the infected. In this study, we consider the incidence rate

βSI
1+αI which is also known as the Holling type–II incidence
rate. In this study we consider the following parameters; µ is
the natural death rate, d is the disease-related death rate, ϕ2 is
the rate of quarantine of infected individuals, and θ1,θ2 are
the recovery rate of infected and quarantine from infected re-
spectively. Therefore the SIR epidemic model with quarantine
from susceptible and infected and Holling type-II incidence
rate is the system of following non-linear ordinary differential
equation:

dS
dt

= π− βSI
1+αI

− (µ +ϕ1)S,

dI
dt

=
βSI

1+αI
− (µ +d +ϕ2 +θ1)I,

dQ1

dt
= ϕ1S−µQ1, (1)

dQ2

dt
= ϕ2I− (µ +d +θ2)Q2,

dR
dt

= θ1I−θ2Q2−µR,

where S(0)≥ 0, I(0)≥ 0,Q1(0)≥ 0,Q2(0)≥ 0 and R(0)≥ 0.

Basic Properties of the model
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In this section, we shall find the feasible region of the
model (1), discuss the disease-free equilibrium and investigate
the basic reproduction number by the next generation method
which is introduced by Diekmann et al. [2]. In last, we shall
find an endemic equilibrium of the mathematical model. Now
the total population N(t) is the sum of all compartments i.e.
N(t) = S(t)+ I(t)+Q1(t)+Q2(t)+R(t). On adding all the
equations of system (1), we have

dN(t)
dt

= π−µN−d(I +Q2)≤ π−µN.

Hence N(t)≤N(0)e−µt + π

µ
(1−e−µt). Thus, we find N(t)→

π/µ as t→∞. Therefore the feasible region for the system (1)
is W =

{(
S, I,Q1,Q2,R

)
∈ IR5

+ : 0 < S+ I +Q1 +Q2 +R <

π/µ

}
which is bounded and positively invariant. Thus we

have the following lemma:

Lemma 3.1. The set W =
{(

S, I,Q1,Q2,R
)
∈ IR5

+ : 0 < S+

I +Q1 +Q2 +R < π/µ

}
is a positively invariant region of

the model (1).
As because the first four equations of the model do not

contain R(t). So without loss of generality, the fifth equation
can be left out for theoretical analysis. Thus this study con-
siders the following diminished system of equations for the
theoretical study:

dS
dt

= π− βSI
1+αI

− (µ +ϕ1)S,

dI
dt

=
βSI

1+αI
− (µ +d +ϕ2 +θ1)I,

dQ1

dt
= ϕ1S−µQ1, (2)

dQ2

dt
= ϕ2I− (µ +d +θ2)Q2.

Disease free equilibrium On keeping all the equations of sys-
tem (2) equal to zero and then on solving, we can find out the
equilibrium points. The disease-free equilibrium (DFE) for
the system (2) is E0 = (S0,0,Q0

1,0) where S0 = π

µ+ϕ1
, Q0

1 =
πϕ1

(µ+ϕ1)µ
.

The basic reproduction number R0

The basic reproduction number R0 is the average number
of secondary infections generated by a single infective when it
is introduced into a purely susceptible population. To find the
basic reproduction number R0 by the next-generation method
[2].

Let X = (I,Q1,Q2,S)T . System (2) becomes

dX
dt

= F(X)−V (X)

where

F(X)=


βSI

1+αI
0
0
0

 ,V (X)=


(
µ +d +θ1 +ϕ2

)
I

−ϕ1S+µQ1
−ϕ2I +(µ +d +θ2)Q2

−π + βSI
1+αI +(µ +ϕ1)S

 .

The Jacobian matrix of F(X) and V (X) at the disease-free
equilibrium E0 are,

DF(E0)=

(
F1 0
0 0

)
,DV (E0)=

(
V1 0
0 0

)
respectively,

where

F1 =


0 βπ

µ+ϕ1
0 0

0 0 0 0
0 0 0 0
0 0 0 0

and

V1 =


0 µ +d +θ1 +ϕ2 0 0
−ϕ1 0 µ 0

0 −ϕ2 0 µ +d +θ2

µ +ϕ1
βπ

µ+ϕ1
0 0

 .

The next-generation matrix of the system is

F1V−1
1 =


βπ

(µ+ϕ1)(µ+d+θ1+ϕ2)
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 .

The spectral radius of F1V−1
1 is called the basic reproduction

number, therefore

R0 =
βπ

(µ +ϕ1)(µ +d +θ1 +ϕ2)
.

Endemic equilibrium of the system
The endemic equilibrium of the system (2) is given by

E1 =
(
S∗, I∗,Q∗1,Q

∗
2
)
, where S∗= π(1+αI∗)

(µ+ϕ1)(1+αI∗)+β
, Q∗1 =

ϕ1S∗
µ

,

Q∗2 =
ϕ2I∗

µ+d+θ2
and I∗ is given by I∗ = βπ−(µ+ϕ1)(µ+d+θ1+ϕ2)

α(µ+ϕ1)+β
.

Thus we have the following lemma

Lemma 3.2. system (2) will have a unique positive equilib-
rium disease free E1 =

(
S∗, I∗,Q∗1,Q

∗
2
)
, which is called en-

demic equilibrium, where S∗ = π(1+αI∗)
(µ+ϕ1)(1+αI∗)+β

, Q∗1 =
ϕ1S∗

µ
,

Q∗2 =
ϕ2I∗

µ+d+θ2
, I∗ = βπ−(µ+ϕ1)(µ+d+θ1+ϕ2)

α(µ+ϕ1)+β
.

Stability analysis
To investigates the local and global stability of the system

(2) at equilibriums. The linearized matrix of the system (2) is
given by

J =


− β I

1+αI − (µ+ϕ1) − βS
(1+αI)2 0 0

β I
1+αI

βS
(1+αI)2 − (µ+d+ϕ2+θ1) 0 0

ϕ1 0 −µ 0
0 ϕ2 0 −(µ+d+θ2)

 .
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At disease-free equilibrium E0 = (S0,0,Q0
1,0)

The Jacobian matrix of the system (2) at disease-free
equilibrium E0 = (S0,0,Q0

1,0) is

J(E0)=


−(µ+ϕ1) − βπ

µ+ϕ1
0 0

0 βπ

µ+ϕ1
− (µ+d+ϕ2+θ1) 0 0

ϕ1 0 −µ 0
0 ϕ2 0 −(µ+d+θ2)

 .

The characteristic equation of the Jacobian matrix of the sys-
tem (2) is given by

(−µ−ϕ1−λ )

(
βπ

µ +ϕ1
−µ−d−ϕ2−θ1−λ

)
(−µ−λ )(−µ−d−θ2−λ ) = 0.

The eigen values of the Jacobian matrix are

−(µ+ϕ1),−µ,−(µ+d+θ2) and
1

(µ +d +ϕ2 +θ1)
(R0−1).

The first three eigen values of the Jacobian matrix are negative
and the fourth eigen value will be negative when R0 < 1. By
the Routh Hurwitz criterion the disease-free equilibrium is
locally asymptotically stable.

From the above discussion, we get the following theorem:

Theorem 3.3. The disease-free equilibrium E0 =(S0,0,Q0
1,0)

is locally asymptotically stable if R0 < 1 and unstable if
R0 > 1.

Now using the center manifold theory [1, 6], we will
study the stability of DFE at R0 = 1. Let ϕ = β = β ∗ =
(µ+ϕ1)(µ+d+θ1+ϕ2)

π
be the transmission parameter.

Let S = x1, I = x2,Q1 = x3 and Q4 = x4 then the system
(2) can be written as

dx1

dt
= π− βx1x2

1+αx2
− (µ +ϕ1)x1 ≡ f1,

dx2

dt
=

βx1x2

1+αx2
− (µ +d +ϕ2 +θ1)x2 ≡ f2,

dx3

dt
= ϕ1x1−µx3 ≡ f3, (3)

dx4

dt
= ϕ2x2− (µ +d +θ2)x4 ≡ f4,

The Jacobian matrix J∗ at R0 = 1 i.e.
β = β ∗ = (µ+ϕ1)(µ+d+θ1+ϕ2)

π
is

J∗ =


−(µ +ϕ1) − βπ

µ+ϕ1
0 0

0 0 0 0
ϕ1 0 −µ 0
0 ϕ2 0 −(µ +d +θ2)

 .

Here J∗ has one simple eigen value at zero. Let u= [u1,u2,u3,u4]
and w = [w1,w2,w3,w4]

T be the left and a right eigen vec-
tor of J∗ corresponding to the zero eigen value respectively.

Then we have u1 = 0,u2 = 1,u3 = 0,u4 = 0 and w1 = − µ

ϕ1
,

w2 =
µ(µ+ϕ1)

2

β ∗ϕ1π
, w3 = 1, w4 =− ϕ2µ(µ+ϕ1)

2

β ∗ϕ1π(µ+d+θ2)
.

To find the non zero partial derivatives of f2 which allied
with the first equation of the system (3) at R0 = 1 i.e. β =

β ∗ = (µ+ϕ1)(µ+d+θ1+ϕ2)
π(

∂ 2 f2

∂x2∂x1

)
E0

= β
∗,

(
∂ 2 f2

∂x2∂β ∗

)
E0

=
π

µ +ϕ1
,(

∂ 2 f2

∂x2
2

)
E0

=−2β ∗απ

µ +ϕ1
.

In pursuance of bifurcation theory which is based on center
manifold theory, to obtain the bifurcation constants a1 and a2
with the formula:

a1 =
4

∑
k,i, j=1

ukwiw j

(
∂ 2 fk

∂xi∂x j

)
E0

=−2µ2(µ +ϕ1)
2

ϕ2
1 π

− 2µ2(µ +ϕ1)
3

β ∗ϕ2
1 π

< 0,

a2 =
4

∑
k,i=1

ukwi

(
∂ 2 fk

∂xi∂β ∗

)
E0

=
µ(µ +ϕ1)

β ∗ϕ1
> 0.

Since a1 < 0 and a2 > 0, then the disease-free equilibrium is
unstable and there exists a positive equilibrium as R0 crosses
1. As per discussion for R0 = 1 the following theorem can be
given:

Theorem 3.4. The disease-free equilibrium is unstable at
R0 = 1, hence we get a positive equilibrium as R0 crosses 1.

Now we discuss the global stability of the disease-free
equilibrium of the system (2).

Consider the Lyapunov function

L = I

Now

dL
dt

=

(
βS

1+αI
− (µ +d +ϕ2 +θ1)

)
I ≤ 0.

Here
dL
dt

= 0⇔ I = 0.

If R0 < 1, the largest compact invariant set is the singleton
set
{
(S0,0,Q0

1,0)
}

in
{
(S, I,Q1,Q2) : dL

dt = 0
}

. Thus by the
Lasalle invariance principle, the disease-free equilibrium is
globally asymptotically stable.

The following theorem can be given:

Theorem 3.5. If R0 < 1, then the disease-free equilibrium is
globally asymptotically stable.

At endemic equilibrium
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Now we will discuss the local and global asymptotically
stability of the endemic equilibrium E1 =

(
S∗, I∗,Q∗1,Q

∗
2
)
.

The Jacobian matrix J(E1)E1 is given by

J(E1)=


− β I∗

1+αI∗ −(µ+ϕ1) − βS∗
(1+αI∗)2

0 0

β I∗
1+αI∗

βS∗
(1+αI∗)2

−(µ+d+ϕ2+θ1) 0 0

ϕ1 0 −µ 0

0 ϕ2 0 −(µ+d+θ2)

 .

The characteristic equation J(E1) is

(−µ−d−θ2−λ )(−µ−λ )

{(
−µ−ϕ1−

β I∗
1+αI∗−λ

)
(

βS∗
(1+αI∗)2

−(µ+d+ϕ2+θ1)−λ

)
+ β2S∗I∗

(1+αI∗)3

}
=0.

Implies that

(−µ−λ )(−µ−d−θ2−λ )(λ 2 +b1λ +b2) = 0,

where

b1 = µ +ϕ1 +
β I∗

1+αI∗
− βS∗

(1+αI∗)2

+(µ +d +ϕ2 +θ1)

b1 = (µ +ϕ1)

{
− βS∗

(1+αI∗)2 +(µ +d +ϕ2 +θ1)

}

+
β (µ +d +ϕ2 +θ1)I∗

1+αI∗

The first two eigen values of the Jacobian matrix are negative
and the remaining two eigen values will be the root of the
equation λ 2 +b1λ +b2 = 0.

It can be easily seen that b1 and b2 are positive, when
− βS∗

(1+αI∗)2 +(µ + d +ϕ2 + θ1) ≥ 0 i.e. βS∗

(1+αI∗)2 ≤ (µ + d +

ϕ2 +θ1). Therefore the equation λ 2 +b1λ +b2 = 0 has two
roots whose real parts are negative. Thus all the eigen val-
ues of the Jacobian matrix at endemic equilibria are either
negative or the real part is negative under the condition

βS∗

(1+αI∗)2 ≤ (µ + d +ϕ2 + θ1). Therefore the endemic equi-
librium is locally asymptotically stable under the condition

βS∗

(1+αI∗)2 ≤ (µ +d +ϕ2 +θ1).
Thus we have the following theorem:

Theorem 3.6. The endemic equilibrium E1 =
(
S∗, I∗,Q∗1,Q

∗
2
)

is locally asymptotically stable when βS∗

(1+αI∗)2 ≤ (µ+d+ϕ2+

θ1).
To study the global stability of an endemic equilibrium

E1 =
(
S∗, I∗,Q∗1,Q

∗
2
)

System (2) is divided into two parts.
The first subsystem as:

dS
dt

= π− βSI
1+αI

− (µ +ϕ1)S

dI
dt

=
βSI

1+αI
− (µ +d +ϕ2 +θ1)I, (4)

dQ2

dt
= ϕ2I− (µ +d +θ2)Q2,

and the limit system is

dQ1

dt
= ϕ1S−µQ1 (5)

The Jacobian matrix of the system is

J=

 − β I
1+αI −(µ+ϕ1) − βS

(1+αI)2
0

β I
1+αI

βS
(1+αI)2

−(µ+d+ϕ2+θ1) 0

0 ϕ2 −(µ+d+θ2)

 .
The second additive compound matrix is given by

J[2]=

 − β I
1+αI +

βS
(1+αI)2

−m1 0 0

ϕ2 − β I
1+αI −m2 − βS

(1+αI)2

0 β I
1+αI

βS
(1+αI)2

−m2

 ,
where

m1 = 2µ +d +θ1 +ϕ1 +ϕ2,

m2 = 2µ +d +θ2 +ϕ1,

m3 = 2µ +2d +θ1 +θ2 +ϕ2.

Let us choose the function

P =

 1 0 0
0 I

Q2
0

0 0 I
Q2

 ,
and

P−1 =

 1 0 0
0 Q2

I 0
0 0 Q2

I

 ,
then

Pf =


1 0 0
0 İQ2−IQ̇2

Q2
2

0

0 0 İQ2−IQ̇2
Q2

2

 .
From Pf and P−1, it follows that

Pf P−1 =

 1 0 0
0 İ

I −
Q̇2
Q2

0

0 0 İ
I −

Q̇2
Q2

 .
Now we have

PJ[2]P−1=

 − β I
1+αI +

βS
(1+αI)2

−m1 0 0

ϕ2 − β I
1+αI −m2 − βS

(1+αI)2

0 β I
1+αI

βS
(1+αI)2

−m2

 ,
where m = min{m1,m2}.

Now
B = Pf P−1 +PJ[2]P−1
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B=

 − β I
1+αI +

βS
(1+αI)2

−m1+1 0 0

ϕ2
İ
I −

Q̇2
Q2
− β I

1+αI −m2 − βS
(1+αI)2

0 β I
1+αI

İ
I −

Q̇2
Q2

+
βS

(1+αI)2
−m2

 .
In the Block form, the matrix B can be written as

B =

[
B11 B12
B21 B22

]
,

where

B11 =−
β I

1+αI
+

βS
(1+αI)2 −m1 +1,

B12 =
[

0 0
]
,B21 =

[
ϕ2
0

]
,

B22 =

 İ
I −

Q̇2
Q2
− β I

1+αI −m2 − βS
(1+αI)2

β I
1+αI

İ
I −

Q̇2
Q2

+ βS
(1+αI)2 −m3



B22 =

 İ
I −

Q̇2
Q2
− β I

1+αI −m2 − βS
(1+αI)2

β I
1+αI

İ
I −

Q̇2
Q2

+ βS
(1+αI)2 −m3

 .
Suppose v = (v1,v2,v3) ∈ IR3 and its norm B12 = [0 0], de-
fined as

PvP = max
{
|v1|, |v2|, |v3|

}
.

Let the Lozinski measure concerning this norm is denoted by
F(B).

It follows from [5]

F(B)≤ sup{g1,g2},

where

g1 = F(B11)+ |B12|,g2 = |B21|+F(B22)

|B12|= max[0,0] = 0, |B21|= |ϕ2|= ϕ2

F(B11) = lim
h→0

|I +hB11|−1
h

=
β I

1+αI
− βS

(1+αI)2 +m1,

F(B22) = lim
h→0

|I +hB22|−1
h

=
İ
I
− Q̇2

Q2
− β I

1+αI
−min{m2,m3}.

Therefore, we have

g1 =
β I

1+αI
− βS

(1+αI)2 +m1

=
β I

1+αI
− βS

(1+αI)2 +2µ +d +θ1 +ϕ1 +ϕ2

=
β I

1+αI
− βS

(1+αI)2 +2µ +d +θ2 +ϕ1 ≤
İ
I
−µ,

g2 = ϕ2 +
İ
I
− Q̇2

Q2
− β I

1+αI
−min{m2,m3} ≤

İ
I
−µ.

∴ F(B)≤ sup{g1,g2} ≤
İ
I
−µ.

Then

q =
1
t

∫ t

0
F(B)dS≤ 1

t

∫ t

0

(
İ
I
−µ

)
dS =

1
t

ln
I(t)
I(0)
−µ

which implies q≤− µ

2 < 0. Thus the sub-system (4) is globally
asymptotically stable. Consider the limit system

dQ1

dt
= ϕ1S−µQ1 (6)

Equation (6) can be written as

dQ1

dt
= ϕ1S∗−µQ1

∴ Q1 = e−µt

[
Q1(0)−

ϕ1S∗

µ

]
+

ϕ1S∗

µ
,

which implies Q1→Q∗1 when t→∞, thus the endemic equilib-
rium E1 =

(
S∗, I∗,Q∗1,Q

∗
2
)

is globally asymptotically stable.
Thus we have the following theorem

Theorem 3.7. The disease-free and endemic equilibriums of
the system (2) are globally asymptotically stable, when R0 < 1
and R0 > 1 respectively.

4. Examples
For numerical simulation, when R0 < 1, we take the following
parameters π = 2,α = 0.5,β = 1,µ = 0.007,d = 0.05,θ1 =
0.002,θ2 = 0.003,ϕ1 = 1,ϕ2 = 2. With these values of the
parameters, we conclude that R0 = 0.96 < 1, then by theorem
3.5 trajectories of S, I,Q1,Q2 and R with initial values S(0) =
200, I(0) = 0,Q1(0) = 100,Q2(0) = 0,R(0) = 0 approach
to the disease-free equilibrium E0 = (1.99,0,284.286,0) as
shown in the Fig. 4.1. Therefore, the disease-free equilibrium
E0 is a global asymptotically stable when R0 < 1.

Figure 4.1. When R0 < 1.
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For numerical simulation, when R0 > 1, we take the following
parameters π = 2,α = 0.5,β = 2.1,µ = 0.007,d = 0.05,θ1 =
0.002,θ2 = 0.003,ϕ1 = 1,ϕ2 = 2. With these values of the
parameters, we conclude that R0 = 2.0256 > 1, βS∗

(1+αI∗)2 =

1.282 < 2.059 = (µ +d +ϕ2 +θ1), then by theorem 3.6 and
3.7 trajectories of S, I,Q1,Q2 and R with initial values S(0) =
200, I(0) = 2,Q1(0) = 100,Q2(0) = 0,R(0) = 1 approach to
the endemic equilibrium E1 = (0.66,0.82,141,66) as shown
in the Fig. 4.2. Therefore, the endemic equilibrium E1 is a
global asymptotically stable under the given conditions,

Figure 4.2. When R0 > 1.

5. Conclusion
In this paper, we have considered an SIQR epidemic model
with Holling type-II incidence rate. We have discussed on the
global stability of the equilibriums. Our main results show
that the disease-free equilibrium E0 and the endemic equilib-
rium E∗ =

(
S∗, I∗,Q∗1,Q

∗
2
)

are globally asymptotically stable,
when R0 < 1,R0 > 1 respectively under certain conditions.
Looking at the present situation of this pandemic, spreading
and controlling infectious disease is very important for the
interest of society; hence our obtained main results are very
useful in this situation.
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