

https://doi.org/10.26637/MJM0901/0055

A note on t**-Cayley hypergraphs**

K.T. Neethu^{1*} and V. Anil Kumar²

Abstract

In this paper we study some properties of *t*-Cayley hypergraph in terms of algebraic properties. This did not attract much attention in the literature.

Keywords

Hypergraph, *t*- hypergraph, *k*-transitive, mn-transitive.

AMS Subject Classification

05C25.

¹*Department of Mathematics, Little Flower College, Guruvayoor, India.* ²*Department of Mathematics, University of Calicut, Kerala, India.* ***Corresponding author**: ¹ neeethuu5@gmail.com; ² anil@uoc.ac.in **Article History**: Received **13** October **2020**; Accepted **11** January **2021** c 2021 MJM.

Contents

1 [Introduction](#page-0-0) . 329 2 [Main Results](#page-0-1) . 329 [References](#page-2-0) . 331

1. Introduction

A hypergraph *H* is a pair $(V(H); E(H))$, where $V(H)$ is a finite nonempty set and $E(H)$ is a finite family of nonempty subsets of $V(H)$. The elements of $V(H)$ are called vertices and the elements of $E(H)$ are called edges. Two vertices in a hypergraph are adjacent if there is a hyperedge which contains both vertices [\[1\]](#page-2-1).

A *path* of length *k* in a hypergraph $(V(H); E(H))$ is an alternating sequence $(v_1, e_1, v_2, \ldots, v_k, e_k, v_{k+1})$ in which $v_i \in$ *V*(*H*) for each *i* = 1, 2, . . . , *k* + 1, *e*_{*i*} ∈ *E*(*H*), {*v*_{*i*}, *v*_{*i*+1}} ⊆ *e*_{*i*} for $i = 1, 2, \ldots, k$ and $v_i \neq v_j$ and $e_i \neq e_j$ for $i \neq j$.

A hypergraph is connected if for any pair of vertices, there is a path which connects these vertices [\[1\]](#page-2-1)

Let *G* be a group, Ω a subset of $G \setminus \{1\}$ and *t* an integer satisfying $2 \le t \le \max\{o(\omega): \omega \in \Omega\}$. In [\[8\]](#page-2-2), M. Buratti introduced *t*-Cayley Hypergraph *H* = *t* −Cay[*G* : Ω] as follows:

$$
V(H) := G \text{ and } E(H) = \{ \{ g, g\omega, \dots, g\omega^{t-1} \} : g \in G, \omega \in \Omega \}.
$$

He proved that *t*-Cayley Hypergraphs are vertex transitive and regular. Moreover, he obtained a necessary and sufficient condition for *t*-Cayley Hypergraphs to be connected.

In [\[6\]](#page-2-3) H. Galeana Sanchez and Cesar Hernandez-Cruz introduced the concepts of *k*- transitivity and *k*-path transitivity in Cayley digraphs. A digraph *G* is *k* −*transitive* if the existence of a path (x_0, x_1, \ldots, x_k) of length *k* in *G* implies that *x*⁰ and *x^k* are adjacent. A digraph is called *k*− *path transitive* if whenever there is a *xy* path of length less than or equal to *k* and a *yz* path of length less than or equal to *k*, then there exists a *xz* path of length less than or equal to *k*.

Anil Kumar V. and Mohanan T. generalised the concept of *k*-transitivity as follows[\[3\]](#page-2-4): Let *m* and *n* be two positive integers such that $m > n$. A digraph *G* is $(m, n) - transitive$ if whenever there is a directed path of length *m* from *x* to *y* there is a directed path of length *n* from *x* to *y*.

In this paper we study some graph theortic properties in terms of algebraic properties.

2. Main Results

Let *G* be a group with identity element 1 and let Ω be a subset of $G \setminus \{1\}$. We define

$$
A := \{w^n : w \in \Omega, n = 1, 2, \dots, t - 1\} \setminus \{1\}.
$$

A *t*-Cayley Hypergraph $H = t - \frac{Cay[G : \Omega]}{g}$ is complete if and only if $G = A$.

Proof. First, assume that *H* be a complete hypergraph. Then for $x \in G$, 1 and *x* are adjacent. This implies that $1, x \in e$ = ${g sⁱ : 0 \le i \le t-1}$, for some $g \in G$, and some $s \in \Omega$. This implies there exists $p, q \in \{0, 1, \ldots, t-1\}$ such that $1 = gs^p$ and $x = gs^q$. Observe that

$$
x = gs^p . s^{q-p} = s^{q-p} \in A.
$$

Since $x \in G$ is arbitrary, $G \subseteq A$. Obviously, $A \subseteq G$. Therefore, $G = A$.

Conversely, assume that $G = A$. We want to show that *H* is complete. Let $x, y \in G$. Then $y = xz$ for some $z \in G$. Since $G =$ *A*, $z \in A$. Then $z = w^r$, for some $w \in \Omega$ and $r \in \{1, 2, \ldots, t -$ 1}. This implies that $y = xw^r$. This means that *x*, *y* belongs to an edge $e = \{xw^i : 0 \le i \le t - 1\}$. Therefore *x* and *y* are adjacent. This completes the proof of the theorem. \Box

A hypergraph *G* is a *hasse*−*diagram* if *G* is connected and for any path x_0, x_1, \ldots, x_n , $n \geq 2$ from x_0 to x_n in G , x_0 and x_n are not adjacent.

H is a hasse-diagram if and only if *H* is connected and $A \cap A^n = \emptyset$ for $n \geq 2$.

Proof. First, assume that *H* is a hasse-diagram. Let $x \in$ A^n , $n \ge 2$. Then there exists $w_1^{r_1}, w_2^{r_2}, \ldots, w_n^{r_n} \in A$ where *w*₁,*w*₂,...,*w*_{*n*} ∈ Ω and *r*₁,*r*₂,...,*r*_{*n*} ∈ {1,2,...,*t* − 1} such that $x = w_1^{r_1} w_2^{r_2} \dots w_n^{r_n}$. Clearly $w_1^{r_1} w_2^{r_2} \dots w_{i-1}^{r_i-1}$, $w_1^{r_1} w_2^{r_2} \dots w_i^{r_i}$, $(i \in \{2, 3, \ldots n\}),$ are adjacent. Then $1, w_1^{r_1}, w_1^{r_1} w_2^{r_2},$ \ldots , $w_1^{r_1} w_2^{r_2} \ldots w_n^{r_n} = x$ is a path of length *n* from 1 to *x*. But since *H* is a hasse-diagram 1 and *x* are not adjacent. That is, there exist no edge $e = \{gw^i : 0 \le t - 1\}$, $g \in G$, $w \in \Omega$ such that $1, x \in e$. This implies $x \neq 1$.*w*^{*r*} for any $w \in \Omega$, $r \in$ $\{0,1,\ldots,t-1\}$ which gives $x \notin A$. That is $x \in A^n$ implies *x* ∉ *A* for *n* ≥ 2. Therefore $A \cap A^n = \emptyset$ for *n* ≥ 2.

Conversely assume that *H* is connected and $A \cap A^n = \emptyset$ for $n \geq 2$. Let $x, y \in G$. Then there exists a path, say, $x =$ $x_0, x_1, \ldots, x_n = y$ from *x* to *y* of length $n \ge 2$. This implies that there exists $g_i \in G$ and $w_i \in \Omega$ such that $x_{i-1}, x_i \in \{g_i w_i^k : 0 \leq i \leq k\}$ $k \le t-1$, $i = 1, 2, \ldots, n$. Observe that $x_i = x_{i-1} w_i^{r_i}$ for some $r_i \in \{1, 2, \ldots, t-1\}$. Then

$$
y = x_n = xw_1^{r_1}w_2^{r_2}\dots w_n^{r_n}
$$
 (2.1)

If *x* and *y* are adjacent, then there exist *g* \in *G* and *w* \in Ω such that *x*, *y* ∈ { gw^k : 0 ≤ k ≤ t − 1}. Then

$$
y = xw^{k_0} \tag{2.2}
$$

for some $k_0 \in \{1, 2, ..., t-1\}$. From [\(2.1\)](#page-1-0) and [\(2.2\)](#page-1-1), $w^{k_0} =$ $w_1^{r_1} w_2^{r_2} \dots w_n^{r_n}$, which implies $w^{k_0} \in A^n$. This implies that $w^{k_0} \in A \cap A^n$, (since $w^{k_0} \in A$), which is a contradiction to the assumption that $A \cap A^n = \emptyset$ for $n \ge 2$. Hence *x* and *y* are not adjacent. Thus *H* is a hasse-diagram. This completes the proof. \Box

The hypergraph *H* is *k*-transitive if and only if $A^k \subseteq A$.

Proof. Assume that *H* is *k*-transitive. Let $x \in A^k$. Then there exists $w_1^{r_1}, w_2^{r_2}, \ldots, w_k^{r_k} \in A$ where $w_1, w_2, \ldots, w_k \in \Omega$ and $r_1, r_2, \ldots, r_k \in \{1, 2, \ldots, t-1\}$ such that $x = w_1^{r_1} w_2^{r_2} \ldots w_k^{r_k}$.

Obviously, $1, w_1^{r_1}, w_1^{r_1} w_2^{r_2}, \ldots, w_1^{r_1} w_2^{r_2} \ldots w_k^{r_k} = x$ is a path from 1 to *x* of length *k*. Since *H* is *k*-transitive, 1 and *x* are adjacent. Then there exist $w \in \Omega$ such that $x = 1.w^r$ for some $r \in \{1, 2, \ldots, t-1\}$ which implies that $x = w^r \in A$. Hence $A^k \subseteq A$.

Conversely assume $A^k \subseteq A$. Let $x, y \in V(H)$ be such that there exists a path of length *k* from *x* to *y*, say, $x =$

 $x_0, x_1, \ldots, x_k = y$. Then we obtain $y = x \cdot w_1^{r_1} w_2^{r_2} \ldots w_k^{r_k}$ for some $w_i^{r_i} \in A$, where $w_i \in \Omega$, $r_i \in \{1, 2, ..., t-1\}$, $i = 1, 2, ..., k$. Since $A^k \subseteq A$, $w_1^{r_1} w_2^{r_2} \dots w_k^{r_k} \in A$. Then there exist $w \in \Omega$ and $r \in \{1, 2, \ldots, t-1\}$ such that $w^r = w_1^{r_1} w_2^{r_2} \ldots w_k^{r_k}$. This gives, $y = xw^r$ which clearly implies *x* and *y* are adjacent. Hence *H* is *k*-transitive. \Box

H is *k*-path transitive implies

$$
SA \cup SA^2 \cup \ldots \cup SA^k \subseteq S,
$$

where $S = A \cup A^2 \cup ... \cup A^k$.

Proof. Let $x \in SA \cup SA^2 \cup ... \cup SA^k$. Then $x \in SA^i$ for some $i \in \{1, 2, ..., k\}$. Then there exist $w_1^{r_1}, w_2^{r_2}, ..., w_i^{r_i} \in A, r_1, r_2$, ...,*r*_{*i*} ∈ {1,2,...,*t* − 1}, and *a* ∈ *S* such that $x = aw_1^{r_1} w_2^{r_2} ... w_i^{r_i}$. Clearly $a, aw_1^{r_1}, aw_1^{r_2}, ..., aw_1^{r_1}w_2^{r_2}, ...$, $aw_i^{r_i} = x$ is a path from *a* to *x* of length $i \leq k$. Also $a \in S$ implies that $a \in A^r$ for some integer *r* such that $1 \le r \le k$. Then there exist $a_1^{p_1}, a_2^{p_2}, \ldots, a_r^{p_r} \in$ *A*, $(a_i \in \Omega, p_1, p_2, \ldots, p_r \in \{1, 2, \ldots, t-1\})$, such that *a* = $a_1^{p_1} a_2^{p_2} \dots a_r^{p_r}$. This implies that $1, a_1^{p_1}, a_1^{p_1} a_2^{p_2}, \dots, a_1^{p_1} a_2^{p_2}$ $\therefore a_r^{\tilde{p}_r} = a$ is a path from 1 to *a* of length $r \leq k$. Since *H* is *k*-path transitive there exists a path from 1 to *x* of length q less than or equal to *k*. Let this path be $1 = x_0, x_1, \ldots, x_q = x$. This implies that there exists *w^j* ∈ Ω and *s^j* ∈ {1,2,...,*t* −1}, 1 ≤ $j \leq q$, such that

$$
x_1 = x_0 w_1^{s_1} = w_1^{s_1},
$$

\n
$$
x_2 = w_1^{s_1} w_2^{s_2},
$$

\n
$$
\vdots
$$

\n
$$
x = w_1^{s_1} w_2^{s_2} \dots w_q^{s_q}.
$$

This implies that $x \in A^q \subseteq A \cup A^2 \cup ... \cup A^k = S$. Equivalently,

$$
SA \cup SA^2 \cup \ldots \cup SA^k \subseteq S.
$$

This completes the proof.

H is *k*-path transitive if and only if

$$
(A \cup A^2 \cup \ldots \cup A^k)^2 \subseteq A \cup A^2 \cup \ldots \cup A^k
$$

Proof. Assume *H* is *k*-path transitive. Let $x \in (A \cup A^2 \cup ... \cup A^2)$ *A*^k)². Then *x* = *a*₁*a*₂, such that *a*₁,*a*₂ ∈ *A* ∪ *A*² ∪ ... ∪ *A*^{*k*}, implies $a_1 \in A^p$, $a_2 \in A^q$ for some $p, q \in \{1, 2, ..., k\}$. Then $a_1 = x_1x_2...x_p$ and $a_2 = y_1y_2...y_q$ where $x_1, x_2,...,x_p, y_1, y_2$, ..., *y*_q</sub> \in *A*. Then *x* = *a*₁*y*₁*y*₂ ... *y*_q^{*t*}₁*w*₁^{*n*}₂^{*n*}₂^{*m*}_{*x*}^{*r*}₄^{*n*}, *w_q*^{*i*}, *w_q*^{*i*}, *w*_{*i*} \in Ω, *rⁱ* ∈ {1,2,...,*t* −1} for all *i* ∈ {1,2,...,*q*}. Clearly there exists a path from a_1 to x of length $q \leq k$. Again $a_1 =$ $x_1x_2...x_p$ implies that there exist a path from 1 to a_1 of length $p \leq k$. Now since *H* is *k*-path transitive there exists a path from 1 to *x* of length $m \leq k$. Then there exist $s_1, s_2, \ldots, s_m \in \Omega$ such that $x = s_1^{p_1} s_2^{p_2} \ldots s_m^{p_m}, p_1, p_2, \ldots, p_m \in \Omega$ {1,2,...,*t* − 1}. This implies that $\overline{x} \in A^m \subseteq A \cup A^2 \cup ... \cup A^k$. Hence $(A \cup A^2 \cup ... \cup A^k)^2 \subseteq A \cup A^2 \cup ... \cup A^k$.

 \Box

Conversely, assume $(A \cup A^2 \cup ... \cup A^k)^2 \subseteq A \cup A^2 \cup ... \cup A^k$ *A*^{*k*}. Let there exist a path from *x* to *y* of length $i \leq k$ and a path from *y* to *z* of length $j \leq k$. Then there exists w_1, w_2, \ldots, w_i , $v_1, v_2, \ldots, v_j \in \Omega$ and $r_1, r_2, \ldots, r_i, p_1, p_2, \ldots, p_j \in \{1, 2, \ldots, t-1\}$ 1} such that $y = xw_1^{r_1}w_2^{r_2}...w_i^{r_i}$ and $z = yv_1^{p_1}v_2^{p_2}...v_j^{p_j}$. Then $z = xw_1^{r_1}w_2^{r_2} \dots w_i^{r_i}v_1^{p_1}v_2^{p_2}\dots v_j^{p_j} = xa_1a_2$, where $a_1 \in A^i$ and $a_2 \in A^j$. This implies $z = xa_0$ where $a_0 = a_1 a_2 \in (A \cup A)$ A^2 ∪ ... ∪ A^k)². Then by assumption $a_0 \in A \cup A^2 \cup ... \cup A^k$ and hence $a_0 \in A^p$, for some $p \le k$. Then $z = xu_1^{q_1}u_2^{q_2} \dots u_p^{q_p}$, $u_1, u_2, \ldots, u_p \in \Omega, q_1, q_2, \ldots, q_p \in \{1, 2, \ldots, t-1\}.$ This implies that there exist a path from *x* to *z* of length $p \leq k$. Hence *H* is *k*-path transitive. \Box

H is (m, n) -transitive if and only if $A^m \subseteq A^n$.

Proof. Suppose *H* is (m, n) -transitive. Let $x \in A^m$. Then there exist $w_1, w_2, \ldots, w_m \in \Omega$ and $r_1, r_2, \ldots, r_m \in \{1, 2, \ldots, t-1\}$ such that $x = w_1^{r_1} w_2^{r_2} \dots w_m^{r_m}$. Then $1, w_1^{r_1} w_1^{r_1} w_2 r_2, \dots, w_1^{r_1} w_2^{r_2}$...*w*^{*r_m*} is a path from 1 to *x* of length *m*. Since *H* is (m, n) transitive, there exist a path $1 = x_0, x_1, \ldots, x_n = x$ from 1 to *x* of length *n*. Then there exist $g_i \in G$ and $w_i \in \Omega$ for $i \in$ {1,2,...,*n*} such that $x_{i-1}, x_i \in e_i = \{g_i w_i^k : 0 \le k \le t-1\}$. Then $x_i = x_{i-1}w_i^{k_i}$ for some $k_i \in \{1, 2, ..., t-1\}$. Then $x =$ $x_n = 1 \cdot w_1^{k_1} w_2^{k_2} \dots w_n^{k_n}$, implies $x \in A^n$. Hence $A^m \subseteq A^n$.

Conversely assume that $A^m \subseteq A^n$. Let $x, y \in G$ such that there exist a path from *x* to *y* of length *m*. Then there exists *w*₁,*w*₂,...,*w*_{*m*} ∈ Ω and *r*₁,*r*₂,...,*r*_{*m*} ∈ {1,2,...,*t* − 1} such that $y = x.w_1^{r_1}w_2^{r_2} \dots w_m^{r_m}$. Since $A^m \subseteq A^n$, $w_1^{r_1}w_2^{r_2} \dots w_m^{r_m} \in A^n$. This implies that there exists $v_1, v_2, \ldots, v_n \in \Omega$ and k_1, k_2 , ..., $k_n \in \{1, 2, ..., t-1\}$ such that $w_1^{r_1} w_2^{r_2} ... w_m^{r_m} = v_1^{r_1} v_2^{r_2} ... v_n^{r_n}$. Then $y = xv_1^{r_1}v_2^{r_2} \dots v_n^{r_n}$. Clearly $x, xv_1^{k_1}, xv_1^{k_1}v_2^{k_2}, \dots, xv_1^{r_1}v_2^{r_2}$... $v_n^{r_n} = y$ is a path from *x* to *y* of length *n*. Hence *H* is (*m*,*n*)-transitive.

References

- [1] Alain Bretto, *Hypergraph Theory An Introduction*, Springer Cham Heidelberg New York Dordrecht London, 2013.
- [2] Anil Kumar V. and Mohanan T., Generalization of transitive Cayley digraphs, *Journal of Mathematics Research*, 4(6)(2012), 43–52.
- [3] Anil Kumar V. and Mohanan T., Transitivity of Generalised Cayley Digraphs, *South Asian Journal of Mathematics*, 2(6)(2012), 542–557.
- [4] H.B. Richard, *A Survey of Binary Systems*, Springer- Verlag New York, 1971.
- [5] H. Galeana-Sanchez and Cesar Hernandez-Cruz, kkernels in generalizations of transitive digraphs, *Prel. Inst. Mat, UNAM*, 899(2011), 1–12.
- [6] H. Galeana-Sanchez and Cesar Hernandez-Cruz, kkernels in k- transitive and k- quasi - transitive digraphs, *Prel. Inst. Mat, UNAM*, 897(2011), 1–14.
- [7] K. R. Parthasarathy, *Basic Graph Theory*, Tata-McGraw-Hill Pub., New Delhi, 1994.
- [8] M. Buratti, Cayley, Marty, Schreier Hypergraphs, *Abh. Math. Sem. Univ. Hamburg,* 64(1994), 151–162.

********* ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 *********

 \Box