

https://doi.org/10.26637/MJM0901/0055

A note on t-Cayley hypergraphs

K.T. Neethu¹* and V. Anil Kumar²

Abstract

In this paper we study some properties of *t*-Cayley hypergraph in terms of algebraic properties. This did not attract much attention in the literature.

Keywords

Hypergraph, *t*- hypergraph, *k*-transitive, mn-transitive.

AMS Subject Classification

05C25.

¹Department of Mathematics, Little Flower College, Guruvayoor, India. ²Department of Mathematics, University of Calicut, Kerala, India. *Corresponding author: ¹ neeethuu5@gmail.com; ² anil@uoc.ac.in Article History: Received 13 October 2020; Accepted 11 January 2021

Contents

 1
 Introduction
 329

 2
 Main Results
 329

 References
 331

1. Introduction

A hypergraph *H* is a pair (V(H); E(H)), where V(H) is a finite nonempty set and E(H) is a finite family of nonempty subsets of V(H). The elements of V(H) are called vertices and the elements of E(H) are called edges. Two vertices in a hypergraph are adjacent if there is a hyperedge which contains both vertices [1].

A *path* of length *k* in a hypergraph (V(H); E(H)) is an alternating sequence $(v_1, e_1, v_2, ..., v_k, e_k, v_{k+1})$ in which $v_i \in V(H)$ for each $i = 1, 2, ..., k+1, e_i \in E(H), \{v_i, v_{i+1}\} \subseteq e_i$ for i = 1, 2, ..., k and $v_i \neq v_j$ and $e_i \neq e_j$ for $i \neq j$.

A hypergraph is connected if for any pair of vertices, there is a path which connects these vertices [1]

Let *G* be a group, Ω a subset of $G \setminus \{1\}$ and *t* an integer satisfying $2 \le t \le \max\{o(\omega) : \omega \in \Omega\}$. In [8], M. Buratti introduced *t*-Cayley Hypergraph $H = t - \operatorname{Cay}[G : \Omega]$ as follows:

$$V(H) := G \text{ and } E(H) = \{\{g, g\omega, \dots, g\omega^{t-1}\} : g \in G, \omega \in \Omega\}$$

He proved that *t*-Cayley Hypergraphs are vertex transitive and regular. Moreover, he obtained a necessary and sufficient condition for *t*-Cayley Hypergraphs to be connected.

In [6] H. Galeana Sanchez and Cesar Hernandez-Cruz introduced the concepts of *k*- transitivity and *k*-path transitiv-

ity in Cayley digraphs. A digraph *G* is k - transitive if the existence of a path $(x_0, x_1, ..., x_k)$ of length *k* in *G* implies that x_0 and x_k are adjacent. A digraph is called k - path transitive if whenever there is a *xy* path of length less than or equal to *k* and a *yz* path of length less than or equal to *k*, then there exists a *xz* path of length less than or equal to *k*.

Anil Kumar V. and Mohanan T. generalised the concept of *k*-transitivity as follows[3]: Let *m* and *n* be two positive integers such that m > n. A digraph *G* is (m,n) - transitive if whenever there is a directed path of length *m* from *x* to *y* there is a directed path of length *n* from *x* to *y*.

In this paper we study some graph theortic properties in terms of algebraic properties.

2. Main Results

Let *G* be a group with identity element 1 and let Ω be a subset of $G \setminus \{1\}$. We define

$$A := \{w^n : w \in \Omega, n = 1, 2, \dots, t - 1\} \setminus \{1\}.$$

A *t*-Cayley Hypergraph $H = t - Cay[G : \Omega]$ is complete if and only if G = A.

Proof. First, assume that *H* be a complete hypergraph. Then for $x \in G$, 1 and *x* are adjacent. This implies that $1, x \in e = \{gs^i : 0 \le i \le t-1\}$, for some $g \in G$, and some $s \in \Omega$. This implies there exists $p, q \in \{0, 1, ..., t-1\}$ such that $1 = gs^p$ and $x = gs^q$. Observe that

$$x = gs^p \cdot s^{q-p} = s^{q-p} \in A.$$

Since $x \in G$ is arbitrary, $G \subseteq A$. Obviously, $A \subseteq G$. Therefore, G = A.

©2021 MJM.

Conversely, assume that G = A. We want to show that H is complete. Let $x, y \in G$. Then y = xz for some $z \in G$. Since G = A, $z \in A$. Then $z = w^r$, for some $w \in \Omega$ and $r \in \{1, 2, ..., t - 1\}$. This implies that $y = xw^r$. This means that x, y belongs to an edge $e = \{xw^i : 0 \le i \le t - 1\}$. Therefore x and y are adjacent. This completes the proof of the theorem. \Box

A hypergraph *G* is a *hasse* – *diagram* if *G* is connected and for any path $x_0, x_1, ..., x_n$, $n \ge 2$ from x_0 to x_n in *G*, x_0 and x_n are not adjacent.

H is a hasse-diagram if and only if *H* is connected and $A \cap A^n = \emptyset$ for $n \ge 2$.

Proof. First, assume that *H* is a hasse-diagram. Let $x \in A^n$, $n \ge 2$. Then there exists $w_1^{r_1}, w_2^{r_2}, \ldots, w_n^{r_n} \in A$ where $w_1, w_2, \ldots, w_n \in \Omega$ and $r_1, r_2, \ldots, r_n \in \{1, 2, \ldots, t-1\}$ such that $x = w_1^{r_1} w_2^{r_2} \ldots w_n^{r_n}$. Clearly $w_1^{r_1} w_2^{r_2} \ldots w_{i-1}^{r_{i-1}}, w_1^{r_1} w_2^{r_2} \ldots w_i^{r_i}, (i \in \{2, 3, \ldots, n\})$, are adjacent. Then $1, w_1^{r_1}, w_1^{r_1} w_2^{r_2} \ldots w_n^{r_n} = x$ is a path of length *n* from 1 to *x*. But since *H* is a hasse-diagram 1 and *x* are not adjacent. That is, there exist no edge $e = \{gw^i : 0 \le t-1\}, g \in G, w \in \Omega$ such that $1, x \in e$. This implies $x \ne 1.w^r$ for any $w \in \Omega$, $r \in \{0, 1, \ldots, t-1\}$ which gives $x \notin A$. That is $x \in A^n$ implies $x \notin A$ for $n \ge 2$.

Conversely assume that *H* is connected and $A \cap A^n = \emptyset$ for $n \ge 2$. Let $x, y \in G$. Then there exists a path, say, $x = x_0, x_1, \ldots, x_n = y$ from *x* to *y* of length $n \ge 2$. This implies that there exists $g_i \in G$ and $w_i \in \Omega$ such that $x_{i-1}, x_i \in \{g_i w_i^k : 0 \le k \le t-1\}$, $i = 1, 2, \ldots, n$. Observe that $x_i = x_{i-1} w_i^{r_i}$ for some $r_i \in \{1, 2, \ldots, t-1\}$. Then

$$y = x_n = x w_1^{r_1} w_2^{r_2} \dots w_n^{r_n}$$
(2.1)

If x and y are adjacent, then there exist $g \in G$ and $w \in \Omega$ such that $x, y \in \{gw^k : 0 \le k \le t-1\}$. Then

$$y = xw^{k_0} \tag{2.2}$$

for some $k_0 \in \{1, 2, ..., t-1\}$. From (2.1) and (2.2), $w^{k_0} = w_1^{r_1} w_2^{r_2} \dots w_n^{r_n}$, which implies $w^{k_0} \in A^n$. This implies that $w^{k_0} \in A \cap A^n$, (since $w^{k_0} \in A$), which is a contradiction to the assumption that $A \cap A^n = \emptyset$ for $n \ge 2$. Hence *x* and *y* are not adjacent. Thus *H* is a hasse-diagram. This completes the proof.

The hypergraph *H* is *k*-transitive if and only if $A^k \subseteq A$.

Proof. Assume that *H* is *k*-transitive. Let $x \in A^k$. Then there exists $w_1^{r_1}, w_2^{r_2}, \ldots, w_k^{r_k} \in A$ where $w_1, w_2, \ldots, w_k \in \Omega$ and $r_1, r_2, \ldots, r_k \in \{1, 2, \ldots, t-1\}$ such that $x = w_1^{r_1} w_2^{r_2} \ldots w_k^{r_k}$.

Obviously, $1, w_1^{r_1}, w_1^{r_1}w_2^{r_2}, \dots, w_1^{r_1}w_2^{r_2}\dots w_k^{r_k} = x$ is a path from 1 to *x* of length *k*. Since *H* is *k*-transitive, 1 and *x* are adjacent. Then there exist $w \in \Omega$ such that $x = 1.w^r$ for some $r \in \{1, 2, \dots, t-1\}$ which implies that $x = w^r \in A$. Hence $A^k \subseteq A$.

Conversely assume $A^k \subseteq A$. Let $x, y \in V(H)$ be such that there exists a path of length k from x to y, say, x =

 $x_0, x_1, \ldots, x_k = y$. Then we obtain $y = x.w_1^{r_1}w_2^{r_2}\ldots w_k^{r_k}$ for some $w_i^{r_i} \in A$, where $w_i \in \Omega$, $r_i \in \{1, 2, \ldots, t-1\}$, $i = 1, 2, \ldots, k$. Since $A^k \subseteq A$, $w_1^{r_1}w_2^{r_2}\ldots w_k^{r_k} \in A$. Then there exist $w \in \Omega$ and $r \in \{1, 2, \ldots, t-1\}$ such that $w^r = w_1^{r_1}w_2^{r_2}\ldots w_k^{r_k}$. This gives, $y = xw^r$ which clearly implies x and y are adjacent. Hence H is k-transitive.

H is *k*-path transitive implies

$$SA \cup SA^2 \cup \ldots \cup SA^k \subseteq S$$

where $S = A \cup A^2 \cup \ldots \cup A^k$.

Proof. Let $x \in SA \cup SA^2 \cup \ldots \cup SA^k$. Then $x \in SA^i$ for some $i \in \{1, 2, \ldots, k\}$. Then there exist $w_1^{r_1}, w_2^{r_2}, \ldots, w_i^{r_i} \in A, r_1, r_2, \ldots, r_i \in \{1, 2, \ldots, t-1\}$, and $a \in S$ such that $x = aw_1^{r_1}w_2^{r_2}\ldots w_i^{r_i}$. Clearly $a, aw_1^{r_1}, aw_1^{r_1}w_2^{r_2}, \ldots, aw_1^{r_1}w_2^{r_2}\ldots w_i^{r_i} = x$ is a path from a to x of length $i \leq k$. Also $a \in S$ implies that $a \in A^r$ for some integer r such that $1 \leq r \leq k$. Then there exist $a_1^{p_1}, a_2^{p_2}, \ldots, a_r^{p_r} \in A, (a_i \in \Omega, p_1, p_2, \ldots, p_r \in \{1, 2, \ldots, t-1\})$, such that $a = a_1^{p_1}a_2^{p_2}\ldots a_r^{p_r}$. This implies that $1, a_1^{p_1}, a_1^{p_1}a_2^{p_2}, \ldots, a_1^{p_1}a_2^{p_2}$... $a_r^{p_r} = a$ is a path from 1 to a of length $r \leq k$. Since H is k-path transitive there exists a path from 1 to x of length q less than or equal to k. Let this path be $1 = x_0, x_1, \ldots, x_q = x$. This implies that there exists $w_j \in \Omega$ and $s_j \in \{1, 2, \ldots, t-1\}$, $1 \leq j \leq q$, such that

$$x_{1} = x_{0}w_{1}^{s_{1}} = w_{1}^{s_{1}},$$

$$x_{2} = w_{1}^{s_{1}}w_{2}^{s_{2}},$$

$$\vdots$$

$$x = w_{1}^{s_{1}}w_{2}^{s_{2}}\dots w_{q}^{s_{q}}.$$

This implies that $x \in A^q \subseteq A \cup A^2 \cup \ldots \cup A^k = S$. Equivalently,

$$SA \cup SA^2 \cup \ldots \cup SA^k \subset S.$$

This completes the proof.

H is *k*-path transitive if and only if

$$(A \cup A^2 \cup \ldots \cup A^k)^2 \subseteq A \cup A^2 \cup \ldots \cup A^k$$

Proof. Assume *H* is *k*-path transitive. Let $x \in (A \cup A^2 \cup ... \cup A^k)^2$. Then $x = a_1a_2$, such that $a_1, a_2 \in A \cup A^2 \cup ... \cup A^k$, implies $a_1 \in A^p$, $a_2 \in A^q$ for some $p, q \in \{1, 2, ..., k\}$. Then $a_1 = x_1x_2...x_p$ and $a_2 = y_1y_2...y_q$ where $x_1, x_2, ..., x_p, y_1, y_2, ..., y_q \in A$. Then $x = a_1y_1y_2...y_q = a_1w_1^{r_1}w_2^{r_2}...w_q^{r_q}$, $w_i \in \Omega$, $r_i \in \{1, 2, ..., t-1\}$ for all $i \in \{1, 2, ..., q\}$. Clearly there exists a path from a_1 to x of length $q \leq k$. Again $a_1 = x_1x_2...x_p$ implies that there exist a path from 1 to a_1 of length $p \leq k$. Now since *H* is *k*-path transitive there exists a path from 1 to x of length $m \leq k$. Then there exist $s_1, s_2, ..., s_m \in \Omega$ such that $x = s_1^{p_1} s_2^{p_2} ...s_m^{p_m}$, $p_1, p_2, ..., p_m \in \{1, 2, ..., t-1\}$. This implies that $x \in A^m \subseteq A \cup A^2 \cup ... \cup A^k$. Hence $(A \cup A^2 \cup ... \cup A^k)^2 \subseteq A \cup A^2 \cup ... \cup A^k$.

Conversely, assume $(A \cup A^2 \cup \ldots \cup A^k)^2 \subseteq A \cup A^2 \cup \ldots \cup A^k$. Let there exist a path from *x* to *y* of length $i \leq k$ and a path from *y* to *z* of length $j \leq k$. Then there exists w_1, w_2, \ldots, w_i , $v_1, v_2, \ldots, v_j \in \Omega$ and $r_1, r_2, \ldots, r_i, p_1, p_2, \ldots, p_j \in \{1, 2, \ldots, t-1\}$ such that $y = xw_1^{r_1}w_2^{r_2} \ldots w_i^{r_i}$ and $z = yv_1^{p_1}v_2^{p_2} \ldots v_j^{p_j}$. Then $z = xw_1^{r_1}w_2^{r_2} \ldots w_i^{r_i}v_1^{p_2}\cdots v_j^{p_j} = xa_1a_2$, where $a_1 \in A^i$ and $a_2 \in A^j$. This implies $z = xa_0$ where $a_0 = a_1a_2 \in (A \cup A^2 \cup \ldots \cup A^k)^2$. Then by assumption $a_0 \in A \cup A^2 \cup \ldots \cup A^k$ and hence $a_0 \in A^p$, for some $p \leq k$. Then $z = xu_1^{q_1}u_2^{q_2} \ldots u_p^{q_p}$, $u_1, u_2, \ldots, u_p \in \Omega, q_1, q_2, \ldots q_p \in \{1, 2, \ldots, t-1\}$. This implies that there exist a path from *x* to *z* of length $p \leq k$. Hence *H* is *k*-path transitive.

H is (m, n)-transitive if and only if $A^m \subseteq A^n$.

Proof. Suppose *H* is (m, n)-transitive. Let $x \in A^m$. Then there exist $w_1, w_2, \ldots, w_m \in \Omega$ and $r_1, r_2, \ldots, r_m \in \{1, 2, \ldots, t-1\}$ such that $x = w_1^{r_1} w_2^{r_2} \ldots w_m^{r_m}$. Then $1, w_1^{r_1}, w_1^{r_1} w_2 r_2, \ldots, w_1^{r_1} w_2^{r_2}$... $w_m^{r_m}$ is a path from 1 to *x* of length *m*. Since *H* is (m, n)-transitive, there exist a path $1 = x_0, x_1, \ldots, x_n = x$ from 1 to *x* of length *n*. Then there exist $g_i \in G$ and $w_i \in \Omega$ for $i \in \{1, 2, \ldots, n\}$ such that $x_{i-1}, x_i \in e_i = \{g_i w_i^k : 0 \le k \le t-1\}$. Then $x_i = x_{i-1} w_i^{k_i}$ for some $k_i \in \{1, 2, \ldots, t-1\}$. Then $x = x_n = 1.w_1^{k_1} w_2^{k_2} \ldots w_n^{k_n}$, implies $x \in A^n$. Hence $A^m \subseteq A^n$.

Conversely assume that $A^m \subseteq A^n$. Let $x, y \in G$ such that there exist a path from x to y of length m. Then there exists $w_1, w_2, \ldots, w_m \in \Omega$ and $r_1, r_2, \ldots, r_m \in \{1, 2, \ldots, t-1\}$ such that $y = x.w_1^{r_1}w_2^{r_2}\ldots w_m^{r_m}$. Since $A^m \subseteq A^n$, $w_1^{r_1}w_2^{r_2}\ldots w_m^{r_m} \in A^n$. This implies that there exists $v_1, v_2, \ldots, v_n \in \Omega$ and k_1, k_2 , $\ldots, k_n \in \{1, 2, \ldots, t-1\}$ such that $w_1^{r_1}w_2^{r_2}\ldots w_m^{r_m} = v_1^{r_1}v_2^{r_2}\ldots v_n^{r_n}$. Then $y = xv_1^{r_1}v_2^{r_2}\ldots v_n^{r_n}$. Clearly $x, xv_1^{k_1}, xv_1^{k_1}v_2^{k_2}, \ldots, xv_1^{r_1}v_2^{r_2}$ $\ldots v_n^{r_n} = y$ is a path from x to y of length n. Hence H is (m, n)-transitive.

References

- [1] Alain Bretto, Hypergraph Theory An Introduction, Springer Cham Heidelberg New York Dordrecht London, 2013.
- [2] Anil Kumar V. and Mohanan T., Generalization of transitive Cayley digraphs, *Journal of Mathematics Research*, 4(6)(2012), 43–52.
- [3] Anil Kumar V. and Mohanan T., Transitivity of Generalised Cayley Digraphs, *South Asian Journal of Mathematics*, 2(6)(2012), 542–557.
- [4] H.B. Richard, A Survey of Binary Systems, Springer- Verlag New York, 1971.
- [5] H. Galeana-Sanchez and Cesar Hernandez-Cruz, kkernels in generalizations of transitive digraphs, *Prel. Inst. Mat, UNAM*, 899(2011), 1–12.
- [6] H. Galeana-Sanchez and Cesar Hernandez-Cruz, kkernels in k- transitive and k- quasi - transitive digraphs, *Prel. Inst. Mat, UNAM*, 897(2011), 1–14.

- [7] K. R. Parthasarathy, *Basic Graph Theory*, Tata-McGraw-Hill Pub., New Delhi, 1994.
- [8] M. Buratti, Cayley, Marty, Schreier Hypergraphs, *Abh. Math. Sem. Univ. Hamburg*, 64(1994), 151–162.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

A note on t-Cayley hypergraphs — 331/331