

https://doi.org/10.26637/MJM0901/0056

\mathscr{I}_{λ} -statistical limit points and \mathscr{I}_{λ} -statistical cluster points

Prasanta Malik ¹* and Samiran Das²

Abstract

In this paper we have extended the notion of λ -statistical limit points of real sequences to \mathscr{I}_{λ} -statistical limit points and studied some basic properties of the set of all \mathscr{I}_{λ} -statistical limit points and \mathscr{I}_{λ} -statistical cluster points of real sequences including their interrelationship. Then we have established \mathscr{I}_{λ} -statistical analogue of the monotone sequence theorem. Also introducing additive property of \mathscr{I}_{λ} -density zero sets we have established its relationship with \mathscr{I}_{λ} -statistical convergence.

Keywords

 \mathscr{I}_{λ} -statistical convergence, \mathscr{I}_{λ} -statistical limit point, \mathscr{I}_{λ} -statistical cluster point, \mathscr{I}_{λ} -density, \mathscr{I}_{λ} -statistical boundedness.

AMS Subject Classification

40G15, 40A35.

^{1,2} Department of Mathematics, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India.
*Corresponding author: ¹ pmjupm@yahoo.co.in; ²das91samiran@gmail.com
Article History: Received 12 August 2020; Accepted 20 December 2020

Contents

1. Introduction and background:

As a generalization of the usual notion of convergence of real sequences the notion of statistical convergence was introduced independently by Fast [10] and Schoenberg [31] using the concept of natural density of subsets of \mathbb{N} .

A set $\mathcal{M} \subset \mathbb{N}$ is said to have natural density $d(\mathcal{M})$, if

$$d(\mathscr{M}) = \lim_{n \to \infty} \frac{|\mathscr{M}(n)|}{n}$$

where $\mathcal{M}(n) = \{m \le n : m \in \mathcal{M}\}\$ and $|\mathcal{M}(n)|$ represents the number of elements in $\mathcal{M}(n)$.

A sequence $x = \{x_k\}_{k \in \mathbb{N}}$ of real numbers is said to be statistically convergent to ξ if for every $\varepsilon > 0$, $d(\{k \in \mathbb{N} : |x_k - \xi| \ge \varepsilon\}) = 0$. Study in this line became one of the most active research area in summability theory after the works of Šalát [26] and Fridy [12]. Using the concept of statistical convergence, the notions of statistical limit point and statistical cluster point of real sequences were introduced and studied by Fridy [13].

©2021 MJM

If $\{x_{k_j}\}_{j \in \mathbb{N}}$ is a subsequence of a real sequence $x = \{x_k\}_{k \in \mathbb{N}}$ and $\mathcal{Q} = \{k_j : j \in \mathbb{N}\}$, then we use the notation $\{x\}_{\mathcal{Q}}$ to denote the subsequence $\{x_{k_j}\}_{j \in \mathbb{N}}$. In case $d(\mathcal{Q}) = 0$, $\{x\}_{\mathcal{Q}}$ is called a thin subsequence of x. On the other hand $\{x\}_{\mathcal{Q}}$ is called a non-thin subsequence of x if $d(\mathcal{Q}) \neq 0$, where $d(\mathcal{Q}) \neq 0$ means that either $d(\mathcal{Q})$ is a positive number or \mathcal{Q} fails to have natural density.

A real number *p* is called a statistical limit point of a real sequence $x = \{x_k\}_{k \in \mathbb{N}}$, if there exists a non-thin subsequence of *x* that converges to *p*.

A real number *q* is called a statistical cluster point of a real sequence $x = \{x_k\}_{k \in \mathbb{N}}$, if for every $\varepsilon > 0$ the set $\{k \in \mathbb{N} : |x_k - q| < \varepsilon\}$ does not have natural density zero.

For more works on this convergence notion one can see [2, 3, 5, 14, 25, 32].

The notion of λ -statistical convergence of real sequences was introduced by Mursaleen [22] using the concept of λ -density of subsets of \mathbb{N} .

If $\lambda = {\lambda_n}_{n \in \mathbb{N}}$ is a monotone increasing sequence of positive real numbers tending to ∞ such that $\lambda_1 = 1$, $\lambda_{n+1} \leq \lambda_n + 1$, $n \in \mathbb{N}$, then any set $\mathcal{M} \subset \mathbb{N}$ is said to have λ -density

 $d_{\lambda}(\mathcal{M}),$ if

$$d_{\lambda}(\mathscr{M}) = \lim_{n \to \infty} \frac{|\{k \in I_n : k \in \mathscr{M}\}|}{\lambda_n},$$

where $I_n = [n - \lambda_n + 1, n]$. The collection of all such sequences λ is denoted by Δ_{∞} . Throughout this paper λ - stands for such a sequence.

A sequence $x = \{x_k\}_{k \in \mathbb{N}}$ of real numbers is said to be λ -statistically convergent to ξ if for every $\varepsilon > 0, d_{\lambda} (\{k \in \mathbb{N} :$ $|x_k - \xi| \geq \varepsilon$ }) = 0.

Clearly, if $\lambda_n = n, \forall n \in \mathbb{N}$, then the concepts of λ -density and λ -statistical convergence coincide with natural density and statistical convergence respectively.

Actually the concepts of λ -density and λ -statistical convergence are special cases of A-density and A-statistical convergence (see [1, 4, 11, 16]), where A is an $\mathbb{N} \times \mathbb{N}$ non negative regular summability matrix. An $\mathbb{N} \times \mathbb{N}$ matrix $A = (a_{nk})$ is called a regular summability matrix if for any convergent sequence $x = \{x_k\}_{k \in \mathbb{N}}$ with limit ξ , $\lim_{n \to \infty} \sum_{k=1}^{\infty} a_{nk} x_k = \xi$, and A is called nonnegative if $a_{nk} \ge 0, \forall n, k$.

For a non negative regular summability matrix $A = (a_{nk})$, a set $\mathcal{M} \subset \mathbb{N}$ is said to have A-density $\delta_A(\mathcal{M})$, if

$$\delta_A(\mathscr{M}) = \lim_{n \to \infty} \sum_{k \in \mathscr{M}} a_{nk}$$

A sequence $x = \{x_k\}_{k \in \mathbb{N}}$ of real numbers is said to be A-statistically convergent to ξ if for every $\varepsilon > 0$, $\delta_A(\{k \in \mathbb{N} :$ $|x_k - \xi| \geq \varepsilon$ }) = 0.

If
$$A = A_s = (a_{nk})$$
, where $a_{nk} = \begin{cases} \frac{1}{\lambda_n} & \text{if } k \in I_n, \\ 0 & \text{if } k \notin I_n, \end{cases}$ then

A-density and A-statistical convergence coincide with λ -density and λ -statistical convergence respectively. Again, if $\lambda_n =$ $n, \forall n \in \mathbb{N}$, then the matrix $A = A_s$ becomes the Cesaro matrix C_1 and so A-density and A-statistical convergence coincide with natural density and statistical convergence respectively.

The concept of statistical convergence was further generalized to the notion of *I*-convergence by Kostyrko et al.[17] using the notion of an ideal of subsets of \mathbb{N} .

A non-empty family \mathscr{I} of subsets of a non empty set *S* is called an ideal in S if \mathscr{I} is hereditary (i.e. $\mathscr{A} \in \mathscr{I}, B \subset \mathscr{A} \Rightarrow$ $\mathcal{B} \in \mathcal{I}$) and additive (i.e. $\mathcal{A}, \mathcal{B} \in \mathcal{I} \Rightarrow \mathcal{A} \cup \mathcal{B} \in \mathcal{I}$).

An ideal \mathscr{I} in a non-empty set *S* is called non-trivial if $S \notin \mathscr{I}$ and $\mathscr{I} \neq \{\emptyset\}$.

A non-trivial ideal \mathscr{I} in $S \neq \emptyset$ is called admissible if $\{z\} \in \mathscr{I}$ for each $z \in S$.

Throughout the paper we take \mathcal{I} as a non-trivial admissible ideal in \mathbb{N} unless otherwise mentioned.

A real sequence $x = \{x_k\}_{k \in \mathbb{N}}$ is said to be \mathscr{I} -convergent to ξ , if for any $\varepsilon > 0$, $\{k \in \mathbb{N} : |x_k - \xi| \ge \varepsilon\} \in \mathscr{I}$. In this case we write $\mathscr{I} - \lim_{k \to \infty} x_k = \xi$.

Using this notion of an ideal of subsets of \mathbb{N} , in [17] the concepts of statistical limit point and statistical cluster point were extended to the notions of I-limit point and I-cluster point respectively.

A real number l is said to be an \mathscr{I} -limit point of a real sequence $x = \{x_k\}_{k \in \mathbb{N}}$, if there exists a set $P = \{p_1 < p_2 < p_2$...} $\subset \mathbb{N}$ such that $P \notin \mathscr{I}$ and $\lim_{k \to \infty} x_{p_k} = l$.

A real number y is said to be an *I*-cluster point of a real sequence $x = \{x_k\}_{k \in \mathbb{N}}$, if for every $\varepsilon > 0$, $\{k \in \mathbb{N} : |x_k - y| < \varepsilon$ $\varepsilon \} \notin \mathscr{I}.$

For more works on *I*-convergence one can see [9, 18–20] where other references can be found.

If we take $\mathscr{I} = \mathscr{I}_d = \{A \subset \mathbb{N} : d(A) = 0\}$, then \mathscr{I}_d convergence, \mathcal{I}_d -limit point and \mathcal{I}_d -cluster point coincide with statistical convergence, statistical limit point and statistical cluster point respectively. Again for a non negative regular matrix $A = (a_{nk})$, if one consider $\mathscr{I} = \mathscr{I}_A = \{B \subset A\}$ \mathbb{N} : $\delta_A(B) = 0$ }, then \mathscr{I}_A -convergence, \mathscr{I}_A -limit point and IA-cluster point coincide with A-statistical convergence, Astatistical limit point and A-statistical cluster point respectively and in particular for $A = A_s$, \mathscr{I}_{A_s} -convergence, \mathscr{I}_{A_s} limit point and \mathcal{I}_{A_s} -cluster point coincide with λ -statistical convergence, λ -statistical limit point and λ -statistical cluster point respectively.

Further using the notion of an ideal \mathscr{I} of subsets of \mathbb{N} in [6] a new concept of *I*-statistical convergence was introduced by Das et al. as a generalization of statistical convergence.

A sequence $x = \{x_k\}_{k \in \mathbb{N}}$ of real numbers is said to be \mathscr{I} -statistically convergent to ξ if for any $\varepsilon > 0$ and $\delta > 0$, $\{n \in \mathbb{N} : \frac{1}{n} | \{k \le n : |x_k - \xi| \ge \varepsilon\} | \ge \delta\} \in \mathscr{I}.$

Applying this concept of *I*-statistical convergence, the notions of statistical limit point and statistical cluster point were extended to the notions of *I*-statistical limit point and \mathscr{I} -statistical cluster point respectively (see [7, 8, 21, 23]).

In [27] the concept of \mathscr{I}_{λ} -statistical convergence was introduced by Savas et al. as a generalization of λ -statistical convergence. Clearly the concept of \mathscr{I}_{λ} -statistical convergence includes the ideas of statistical convergence, λ -statistical convergence and *I*-statistical convergence as special cases.

A real sequence $x = \{x_k\}_{k \in \mathbb{N}}$ is said to be \mathscr{I}_{λ} -statistically convergent or $\mathscr{I} - S_{\lambda}$ convergent to ξ if for any $\varepsilon > 0$ and $\delta > 0, \; \{n \in \mathbb{N} : rac{1}{\lambda_n} | \{k \le n : |x_k - \xi| \ge \varepsilon\}| \ge \delta\} \in \mathscr{I}. \; \; ext{In}$ this case we write \mathscr{I} - S_{λ} - $\lim_{k\to\infty} x_k = \xi$. More works on this summability method can be found in [29, 30] where other references can be found.

The concept of \mathscr{I}_{λ} -statistical convergence is a special case of $A^{\mathscr{S}}$ -statistical convergence [28], where A is an $\mathbb{N} \times \mathbb{N}$ non negative regular summability matrix.

If $A = (a_{nk})$ is an $\mathbb{N} \times \mathbb{N}$ non negative regular summability matrix, then a sequence $x = \{x_k\}_{k \in \mathbb{N}}$ of real numbers is said to be $A^{\mathscr{I}}$ -statistically convergent to ξ if for any $\varepsilon > 0$ and $\delta > 0, \{n \in \mathbb{N} : \sum_{k \in \mathbb{N}} a_{nk} \ge \delta\} \in \mathscr{I}, \text{ where } B(\varepsilon) = \{k \in \mathbb{N} : k \in \mathbb{N} : k \in \mathbb{N} : k \in \mathbb{N} \}$ $k \in \overline{B(\varepsilon)}$ $|x_k - \xi| \geq \varepsilon$.

Also in [15], using an $\mathbb{N} \times \mathbb{N}$ non negative regular summability matrix $A = (a_{nk})$, the notion of $A^{\mathscr{I}}$ statistical cluster point was introduced via the concept of $A^{\mathscr{I}}$ -density. A subset

 \mathscr{M} of \mathbb{N} is said to have $A^{\mathscr{I}}$ -density $\delta_{A^{\mathscr{I}}}(\mathscr{M})$, if

$$\delta_{A^{\mathscr{I}}}(\mathscr{M}) = \mathscr{I} - \lim_{n \to \infty} \sum_{k \in \mathscr{M}} a_{nk}.$$

A real number p is said to be an $A^{\mathscr{I}}$ -statistical cluster point of a real sequence $x = \{x_k\}_{k \in \mathbb{N}}$, if for each $\varepsilon > 0$, $\delta_{A^{\mathscr{I}}}(B(\varepsilon)) \neq 0$, where $B(\varepsilon) = \{k \in \mathbb{N} : |x_k - p| < \varepsilon\}$. Note that $\delta_{A^{\mathscr{I}}}(B(\varepsilon)) \neq 0$ means, either $\delta_{A^{\mathscr{I}}}(B(\varepsilon)) > 0$ or $A^{\mathscr{I}}$ density of $B(\varepsilon)$ does not exist. From this notion of $A^{\mathscr{I}}$ statistical cluster point, one can obtain the concept of \mathscr{I}_{λ} statistical cluster point as a special case. Actually, if one consider $A = A_s$, then the notions of $A^{\mathscr{I}}$ statistical convergence and $A^{\mathscr{I}}$ statistical cluster point become \mathscr{I}_{λ} -statistical convergence and \mathscr{I}_{λ} -statistical cluster point respectively.

In this paper using the notion of \mathscr{I}_{λ} -statistical convergence we first extend the concept of λ -statistical limit point to \mathscr{I}_{λ} -statistical limit point of sequences of real numbers and then study some properties of \mathscr{I}_{λ} -statistical limit points and \mathscr{I}_{λ} -statistical cluster points of sequences of real numbers not done earlier. We also study the sets of \mathscr{I}_{λ} -statistical limit points and \mathscr{I}_{λ} -statistical cluster points of sequences of real numbers including their interrelationship. In section 3 of this paper we establish \mathscr{I}_{λ} -statistical analogue of the sequential version of the least upper bound axiom, namely, monotone sequence theorem. Further in section 4 we introduce the condition AP \mathscr{I}_{λ} O and study its relationship with \mathscr{I}_{λ} -statistical convergence.

2. \mathscr{I}_{λ} -statistical limit points and \mathcal{I}_{λ} -statistical cluster points

In this section, we first introduce the notion of \mathscr{I}_{λ} -statistical limit point (which subsequently includes the notions of statistical limit point, λ -statistical limit point and \mathscr{I} -statistical limit point). Then we study \mathscr{I}_{λ} -statistical analogue of some results in [13] and [25].

Throughout the paper \mathbb{N} and \mathbb{R} denote the set of all natural numbers and the set of all real numbers respectively and x denotes a real sequence $\{x_k\}_{k\in\mathbb{N}}$.

Definition 2.1. [15] A set $\mathscr{M} \subset \mathbb{N}$ is said to have \mathscr{I}_{λ} -density $d_{\lambda}^{\mathscr{G}}(\mathscr{M})$ if

$$d_{\lambda}^{\mathscr{I}}(\mathscr{M}) = \mathscr{I} - \lim_{n \to \infty} \frac{|\{m \in I_n : m \in \mathscr{M}\}|}{\lambda_n}.$$

Note 2.2. From Definition 2.1, it is clear that, if $d_{\lambda}(\mathscr{A}) =$ $u, \mathscr{A} \subset \mathbb{N}$, then $d_{\lambda}^{\mathscr{I}}(\mathscr{A}) = u$ for any admissible ideal \mathscr{I} in \mathbb{N} .

In view of Definition 2.1 one can say that: a real sequence $x = \{x_k\}_{k \in \mathbb{N}}$ is \mathscr{I}_{λ} -statistically convergent to ξ if for any $\varepsilon > 0, d_{\lambda}^{\mathscr{G}}(\{k \in \mathbb{N} : |x_k - \xi| \ge \varepsilon\}) = 0.$

If $\{x\}_{\mathscr{Q}}$ is a subsequence of a real sequence $x = \{x_k\}_{k \in \mathbb{N}}$ and $d_{\lambda}^{\mathscr{I}}(\mathscr{Q}) = 0$, then $\{x\}_{\mathscr{Q}}$ is called an \mathscr{I}_{λ} -thin subsequence of x. On the other hand $\{x\}_{\mathcal{Q}}$ is called an \mathscr{I}_{λ} -nonthin subsequence of x if $d_{\lambda}^{\mathscr{I}}(\mathscr{Q}) \neq 0$, where $d_{\lambda}^{\mathscr{I}}(\mathscr{Q}) \neq 0$ means that either $d_{\lambda}^{\mathscr{I}}(\mathscr{Q})$ is a positive number or \mathscr{Q} fails to have \mathscr{I}_{λ} density.

Definition 2.3. A real number l is said to be an \mathscr{I}_{λ} -statistical *limit point of a real sequence* $x = \{x_k\}_{k \in \mathbb{N}}$ *, if there exists an* \mathcal{I}_{λ} -nonthin subsequence of x that converges to l. The set of all \mathscr{I}_{λ} -statistical limit points of the sequence x is denoted by $\Lambda^{S}_{x}(\mathscr{I}_{\lambda}).$

Definition 2.4. A real number y is said to be an \mathscr{I}_{λ} -statistical cluster point of a real sequence $x = \{x_k\}_{k \in \mathbb{N}}$, if for every $\varepsilon > 0$, the set $\{k \in \mathbb{N} : |x_k - y| < \varepsilon\}$ does not have \mathscr{I}_{λ} -density zero. The set of all \mathscr{I}_{λ} -statistical cluster points of x is denoted by $\Gamma_r^{\mathcal{S}}(\mathscr{I}_{\lambda}).$

Note 2.5. (i) If $\lambda_n = n, \forall n \in \mathbb{N}$, then the notions of \mathscr{I}_{λ} statistical limit point and \mathscr{I}_{λ} -statistical cluster point coincide with the notions of I-statistical limit point and I-statistical cluster point respectively.

(ii) If $\mathscr{I} = \mathscr{I}_{fin} = \{\mathscr{K} \subset \mathbb{N} : |\mathscr{K}| < \infty\}$, then the notions of \mathscr{I}_{λ} -statistical limit point and \mathscr{I}_{λ} -statistical cluster point coincide with the notions of λ -statistical limit point and λ statistical cluster point respectively.

(iii) If $\mathscr{I} = \mathscr{I}_{fin} = \{\mathscr{K} \subset \mathbb{N} : |\mathscr{K}| < \infty\}$ and also $\lambda_n =$ $n, \forall n \in \mathbb{N}$, then the notions of \mathscr{I}_{λ} -statistical limit point and \mathscr{I}_{λ} -statistical cluster point coincide with the notions of statistical limit point and statistical cluster point respectively.

We also use the notations $\Lambda_x^S(\lambda)$ and $\Gamma_x^S(\lambda)$ to denote the sets of all λ -statistical limit points and λ -statistical cluster points of a real sequence $x = \{x_k\}_{k \in \mathbb{N}}$ respectively.

We first present an \mathscr{I}_{λ} -statistical analogous of some results in [13].

Theorem 2.6. Let $x = \{x_k\}_{k \in \mathbb{N}}$ be a sequence of real numbers. Then $\Lambda_x^S(\mathscr{I}_{\lambda}) \subset \Gamma_x^S(\mathscr{I}_{\lambda}) \subset \Gamma_x^S(\lambda)$.

Proof. Let $\xi \in \Lambda_x^S(\mathscr{I}_\lambda)$. So we get a subsequence $\{x_{k_q}\}_{q \in \mathbb{N}}$ of x with $\lim_{q\to\infty} x_{k_q} = \xi$ and $d_{\lambda}^{\mathscr{I}}(\mathscr{M}) \neq 0$, where $\mathscr{M} = \{k_q : q \in \mathbb{N}\}.$ Let $\varepsilon > 0$ be given. Since $\lim_{a \to \infty} x_{k_q} = \xi$, $\mathscr{H} = \{k_q : |x_{k_q} - \xi| \ge 0$ ε is a finite set. Hence

$$\{k \in \mathbb{N} : |x_k - \xi| < \varepsilon\} \supset \{k_q : q \in \mathbb{N}\} \setminus \mathscr{H}$$

 $\Rightarrow \mathscr{M} = \{k_q : q \in \mathbb{N}\} \subset \{k \in \mathbb{N} : |x_k - \xi| < \varepsilon\} \cup \mathscr{H}.$

Now if $d_{\lambda}^{\mathscr{I}}(\{k \in \mathbb{N} : |x_k - \xi| < \varepsilon\}) = 0$, then we have $d_{\lambda}^{\mathscr{I}}(\mathscr{M}) =$ 0, which is a contradiction. Thus ξ is an \mathscr{I}_{λ} -statistical cluster point of x. Since $\xi \in \Lambda_x^S(\mathscr{I}_\lambda)$ is arbitrary, $\Lambda_x^S(\mathscr{I}_\lambda) \subset \Gamma_x^S(\mathscr{I}_\lambda)$. Now let $\eta \in \Gamma_x^{\mathcal{S}}(\mathscr{I}_{\lambda})$. Then for any $\varepsilon > 0$,

$$d_{\lambda}^{\mathscr{I}}(\{k\in\mathbb{N}:|x_k-\eta|<\varepsilon\}\neq 0)$$

. Since \mathscr{I} is admissible, $d_{\lambda}(\{k \in \mathbb{N} : |x_k - \eta| < \varepsilon\} \neq 0$. So, $\eta \in \Gamma_x^S(\lambda)$. Hence $\Lambda_x^S(\mathscr{I}_{\lambda}) \subset \Gamma_x^S(\mathscr{I}_{\lambda}) \subset \Gamma_x^S(\lambda)$. \Box

Theorem 2.7. If $x = \{x_k\}_{k \in \mathbb{N}}$ and $y = \{y_k\}_{k \in \mathbb{N}}$ are two sequences of real numbers such that $d_{\lambda}^{\mathscr{G}}(\{k \in \mathbb{N} : x_k \neq y_k\}) = 0$, then $\Lambda_x^S(\mathscr{I}_{\lambda}) = \Lambda_y^S(\mathscr{I}_{\lambda})$ and $\Gamma_x^S(\mathscr{I}_{\lambda}) = \Gamma_y^S(\mathscr{I}_{\lambda})$.

Proof. Let $\zeta \in \Gamma_x^S(\mathscr{I}_{\lambda})$ and $\varepsilon > 0$ be given. Then $\{k \in \mathbb{N} : |x_k - \zeta| < \varepsilon\}$ does not have \mathscr{I}_{λ} -density zero. Let $\mathscr{H} = \{k \in \mathbb{N} : x_k = y_k\}$. As $d_{\lambda}^{\mathscr{I}}(\mathscr{H}) = 1$ so $\{k \in \mathbb{N} : |x_k - \zeta| < \varepsilon\} \cap \mathscr{H}$ does not have \mathscr{I}_{λ} -density zero. Thus $\zeta \in \Gamma_y^S(\mathscr{I}_{\lambda})$. Since $\zeta \in \Gamma_x^S(\mathscr{I}_{\lambda})$ is arbitrary, so $\Gamma_x^S(\mathscr{I}_{\lambda}) \subset \Gamma_y^S(\mathscr{I}_{\lambda})$. By symmetry we have $\Gamma_y^S(\mathscr{I}_{\lambda}) \subset \Gamma_x^S(\mathscr{I}_{\lambda})$. Hence $\Gamma_x^S(\mathscr{I}_{\lambda}) = \Gamma_y^S(\mathscr{I}_{\lambda})$.

Also let $\eta \in \Lambda_x^S(\mathscr{I}_{\lambda})$. Then *x* has an \mathscr{I}_{λ} -nonthin subsequence $\{x_{k_q}\}_{q\in\mathbb{N}}$ that converges to η . Let $\mathscr{Q} = \{k_q : q \in \mathbb{N}\}$. Since $d_{\lambda}^{\mathscr{I}}(\{k_q \in \mathbb{N} : x_{k_q} \neq y_{k_q}\}) = 0$, we have $d_{\lambda}^{\mathscr{I}}(\{k_q \in \mathbb{N} : x_{k_q} = y_{k_q}\}) \neq 0$. Therefore from the latter set we have an \mathscr{I}_{λ} -nonthin subsequence $\{y\}_{\mathscr{Q}'}$ of $\{y\}_{\mathscr{Q}}$ that converges to η . Thus $\eta \in \Lambda_y^S(\mathscr{I}_{\lambda})$. As $\eta \in \Lambda_x^S(\mathscr{I}_{\lambda})$ is arbitrary, $\Lambda_x^S(\mathscr{I}_{\lambda}) \subset \Lambda_y^S(\mathscr{I}_{\lambda})$. By similar way we get $\Lambda_x^S(\mathscr{I}_{\lambda}) \supset \Lambda_y^S(\mathscr{I}_{\lambda})$. Hence $\Lambda_x^S(\mathscr{I}_{\lambda}) = \Lambda_y^S(\mathscr{I}_{\lambda})$.

We now investigate some topological properties of the set $\Gamma_x^S(\mathscr{I}_\lambda)$.

Theorem 2.8. Let $\mathscr{C} \subset \mathbb{R}$ be a compact set and $\mathscr{C} \cap \Gamma_x^{\mathcal{S}}(\mathscr{I}_{\lambda}) = \emptyset$. Then the set $\{k \in \mathbb{N} : x_k \in \mathscr{C}\}$ has \mathscr{I}_{λ} -density zero.

Proof. Since $\mathscr{C} \cap \Gamma_x^S(\mathscr{I}_{\lambda}) = \emptyset$, so for every $\alpha \in \mathscr{C}$ there exists a positive real number $\gamma = \gamma(\alpha)$ such that

$$d_{\lambda}^{\mathscr{I}}(\{k\in\mathbb{N}:|x_k-\alpha|<\gamma(\alpha)\})=0.$$

Let $B_{\gamma(\alpha)}(\alpha) = \{z \in \mathbb{R} : |z - \alpha| < \gamma(\alpha)\}$. Then the family of open sets $\{B_{\gamma(\alpha)}(\alpha) : \alpha \in \mathscr{C}\}$ form an open cover of \mathscr{C} . As \mathscr{C} is a compact subset of \mathbb{R} so there exists a finite subcover of the open cover $\{B_{\gamma(\alpha)}(\alpha) : \alpha \in \mathscr{C}\}$ for \mathscr{C} , say $\{\mathscr{C}_j = B_{\gamma(\alpha_j)}(\alpha_j) :$

$$j = 1, 2, ..., r$$
}. Then $\mathscr{C} \subset \bigcup_{j=1}^{r} \mathscr{C}_i$ and also
 $d_{\lambda}^{\mathscr{I}}(\{k \in \mathbb{N} : |x_k - \alpha_j| < \gamma(\alpha_j)\}) = 0$ for $j = 1, 2, ..., r$.

Now for every $n \in \mathbb{N}$,

$$|\{k \in I_n : x_k \in \mathscr{C}\}| \leq \sum_{j=1}^r |\{k \in I_n; |x_k - \alpha_j| < \gamma(\alpha_j)\}|,$$

and by the property of I-convergence,

$$\begin{split} \mathscr{I} &- \lim_{n o \infty} rac{|\{k \in I_n : x_k \in \mathscr{C}\}|}{\lambda_n} \\ &\leq \quad \sum_{j=1}^r \mathscr{I} - \lim_{n o \infty} rac{|\{k \in I_n : |x_k - lpha_j| < \gamma(lpha_j)\}|}{\lambda_n} = 0. \end{split}$$

This gives $d_{\lambda}^{\mathscr{I}}(\{k \in \mathbb{N} : x_k \in \mathscr{C}\}) = 0.$

Theorem 2.9. Let $x = \{x_k\}_{k \in \mathbb{N}}$ be a sequence in \mathbb{R} . If x has a bounded \mathscr{I}_{λ} -nonthin subsequence, then the set $\Gamma_x^S(\mathscr{I}_{\lambda})$ is a nonempty closed set.

Proof. Let $x = \{x_{k_m}\}_{m \in \mathbb{N}}$ is a bounded \mathscr{I}_{λ} -nonthin subsequence of x and \mathscr{C} be a compact set such that $x_{k_m} \in \mathscr{C}$ for each $m \in \mathbb{N}$. Let $\mathfrak{Q} = \{k_m : m \in \mathbb{N}\}$. Clearly $d_{\lambda}^{\mathscr{I}}(\mathfrak{Q}) \neq 0$. Now

if $\Gamma_x^S(\mathscr{I}_{\lambda}) = \emptyset$, then $\mathscr{C} \cap \Gamma_x^S(\mathscr{I}_{\lambda}) = \emptyset$ and then by Theorem 2.8 we get

$$d_{\lambda}^{\mathscr{I}}(\{k\in\mathbb{N}:x_k\in\mathscr{C}\})=0.$$

Since for every $n \in \mathbb{N}$, $|\{k \in I_n : k \in \mathfrak{Q}\}| \le |\{k \in I_n : x_k \in \mathscr{C}\}|$, we have $d_{\lambda}^{\mathscr{I}}(\mathscr{Q}) = 0$, which is a contradiction. Therefore $\Gamma_x^S(\mathscr{I}_{\lambda}) \ne \emptyset$.

Now to prove $\Gamma_x^{\mathcal{S}}(\mathscr{I}_{\lambda})$ is a closed set in \mathbb{R} , let ζ be a limit point of $\Gamma_x^{\mathcal{S}}(\mathscr{I}_{\lambda})$. Then for any $\varepsilon > 0$, $B_{\varepsilon}(\zeta) \cap (\Gamma_x^{\mathcal{S}}(\mathscr{I}_{\lambda}) \setminus {\zeta}) \neq \emptyset$. Let $\eta \in B_{\varepsilon}(\zeta) \cap (\Gamma_x^{\mathcal{S}}(\mathscr{I}_{\lambda}) \setminus {\zeta})$. Now we can choose $\varepsilon' > 0$ so that $B_{\varepsilon'}(\eta) \subset B_{\varepsilon}(\zeta)$. Since $\eta \in \Gamma_x^{\mathcal{S}}(\mathscr{I}_{\lambda})$ so

$$\begin{aligned} &d_{\lambda}^{\mathscr{I}}(\{k\in\mathbb{N}:|x_{k}-\eta|<\varepsilon'\})\neq 0\\ &\Rightarrow d_{\lambda}^{\mathscr{I}}(\{k\in\mathbb{N}:|x_{k}-\zeta|<\varepsilon\})\neq 0.\\ &\zeta\in\Gamma_{x}^{S}(\mathscr{I}_{\lambda}). \end{aligned}$$

Therefore $\zeta \in \Gamma_x^{\mathcal{S}}(\mathscr{I}_{\lambda})$.

Definition 2.10. A sequence $x = \{x_k\}_{k \in \mathbb{N}}$ of real numbers is said to be \mathscr{I}_{λ} -statistically bounded if, there exists M > 0 such that for all $\delta > 0$, the set

$$\mathscr{B} = \{n \in \mathbb{N} : rac{1}{\lambda_n} | \{k \in I_n : |x_k| > M\}| \geq \delta\} \in \mathscr{I}$$

 $i.e., \ d_{\lambda}^{\mathscr{I}}(\{k \in \mathbb{N} : |x_k| > M\}) = 0.$

Equivalently, $x = \{x_k\}_{k \in \mathbb{N}}$ is said to be \mathscr{I}_{λ} -statistically bounded if, there exists a compact set F in \mathbb{R} such that for all $\delta > 0$, the set $\mathscr{B} = \{n \in \mathbb{N} : \frac{1}{\lambda_n} | \{k \in I_n : x_k \notin F\} | \ge \delta\} \in \mathscr{I}$ i.e., $d_{\lambda}^{\mathscr{I}}(\{k \in \mathbb{N} : x_k \notin F\}) = 0.$

Note 2.11. If $\mathscr{I} = \mathscr{I}_{fin} = \{\mathscr{M} \subset \mathbb{N} : |\mathscr{M}| < \infty\}$, then the notion of \mathscr{I}_{λ} -statistical boundedness coincide with the notion of λ -statistical boundedness.

Corollary 2.12. If $x = \{x_k\}_{k \in \mathbb{N}}$ is \mathscr{I}_{λ} -statistically bounded. Then the set $\Gamma_x^{S}(\mathscr{I}_{\lambda})$ is nonempty and compact.

Proof. Let \mathscr{C} be a compact set in \mathbb{R} such that $d_{\lambda}^{\mathscr{I}}(\{k \in \mathbb{N} : x_k \notin \mathscr{C}\}) = 0$. Then $d_{\lambda}^{\mathscr{I}}(\{k \in \mathbb{N} : x_k \in \mathscr{C}\}) = 1$ and this implies that \mathscr{C} contains an \mathscr{I}_{λ} -nonthin subsequence of x. So by Theorem 2.9, $\Gamma_x^{S}(\mathscr{I}_{\lambda})$ is a nonempty and closed set.

Now to show that $\Gamma_x^{\mathcal{S}}(\mathscr{I}_{\lambda})$ is compact it is sufficient to prove that $\Gamma_x^{\mathcal{S}}(\mathscr{I}_{\lambda}) \subset \mathscr{C}$. If possible let us assume that $\zeta \in \Gamma_x^{\mathcal{S}}(\mathscr{I}_{\lambda})$ but $\zeta \notin \mathscr{C}$. Since \mathscr{C} is compact, so there exists $\varepsilon > 0$ such that $B_{\varepsilon}(\zeta) \cap \mathscr{C} = \emptyset$. So we have

$$\{k\in\mathbb{N}:|x_k-\zeta|<\varepsilon\}\subset\{k\in\mathbb{N}:x_k\notin\mathscr{C}\}.$$

Therefore $d_{\lambda}^{\mathscr{I}}(\{k \in \mathbb{N} : |x_k - \zeta| < \varepsilon\}) = 0$, which is a contradiction to the fact that $\zeta \in \Gamma_x^S(\mathscr{I}_{\lambda})$. Therefore $\Gamma_x^S(\mathscr{I}_{\lambda}) \subset \mathscr{C}$.

Theorem 2.13. Let $x = {x_k}_{k \in \mathbb{N}}$ be an \mathscr{I}_{λ} -statistically bounded sequence. Then for any $\varepsilon > 0$ the set

$$\{k \in \mathbb{N} : d(\Gamma_x^{\mathcal{S}}(\mathscr{I}_{\lambda}), x_k) \ge \varepsilon\}$$

has \mathscr{I}_{λ} -density zero, where $d(\Gamma_x^{\mathcal{S}}(\mathscr{I}_{\lambda}), x_k) = \inf_{z \in \Gamma_x^{\mathcal{S}}(\mathscr{I}_{\lambda})} |z - x_k|$ the distance from x_k to the set $\Gamma_x^{\mathcal{S}}(\mathscr{I}_{\lambda})$.

Proof. Let \mathscr{C} be a compact set such that $d_{\lambda}^{\mathscr{I}}(\{k \in \mathbb{N} : x_k \notin \mathcal{I}\})$ \mathscr{C} }) = 0. Then by Corollary 2.12 we get $\Gamma_x^S(\mathscr{I}_{\lambda})$ is nonempty and $\Gamma_r^{\mathcal{S}}(\mathscr{I}_{\lambda}) \subset \mathscr{C}$.

If possible, let $d_{\lambda}^{\mathscr{I}}(\{k \in \mathbb{N} : d(\Gamma_x^{\mathcal{S}}(\mathscr{I}_{\lambda}), x_k) \ge \varepsilon'\}) \neq 0$ for some $\varepsilon' > 0$. Now we set $B_{\varepsilon'}(\Gamma_x^S(\mathscr{I}_{\lambda})) = \{z \in \mathbb{R} : d(\Gamma_x^S(\mathscr{I}_{\lambda}), z) < \varepsilon\}$ \mathcal{E}' and $\mathcal{H} = \mathscr{C} \setminus B_{\mathcal{E}'}(\Gamma_x^{\mathcal{S}}(\mathscr{I}_{\lambda}))$. Then \mathcal{H} is a compact set which contains an \mathscr{I}_{λ} - nonthin subsequence of x. Then by Theorem 2.8 $\mathscr{H} \cap \Gamma_x^{\mathcal{S}}(\mathscr{I}_{\lambda}) \neq \emptyset$, which is absurd, since $\Gamma_x^{\mathcal{S}}(\mathscr{I}_{\lambda}) \subset B_{\mathcal{E}'}(\Gamma_x^{\mathcal{S}}(\mathscr{I}_{\lambda}))$. So

$$d_{\lambda}^{\mathscr{I}}(\{k\in\mathbb{N}:d(\Gamma_{x}^{S}(\mathscr{I}_{\lambda}),x_{k})\geqoldsymbol{arepsilon}\})=0$$

for every $\varepsilon > 0$.

3. \mathscr{I}_{λ} -statistical analogous of Completeness Theorem

In this section following the line of Fridy [13], we formulate and prove an \mathscr{I}_{λ} -statistical analogue of the theorem concerning sequences that are equivalent to the completeness of the real line.

We consider the sequential version of the least upper bound axiom (in \mathbb{R}), namely, Monotone sequence Theorem: every monotone increasing sequence of real numbers which is bounded above, is convergent. The following result is an \mathscr{I}_{λ} -statistical analogue of that Theorem.

Theorem 3.1. Let $x = \{x_k\}_{k \in \mathbb{N}}$ be a sequence of real numbers and $\mathscr{Q} = \{k \in \mathbb{N} : x_k \leq x_{k+1}\}$. If $d_{\lambda}^{\mathscr{G}}(\mathscr{Q}) = 1$ and x is bounded above on \mathcal{Q} , then x is \mathscr{I}_{λ} -statistically convergent.

Proof. Since x is bounded above on \mathcal{Q} , so let p be the least upper bound of the range of $\{x_k\}_{k \in \mathcal{Q}}$. Then we have (i) $x_k \leq p, \forall k \in \mathscr{Q}$

(ii) for a pre-assigned $\varepsilon > 0$, there exists a natural number $k_0 \in \mathscr{Q}$ such that $x_{k_0} > p - \varepsilon$.

Now let $k \in \mathcal{Q}$ and $k > k_0$. Then $p - \varepsilon < x_{k_0} \le x_k < p + \varepsilon$. Thus $\mathscr{Q} \cap \{k \in \mathbb{N} : k > k_0\} \subset \{k \in \mathbb{N} : p - \varepsilon < x_k < p + \varepsilon\}.$ Since the set on the left hand side of the inclusion is of \mathscr{I}_{λ} density 1, we have $d_{\lambda}^{\mathscr{I}}(\{k \in \mathbb{N} : p - \varepsilon < x_k < p + \varepsilon\}) = 1$ i.e., $d_{\lambda}^{\mathscr{I}}(\{k \in \mathbb{N} : |x_k - p| \ge \varepsilon\}) = 0$. Hence *x* is \mathscr{I}_{λ} -statistically convergent to p.

Theorem 3.2. Let $x = \{x_k\}_{k \in \mathbb{N}}$ be a sequence of real numbers and $\mathcal{Q} = \{k \in \mathbb{N} : x_k \ge x_{k+1}\}$. If $d_{\lambda}^{\mathscr{G}}(\mathcal{Q}) = 1$ and x is bounded below on \mathcal{Q} , then x is \mathscr{I}_{λ} -statistically convergent.

Proof. The proof is similar to that of Theorem 3.1 and so is omitted.

4. Condition $AP \mathscr{I}_{\lambda}O$

In this section we introduce the condition $(AP \mathscr{I}_{\lambda} O)$ which is similar to the (APO) condition of [3].

Definition 4.1. (Additive property for \mathscr{I}_{λ} -density zero sets). The \mathscr{I}_{λ} -density $d_{\lambda}^{\mathscr{I}}$ is said to satisfy $AP\mathscr{I}_{\lambda}O$ if, given any

countable collection of mutually disjoint sets $\{\mathscr{A}_m\}_{m\in\mathbb{N}}$ *in* \mathbb{N} with $d_{\lambda}^{\mathscr{I}}(\mathscr{A}_m) = 0$, for all $m \in \mathbb{N}$, there exists a collection of sets $\{\widetilde{\mathscr{B}}_m\}_{m\in\mathbb{N}}$ in \mathbb{N} with the properties $|\mathscr{A}_m\Delta\mathscr{B}_m| < \infty$ for each $m \in \mathbb{N}$ and $d_{\lambda}^{\mathscr{I}}(\mathscr{B} = \bigcup_{m=1}^{\infty} \mathscr{B}_m) = 0.$

Theorem 4.2. A sequence $x = \{x_k\}_{k \in \mathbb{N}}$ of real number is \mathscr{I}_{λ} statistically convergent to p implies there exists a subset \mathcal{H} of \mathbb{N} with $d_{\lambda}^{\mathscr{I}}(\mathscr{H}) = 1$ and $\lim x_k = p$ if and only if $d_{\lambda}^{\mathscr{I}}$ has

the property
$$AP \mathscr{I}_{\lambda} O$$
.

Proof. Suppose x is \mathscr{I}_{λ} -statistically convergent to p implies there exists a subset \mathscr{H} of \mathbb{N} with $d_{\lambda}^{\mathscr{I}}(H) = 1$ and $\lim x_k = p$.

We have to show $d_{\lambda}^{\mathscr{I}}$ has the property AP $\mathscr{I}_{\lambda}O$.

Let $\{\mathscr{A}_m\}_{m\in\mathbb{N}}$ be a countable collection of mutually disjoint sets in \mathbb{N} with $d_{\lambda}^{\mathscr{I}}(\mathscr{A}_m) = 0$, for every $m \in \mathbb{N}$. Let us construct a sequence $\{x_k\}_{k \in \mathbb{N}}$ as follows

$$x_k = \begin{cases} \frac{1}{m} & \text{if } k \in \mathscr{A}_m, \\ 0 & \text{if } k \notin \bigcup_{m=1}^{\infty} \mathscr{A}_m. \end{cases}$$

Let $\varepsilon > 0$ be given. Then there exists $j \in \mathbb{N}$ such that $\frac{1}{j+1} < \varepsilon$. Then we have

$$\{k \in \mathbb{N} : x_k \geq \varepsilon\} \subset \mathscr{A}_1 \cup \mathscr{A}_2 \cup \ldots \cup \mathscr{A}_j.$$

Since $d_{\lambda}^{\mathscr{I}}(\mathscr{A}_m) = 0, \forall m = 1, 2, ..., j$, we get $d_{\lambda}^{\mathscr{I}}(\{k \in \mathbb{N} : x_k \geq 0\})$ ε }) = 0. So { x_k } $_{k \in \mathbb{N}}$ is \mathscr{I}_{λ} -statistically convergent to 0. Then by the assumption there exists a set $\mathscr{B} \subset \mathbb{N}, d_{\lambda}^{\mathscr{P}}(\mathscr{B}) = 0$ such that $\lim x_k = 0$. Therefore for each m = 1, 2, ... we $k \in \mathbb{N} \setminus \mathscr{B}$ $k \to \infty$

have $n_m \in \mathbb{N}$ such that $n_{m+1} > n_m$ and $x_k < \frac{1}{m}$ for all $k \ge n_m$,

 $k \in \mathbb{N} \setminus \mathscr{B}$. Thus if $x_k \ge \frac{1}{m}$ and $k \ge n_m$ then $k \in \mathscr{B}$. We set $\mathscr{B}_m = \{k \in \mathbb{N} : k \in \mathscr{A}_m, \ k \ge n_{m+1}\} \cup \{k \in \mathbb{N} : k \in \mathbb{N}\}$ $\mathscr{B}, n_m \leq k < n_{m+1}\}, m \in \mathbb{N}$. Clearly for all $m \in \mathbb{N}$ we have $|A_m \Delta B_m| < \infty$. We now show that $\mathscr{B} = \bigcup_{m=1}^{\infty} \mathscr{B}_m$. Fix $m \in \mathbb{N}$ and let $k \in \mathscr{B}_m$. If $k \in \{j \in \mathbb{N} : j \in \mathscr{B}, n_m \leq j < n_{m+1}\}$, then we are done. If $k \ge n_{m+1}$ and $k \in \mathscr{A}_m$ we have $x_k = \frac{1}{m}$ and so $k \in \mathscr{B}$. Therefore $\mathscr{B}_m \subset \mathscr{B}$ for all $m \in \mathbb{N}$.

Again let $k \in \mathcal{B}$. Then there exists $u \in \mathbb{N}$ such that $n_u \leq n_u$ $k < n_{u+1}$, which implies $k \in \mathscr{B}_u$. Therefore $\mathscr{B} \subset \bigcup_{m=1}^{\omega} \mathscr{B}_m$. Thus $\mathscr{B} = \bigcup_{m=1}^{\infty} \mathscr{B}_m$ and $d_{\lambda}^{\mathscr{I}}(\mathscr{B} = \bigcup_{m=1}^{\infty} \mathscr{B}_m) = 0$. This proves that $d_{\lambda}^{\mathscr{I}}$ has the property AP \mathscr{I}_{λ} O.

Conversely suppose that $d_{\lambda}^{\mathscr{I}}$ has the property AP \mathscr{I}_{λ} O. Let $x = \{x_k\}_{k \in \mathbb{N}}$ be a sequence such that x is \mathscr{I}_{λ} -statistically convergent to *p*. Then for each $\varepsilon > 0$, the set $\{k \in \mathbb{N} : |x_k - p| \ge 0\}$ ε } has \mathscr{I}_{λ} -density zero. Let $\mathscr{A}_1 = \{k \in \mathbb{N} : |x_k - p| \ge 1\},\$ $\mathscr{A}_m = \{k \in \mathbb{N} : \frac{1}{m-1} > |x_k - p| \ge \frac{1}{m}\}$ for $m \ge 2, m \in \mathbb{N}$. Then $\{\mathscr{A}_m\}_{m\in\mathbb{N}}$ is a sequence of mutually disjoint sets with $d_{\lambda}^{\mathscr{I}}(\mathscr{A}_m) =$ 0 for every $m \in \mathbb{N}$. Then by the assumption there exists a sequence of sets $\{\mathscr{B}_m\}_{m\in\mathbb{N}}$ with $|\mathscr{A}_m\Delta\mathscr{B}_m| < \infty$ and $d_{\lambda}^{\mathscr{G}}(\mathscr{B} =$

 $\bigcup_{m=1}^{\infty} \mathscr{B}_m) = 0. \text{ We claim that } \lim_{\substack{k \in \mathbb{N} \setminus \mathscr{B} \\ k \to \infty}} x_k = p. \text{ To establish our } \\ \text{claim, let } \delta > 0 \text{ be given. Then there exists a positive integer } \\ j \text{ such that } \frac{1}{j+1} < \delta. \text{ Then } \{k \in \mathbb{N} : |x_k - p| \ge \delta\} \subset \bigcup_{m=1}^{j+1} \mathscr{A}_m. \\ \text{Now since } |\mathscr{A}_m \Delta \mathscr{B}_m| < \infty, \text{ for each } m = 1, 2, ..., j+1, \text{ there } \\ \text{exists } n' \in \mathbb{N} \text{ such that } \bigcup_{m=1}^{j+1} \mathscr{A}_m \cap (n', \infty) = \bigcup_{m=1}^{j+1} \mathscr{B}_m \cap (n', \infty). \\ \text{Now if } k \notin \mathscr{B}, \ k > n', \text{ then } k \notin \bigcup_{m=1}^{j+1} \mathscr{B}_m \text{ and consequently } \\ k \notin \bigcup_{m=1}^{j+1} \mathscr{A}_m, \text{ which implies } |x_k - p| < \delta. \text{ This completes the } \\ \text{proof.} \\ \square$

Acknowledgment

The second author is grateful to Council of Scientific and Industrial Research, India for his fellowships funding under CSIR-JRF schemes (SRF fellowship) during the preparation of this paper.

References

- J. Connor and J. Kline, On statistical limit points and the consistency of statistical convergence, *J. Math. Anal. Appl.*, 197(2)(1996), 392–399.
- [2] J. Connor, J. Fridy and J. Kline, Statistically pre-Cauchy Sequences, *Analysis*, 14(4)(1994), 311–317.
- [3] J. Connor, R-type summability methods, Cauchy criteria, P-sets and Statistical convergence, *Proc. Amer. Math. Soc.*, 115(2)(1992), 319–327.
- [4] J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, *Canad. Math. Bull.*, 32(2)(1989), 194–198.
- [5] J. Connor, The statistical and strong P-Cesaro convergence of sequences, *Analysis*, 8(1-2)(1988), 4-7-63.
- [6] P. Das, E. Savas and S. K. Ghosal, On generalizations of certain summability methods using ideals, *Appl. Math. Lett.*, 24(9)(2011), 1509–1514.
- [7] P. Das and E. Savas, On *I*-statistically pre-Cauchy sequences, *Taiwanese J. Math.*, 18(1)(2014), 115–126.
- [8] S. Debnath and D. Rakshit, On *I*-statistical convergence, *Iranian Journal of Mathematical Sciences and Informatics*, 13(2)(2018), 101–109.
- [9] K. Demirci, *I*-limit superior and limit inferior, *Math. Commun.*, 6(2)(2001), 165–172.
- ^[10] H. Fast, Sur la convergence statistique, *Colloq. Math.*, 2(3-4)(1951), 241–244.
- ^[11] A. R. Freedman and I. J. Sember, Densities and summability, *Pacific J. Math.*, 95(2)(1981), 293–305.
- [12] J. A. Fridy, On statistical convergence, *Analysis*, 5(4)(1985), 301–313.
- [13] J. A. Fridy, statistical limit points, *Proc. Amer. Math. Soc.*, 118(4)(1993), 1187–1192.

- [14] J. A. Fridy and C. Orhan, Statistical limit superior and limit inferior, *Proc. Amer. Math. Soc.*, 125(12)(1997), 3625–3631.
- [15] M. Gürdal and H. Sari, Extremal A-statistical limit points via ideals, *Journal of the Egyptian Mathematical Society*, 22(1)(2014), 55–58.
- [16] E. Kolk, The statistical convergence in Banach spaces, Acta Comment. Univ. Tartu, 928(1991), 41–52.
- [17] P. Kostyrko, T. Šalát and W. Wilczyński, *I*-convergence, *Real Anal. Exchange*, 26(2)(2000/2001), 669–685.
- [18] P. Kostyrko, M. Macaz, T. Šalát and M. Sleziak, *I*-convergence and external *I*-limit points, *Math. Slovaca*, 55(4)(2005), 443–454.
- [19] B. K. Lahiri and P. Das, *I* and *I**-convergence in topological spaces, *Math. Bohemica*, 126(2)(2005), 153–160.
- [20] B. K. Lahiri and P. Das, I and I*-convergence of nets, Real Analysis Exchange, 33(2)(2007/2008), 431–442.
- [21] P. Malik, A. Ghosh and S. Das,*I*-statistical limit points and *I*-statistical cluster points, *Proyecciones J. Math.*, 38(5)(2019), 1011–1026.
- ^[22] M. Mursaleen, λ -statistical convergence, *Mathematica Slovaca*, 50(1)(2000), 111–115.
- [23] M. Mursaleen, S. Debnath and D. Rakshit, *I*-Statistical Limit Superior and *I*- Statistical Limit Inferior, *Filomat*, 31(7)(2017), 2103–2108.
- [24] I. Niven and H. S. Zuckerman, An introduction to the theorem of numbers, 4th ed., Wiley, New York, 1980.
- [25] S. Pehlivan, A. Guncan and M. A. Mamedov, Statistical cluster points of sequences in finite dimensional spaces, *Czechoslovak Mathematical Journal*, 54(1)(2004), 95– 102.
- [26] T. Šalát, On statistically convergent sequences of real numbers, *Math. Slovaca*, 30(2)(1980), 139–150.
- [27] E. Savas, and P. Das, A generalized statistical convergence via ideals, *Appl. Math. Lett.*, 24(6)(2011), 826– 830.
- [28] E. Savas, P. Das and S. Dutta, S., A note on strong matrix summability via ideals, *Appl. Math. Lett.*, 25(4)(2012), 733–738.
- ^[29] E. Savas, I_{λ} -statistical convergence of order α in topological groups, *General Letters in Mathematics*, 1(2)(2016), 64–73.
- ^[30] E. Savas, I_{λ} -statistically convergent functions of order α , *Filomat*, 31(2)(2017), 523–528.
- ^[31] I. J. Schoenberg, The integrability of certain functions and related summability methods, *Amer. Math. Monthly*, 66(5)(1959), 361–375.
- [32] H. Steinhus, Sur la convergence ordinatre et la convergence asymptotique, *Colloq. Math.*, 2(1)(1951), 73–74.

********* ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********

