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Abstract

In this paper we have extended the notion of A-statistical limit points of real sequences to .#, -statistical limit
points and studied some basic properties of the set of all .7, -statistical limit points and .#, -statistical cluster
points of real sequences including their interrelationship. Then we have established .7, -statistical analogue of
the monotone sequence theorem. Also introducing additive property of .#, -density zero sets we have established

its relationship with .7, -statistical convergence.
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1. Introduction and background:

As a generalization of the usual notion of convergence of real
sequences the notion of statistical convergence was introduced
independently by Fast [10] and Schoenberg [31] using the
concept of natural density of subsets of N.

A set .# C N is said to have natural density d(.# ), if

d(a) = tim AL
n—yoo n
where 4 (n) ={m <n:mé& ./} and |.# (n)| represents the
number of elements in .# (n).
A sequence x = {x; }ren Of real numbers is said to be
statistically convergent to & if for every € > 0, d({k € N :

=G| > €}) =0.

Study in this line became one of the most active research
area in summability theory after the works of Salat [26] and
Fridy [12]. Using the concept of statistical convergence, the
notions of statistical limit point and statistical cluster point of
real sequences were introduced and studied by Fridy [13].

If {x¢; } jen is a subsequence of areal sequence x = {xi }ren
and 2 = {k; : j € N}, then we use the notation {x} o to denote
the subsequence {xy; } jen. In case d(2) =0, {x} 2 is called
a thin subsequence of x. On the other hand {x} o is called
a non-thin subsequence of x if d(2) # 0, where d(2) # 0
means that either d(2) is a positive number or 2 fails to have
natural density.

A real number p is called a statistical limit point of a real
sequence x = {x; hren, if there exists a non-thin subsequence
of x that converges to p.

A real number ¢ is called a statistical cluster point of a
real sequence x = {xy }xen, if for every € > 0 the set {k € N :
|xx — q| < €} does not have natural density zero.

For more works on this convergence notion one can see
[2, 3,5, 14, 25, 32].

The notion of A-statistical convergence of real sequences
was introduced by Mursaleen [22] using the concept of A-
density of subsets of N.

If A = {A,}sen is @ monotone increasing sequence of
positive real numbers tending to oo such that A =1, A, <
A+1, n€N,then any set .# C N is said to have A-density
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dy (M), if

d; (M) = Tim Hkel,: ke A}

n—oo Ay ’

where I, = [n— A, + 1,n]. The collection of all such sequences
A is denoted by A.. Throughout this paper A- stands for such
a sequence.

A sequence x = {x; }ren of real numbers is said to be
A-statistically convergent to & if for every € >0, d; ({k € N :
i — &l = e}) =0.

Clearly, if A, = n,Vn € N, then the concepts of A-density
and A-statistical convergence coincide with natural density
and statistical convergence respectively.

Actually the concepts of A-density and A-statistical con-
vergence are special cases of A-density and A-statistical con-
vergence (see [1,4, 11, 16]), where A is an N x N non negative
regular summability matrix. An N x N matrix A = (a,) is
called a regular summability matrix if for any convergent se-

quence x = {x }reny With limit &, lim Zankxk =&, andAis
n—oo
k=1

called nonnegative if a,; > 0,Vn, k.
For a non negative regular summability matrix A = (a,),
a set . C Nis said to have A-density 84 (%), if

SA(.//) = lim Z Ank -
" ket

A sequence x = {x; }ren Of real numbers is said to be
A-statistically convergent to & if for every € > 0, S4({k € N :
i — &l > €}) =0. 1

IfA=A,= (ank),whereank:{ 3" i;i;;::
A-density and A-statistical convergence coincide with A-density
and A-statistical convergence respectively. Again, if A, =
n,Vn € N, then the matrix A = A becomes the Cesaro matrix
C; and so A-density and A-statistical convergence coincide
with natural density and statistical convergence respectively.

The concept of statistical convergence was further gener-
alized to the notion of .#-convergence by Kostyrko et al.[17]
using the notion of an ideal of subsets of N.

A non-empty family .# of subsets of a non empty set S is
called an ideal in S if .7 is hereditary (i.e. & € ¥/ ,BC o/ =
B € ) and additive (ie. o B I = A IBc F).

An ideal .# in a non-empty set S is called non-trivial if
S¢ .7 and 7 # {0}.

A non-trivial ideal .# in S(# 0) is called admissible if
{z} € ¥ foreachz € S.

Throughout the paper we take .# as a non-trivial admissi-
ble ideal in N unless otherwise mentioned.

A real sequence x = {x }ren is said to be .#-convergent
to &, if forany € >0, {k € N: |x; — &| > €} € .. In this case
we write J-klgnxk =£.

then

Using this notion of an ideal of subsets of N, in [17] the
concepts of statistical limit point and statistical cluster point
were extended to the notions of .#-limit point and .# -cluster
point respectively.
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A real number [ is said to be an .#-limit point of a real
sequence x = {x; }ren, if there exists a set P = {p; < p» <
...} C Nsuch that P ¢ .# and klim xp, = 1.

—3o0

A real number y is said to be an .# -cluster point of a real
sequence x = {x; }xen, if forevery € >0, {k € N: |x; —y| <
et ¢ 7.

For more works on . -convergence one can see [9, 18-20]
where other references can be found.

If we take .¥ = 95 = {A C N:d(A) = 0}, then .-
convergence, -#;-limit point and .#;-cluster point coincide
with statistical convergence, statistical limit point and sta-
tistical cluster point respectively. Again for a non negative
regular matrix A = (a,y), if one consider . = %4 = {B C
N : 64(B) = 0}, then .#4-convergence, .4-limit point and
Za-cluster point coincide with A-statistical convergence, A-
statistical limit point and A-statistical cluster point respec-
tively and in particular for A = A, #4,-convergence, .94, -
limit point and .4 -cluster point coincide with A-statistical
convergence, A-statistical limit point and A -statistical cluster
point respectively.

Further using the notion of an ideal .# of subsets of N in
[6] a new concept of .# -statistical convergence was introduced
by Das et al. as a generalization of statistical convergence.

A sequence x = {x;}ren of real numbers is said to be
& -statistically convergent to & if for any € > 0 and & > 0,
(neN:N{k<n:|n—&l>¢€}|>6}es.

Applying this concept of .#-statistical convergence, the
notions of statistical limit point and statistical cluster point
were extended to the notions of .#-statistical limit point and
 -statistical cluster point respectively ( see [7, 8, 21, 23]).

In [27] the concept of .7, -statistical convergence was in-
troduced by Savas et al. as a generalization of A-statistical con-
vergence. Clearly the concept of .# -statistical convergence
includes the ideas of statistical convergence, A-statistical con-
vergence and .# -statistical convergence as special cases.

A real sequence x = {x; }ren is said to be .7 -statistically
convergent or .# — S, convergent to & if for any € > 0 and
6 >0, {néN:%ﬂHkﬁn: —E&l > e} >0} e s In
this case we write . 'Sl',!Lm x = &. More works on this

summability method can be found in [29, 30] where other
references can be found.

The concept of .7 -statistical convergence is a special
case of A -statistical convergence [28], where A is an N x N
non negative regular summability matrix.

If A = (ay) is an N x N non negative regular summability
matrix, then a sequence x = {x; }ren Of real numbers is said
to be A~ -statistically convergent to & if for any £ > 0 and
0>0,{neN: Z an > 8} € .7, where B(e) = {ke N:

keB(e)
b — & > €}

Also in [15], using an N x N non negative regular summa-
bility matrix A = (a,), the notion of A” statistical cluster
point was introduced via the concept of A~ -density. A subset
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A of N is said to have A7 -density 8,.» (.#), if
6A (///) =.# — lim Z Ank -
" ken

A real number p is said to be an A7 -statistical cluster
point of a real sequence x = {xy }xen, if for each € > 0,
0,7 (B(g)) # 0, where B(¢) = {k € N : |xy — p| < €}. Note
that 8, (B(g)) # 0 means, either §,-(B(g)) > 0 or A7 -
density of B(¢) does not exist. From this notion of A~ -
statistical cluster point, one can obtain the concept of .# -
statistical cluster point as a special case. Actually, if one
consider A = A;, then the notions of A7 statistical conver-
gence and A” statistical cluster point become .#; -statistical
convergence and .7 -statistical cluster point respectively.

In this paper using the notion of .7 -statistical conver-
gence we first extend the concept of A-statistical limit point
to .#) -statistical limit point of sequences of real numbers and
then study some properties of .7, -statistical limit points and
) -statistical cluster points of sequences of real numbers not
done earlier. We also study the sets of % -statistical limit
points and .# -statistical cluster points of sequences of real
numbers including their interrelationship. In section 3 of this
paper we establish .# -statistical analogue of the sequential
version of the least upper bound axiom, namely, monotone
sequence theorem. Further in section 4 we introduce the con-
dition AP.#, O and study its relationship with .7 -statistical
convergence.

2. .7, -statistical limit points and
7, -statistical cluster points

In this section, we first introduce the notion of %) -statistical
limit point ( which subsequently includes the notions of sta-
tistical limit point, A-statistical limit point and .# -statistical
limit point ). Then we study .# -statistical analogue of some
results in [13] and [25].

Throughout the paper N and R denote the set of all natural
numbers and the set of all real numbers respectively and x
denotes a real sequence {xy }ren-

Definition 2.1. [15] A set .# C N is said to have .#) -density
df (M) if

Y - . mel,:me . 4}
Note 2.2. From Definition 2.1, it is clear that, if d) (/) =
u, o/ CN, then d{(ﬂ%) = u for any admissible ideal .% in N.

In view of Definition 2.1 one can say that: a real sequence
x = {x¢ }ren i S -statistically convergent to & if for any
e>0,d7 ({keN:|x—&|>¢€})=0.

If {x} o is a subsequence of a real sequence x = {x; }reN
and dif (2) = 0, then {x} 5 is called an . -thin subsequence
of x. On the other hand {x} ¢ is called an .#) -nonthin sub-
sequence of x if d{(e@) # 0, where d{ (2) # 0 means that
either d;’ (2) is a positive number or 2 fails to have .-
density.
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Definition 2.3. A real number [ is said to be an .9y -statistical
limit point of a real sequence x = {x }ren, if there exists an
Sy, -nonthin subsequence of x that converges to l. The set of
all .7 -statistical limit points of the sequence x is denoted by
A (A2).

Definition 2.4. A real numbery is said to be an .#, -statistical
cluster point of a real sequence x = {x; }ren, if for every € > 0,
the set {k € N : |x; —y| < €} does not have .9 -density zero.
The set of all %) -statistical cluster points of x is denoted by
3(A)-

Note 2.5. (i) If 4, = n,Vn € N, then the notions of .%)-
statistical limit point and ) -statistical cluster point coincide
with the notions of .% -statistical limit point and .7 -statistical
cluster point respectively.

(i) If & = Ffin = {H CN:|H| < oo}, then the notions
of ) -statistical limit point and .#) -statistical cluster point
coincide with the notions of A-statistical limit point and A-
statistical cluster point respectively.

(iii) If ' = Igin = {H CN:|H| < oo} and also A, =
n,Vn € N, then the notions of %) -statistical limit point and
S, -statistical cluster point coincide with the notions of statis-
tical limit point and statistical cluster point respectively.

We also use the notations AS(4) and TS (1) to denote the
sets of all A-statistical limit points and A-statistical cluster
points of a real sequence x = {x; }ren respectively.

We first present an .# -statistical analogous of some re-
sults in [13].

Theorem 2.6. Let x = {x; }ren be a sequence of real numbers.
Then AS(7) CTS(#,) CTS(A).

Proof. Let& € AS(.#;). So we get a subsequence {xk, }qen of
xwith lim x, =& and d; (.4 ) # 0, where . = {k,: g €N}.
oo
Let € > 0 be given. Since lgn xp, =6, A ={ky: ]xkq - 5’ >
q (==}
€} is a finite set. Hence

{keN:|x—&|<e}D{ky:qeN}\ A

=M ={ky:ge N} C{keN: |y —&|<elusz.

Now ifd; ({k€N: [y —&| < €}) =0, then we have dy (.4) =

0, which is a contradiction. Thus & is an .#, -statistical cluster

point of x. Since & € AY(.#3) is arbitrary, AS (7)) CT5(.7,).
Now let n € T(.#,). Then for any € > 0,

df ({keN:|x—n|<e} #0

. Since .# is admissible, dj ({k € N: |x; — 1| < €} # 0. So,
n €TY(1). Hence AS(.7) CTS(.#,) CTS(A). O

Theorem 2.7. If x = {x; }reny and y = {y }ren are two se-
quences of real numbers such that dif ({k € N: x; # yi}) =0,
then /\f(f;t) = A)‘s:(fl) and Fﬁ(,ﬂl) = Fg(fl).
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Proof. Let { € I3(.#)) and € > 0 be given. Then {k € N :
|xx — &| < €} does not have .7, -density zero. Let 5 = {k €
Nixy =y} Asdy (#)=1s0{keN: | —{| <e}nH
does not have .#, -density zero. Thus § € Fg(f,l). Since
§ eT3(.#,) is arbitrary, so I} (.7, ) C I3(.#7 ). By symmetry
we have [} (7)) C I5(#,). Hence I (7)) = [3(7).
Also let 1 € A3(.#;). Then x has an . -nonthin subse-
quence {xy, }qen that converges to 1. Let £ = {k; : g € N}.
Since d; ({k; € N : Xk, 7# Yk, }) = 0, we have d ({kq € N:
Xk, = Yk, }) # 0. Therefore from the latter set we have an
#,,-nonthin subsequence {y} o of {y} o that converges to 7.
Thus 11 € AJ(#). As 1 € Aj(#),) is arbitrary, AY(.#)) C
Aﬁ(ﬂl). By similar way we get AS(.%;) D Af,(fl). Hence
A(A) = A(A). O

We now investigate some topological properties of the set
L3(A).

Theorem 2.8. Let ¢’ C R be a compact set and € NTS (.7 ) =
0. Then the set {k € N: x; € €} has .9) -density zero.

Proof. Since € NI (.7,) =0, so for every a € € there exists
a positive real number y = y(a) such that

df ({keN: |y —al < y(@)}) =0.

Let By(q)(®) = {z€ R : [z—a| < y(«)}. Then the family of
open sets {By(a) (&) : o € €'} form an open cover of €. As ¢’
is a compact subset of R so there exists a finite subcover of the
open cover {By(q) (@) : @ € €'} for ¢, say {€} = By(q,) () :

P
j=12,...,r}. Then ¥ C |J %; and also
=1

di ({keN: [y —aj| < y(aj)}) =0for j=1,2,....r

Now for every n € N,

)

{kel :x e €Y <Y |{k€li|xe— o] < y(a)}
=1

and by the property of .#-convergence,
Hkel,:x €€}

s lim PN
< " 7 lim [{k € L : [ — o] < y(e)}| _o.
= e An
This gives d; ({k € N:x, € €}) =0. O

Theorem 2.9. Let x = {x; }ren be a sequence in R. If x has
a bounded .9 -nonthin subsequence, then the set TS(.%)) is a
nonempty closed set.

Proof. Let x = {xy,,},,c is @ bounded .7 -nonthin subse-
quence of x and € be a compact set such that x;, € ¢ for
eachm € N. Let Q = {k, : m € N}. Clearly d’ () # 0. Now
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if [¥(.%,) = 0, then € NT%(.#,) = 0 and then by Theorem
2.8 we get
di ({keN:x, €€})=0.

Since foreveryn e N, |[{k€l,: k€ Q} <|{k€l,:x € €},
we have df (2) =0, which is a contradiction. Therefore
(A7) # 0.

Now to prove I'}(.#, ) is a closed set in R, let { be a limit
point of I(.#;). Then for any & > 0, B¢(£) N (TS(#) \

[C1) #0. Let 1 € Be() N (F() \ {C}). Now we can
choose € > 0 so that Be/(1) C Be({). Since n € T3(.#)) so

df (ke N: x| <€) £0

=df ({keN: |y —¢| <e})#0.
Therefore § € TS(.7)). O

Definition 2.10. A sequence x = {xy };c of real numbers is
said to be .Z) -statistically bounded if, there exists M > 0 such
that for all § > 0, the set

1
L%’:{neN:/l—|{keIn:|xk\>M}|26}eﬂ

ie., d{({k eN:|x| >M})=0.

Equivalently, x = {x; }ren is said to be .7 -statistically bounded
if, there exists a compact set F in R such that for all 6 > 0,
the set Z={neN: Tln|{kel,,:xk¢F}| >06} €S e,
di ({keN:x ¢ F})=0.

Note 2.11. If F = Fyjy = { M CN: | M| < oo}, then the
notion of %) -statistical boundedness coincide with the notion
of A-statistical boundedness.

Corollary 2.12. If x = {xi },cy is ) -statistically bounded.
Then the set TS(.%)) is nonempty and compact.

Proof. Let% be acompact setin R such that @ ({k € N:x; ¢
%'})=0.Thend; ({k € N:x; € ¢'}) = 1 and this implies that
% contains an .%) -nonthin subsequence of x. So by Theorem
2.9, T%(.#,) is a nonempty and closed set.

Now to show that I'(.#; ) is compact it is sufficient to
prove that T (.#,) C %. If possible let us assume that { €
3(7,) but § ¢ €. Since € is compact, so there exists € > 0
such that B¢(§)N% = 0. So we have

{keN:|x—C|<e}c{keN:x ¢ %}

Therefore d{({k € N: |x— | < €}) =0, which is a con-
tradiction to the fact that { € T3(.#; ). Therefore I'S(.#)) C
% O

Theorem 2.13. Letx = {x; } o be an %) -statistically bounded
sequence. Then for any € > 0 the set

{keN:d(T§(A),x) > €}
has .7, -density zero, where d(T'S(.%)),x) = i§1(f |z — x|

zelR ‘ﬁl)
the distance from x;. to the set TS (7).
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Proof. Let € be a compact set such that d;” ({k € N : x; ¢
%}) = 0. Then by Corollary 2.12 we get I (_# ) is nonempty
and T3(.%,) C F.

If possible, let df ({k € N: d(T$(.73),x;) > €}) # 0 for
some &' > 0. Now we set Bg/ (I5(.7))) =
¢’} and S = €\ B(T5(#,)). Then JZ is a compact set
which contains an .#, - nonthin subsequence of x. Then
by Theorem 2.8 # NT3(.#;) # 0, which is absurd, since
[3(A2) C Ber(TE(A2)- So

df ({k € N:d(T3(5,),x%) > €}) =0

for every € > 0. O

3. .7, -statistical analogous of
Completeness Theorem

In this section following the line of Fridy [13], we formulate
and prove an . -statistical analogue of the theorem concern-
ing sequences that are equivalent to the completeness of the
real line.

We consider the sequential version of the least upper
bound axiom (in R), namely, Monotone sequence Theorem:
every monotone increasing sequence of real numbers which
is bounded above, is convergent. The following result is an
) -statistical analogue of that Theorem.

Theorem 3.1. Let x = {x; }ren be a sequence of real numbers
and 2 ={k e N:x; <xpq1}. Ifd{(o@) =1 and x is bounded
above on 2, then x is 7 -statistically convergent.

Proof. Since x is bounded above on 2, so let p be the least
upper bound of the range of {x; }rc.9. Then we have

D x <p,Vke 2

(i1) for a pre-assigned € > 0, there exists a natural number
ko € 2 such that x;; > p— €.

Now let k € £ and k > ko. Then p—& <x, <xx < p+E&.
Thus 2N{keN:k>k}Cc{keN:p—e<x <p+e}
Since the set on the left hand side of the inclusion is of .# -
density 1, wehave d; ({ke N: p—e <x < p+e}) =lie,
di ({k € N:|x;— p| > €}) = 0. Hence x is .%) -statistically
convergent to p. O

Theorem 3.2. Let x = {x; }ren be a sequence of real numbers
and 2 ={k e N:x; > xp11}. Ifd{(o@) =1 and x is bounded
below on 2, then x is 9y -statistically convergent.

Proof. The proof is similar to that of Theorem 3.1 and so is
omitted. O

4. Condition AP.7, 0

In this section we introduce the condition (AP.#; O) which is
similar to the (APO) condition of [3].

Definition 4.1. (Additive property for .7, -density zero sets).
The %) -density df is said to satisfy AP.%, O if, given any
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{zeR:d(IY(A),2) <

countable collection of mutually disjoint sets {2y tmen in N
with d{(ﬂf,n) =0, for all m € N, there exists a collection of
sets { B ymen in N with the properties |ty ABy| < oo for

eachmeNanddy (%= \) By) =
m=1

Theorem 4.2. A sequence x = {x; }ren of real number is .7 -
statistically convergent to p implies there exists a subset
of N with df(%”) =1 and limx; = p if and only lfd{ has
ket
k—yoo

the property AP.%5 O

Proof. Suppose x is .#, -statistically convergent to p implies
there exists a subset .7 of N with d{ (H)=1and l}ir;xk =p.
k—yoo0
We have to show df has the property AP.#; O.
Let {4, } men be a countable collection of mutually dis-
joint sets in N with d{(&fm) =0, for every m € N. Let us
construct a sequence {x; ey as follows

L ifke
TV 0 ifkg U S
m=1
Let € > 0 be given. Then there exists j € N such that ]%1 <E.
Then we have

{keN:ixy>e} CAUhU.. .U,

Since d () =0,Ym=1,2,..., j, we getd; ({k € N:x; >
€}) =0. So {x; }ren is 7 -statistically convergent to 0. Then
by the assumption there exists a set % C N, d'{ (#)=0
such that lim x; = 0. Therefore for each m = 1,2,... we
g

have n,, € N such that nm+1 >y and x; < o for all k > n,,
k € N\ A. Thus if x;, > 1 o and k >y, thenk € A.

We set By ={keN: ke, k>ny1}U{keN: ke
B, ny <k <nyy1}, meN. Clearly for all m € N we have

|AmABy| < oo. We now show that & = UQB Fix m e N

andletk € %B,. Ifke{jeN:je B, nm<]<nm+1} then
we are done. If k > n,, | and k € <7, we have x; = % and so
k € A. Therefore %,, C A for all m € N.

Again let k € 4. Then there exists u € N such that n,, <
Therefore Z C | B

m=1

Thus B = U By and di (% = U PBm) = 0. This proves

k < nyy1, which implies k € 4,.

that dﬂ has the property APJAO
Conversely suppose that dj < has the property AP.7; O. Let
x = {x¢ }ren be a sequence such that x is %, -statistically con-
vergent to p. Then for each € > 0, the set {k € N : |x; — p| >
€} has .9 - density zero. Let Ja/l ={keN:|xy—p|>1},
Ay ={keN: Lo > xy—p| > L} form>2, meN. Then
{ D }menisa sequence of mutually disjoint sets with d (7,
0 for every m € N. Then by the assumption there exists a se-
quence of sets { By tmen With |, APy, | < o and df(%’ =

009 nn,,
5:

; ‘a’uv
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U %) =0. We claim that lim x; = p. To establish our
m=1 kiN\%’

claim, let § > 0 be given. Then there exists a positive integer

Jj+1
jsuchthatjﬁ < 0. Then {keN:|xx—p| >} C U “n.
m=

Now since |27,A%B,,| < oo, for each m =1,2,..., j+ 1, there

J+1 Jj+1
exists n’ € N such that |J <7, N (n',00) = |J BN (' ).
= m=1

m=1

Jj+1
Now if k ¢ B, k > r', then k ¢ |J %, and consequently
m=1

J+1
k¢ U <, which implies |x; — p| < 8. This completes the
m=1

proof. O
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