

https://doi.org/10.26637/MJM0901/0057

Anti-duplication self vertex switching in some graphs

C. Jayasekaran ¹* and M. Ashwin Shijo²

Abstract

For a finite undirected simple graph G(V,E), duplication of a vertex $v \in V(G)$ forms a new graph G' by introducing a new vertex v' such that $N_{G'}(v') = N_G(v)$. We define anti-duplication of a vertex v in G by introducing a new vertex v' which produces a new graph G' such that $N_{G'}(v') = [N_G(v)]^c$. In this paper, we find the number $adss_1(G)$ when G is $P_n, C_n, K_n, K_{n,m}, S_n, B_n$ and D(n, m).

Keywords

Anti-duplication, anti-duplication self switching vertex.

AMS Subject Classification 05C07, 05CXX.

 ^{1,2} Department of Mathematics, Pioneer Kumaraswamy College (Autonomous) Nagercoil-629003, Tamil Nadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti-Tirunelveli-627012.
*Corresponding author: ¹ jayacpkc@gmail.com; ²ashwin1992mas@gmail.com
Article History: Received 14 November 2020; Accepted 18 January 2021
©2021 MJM

Contents

1	Introduction
2	Anti-duplication of a vertex in a Graph
3	Anti-duplication self vertex switching in a graph.339
4	$adss_1(G)$ when G is $P_n, C_n, K_n, K_{n,m}, S_n, B_n$ and $D(n,m)$.340
5	Conclusion
	References

1. Introduction

By a graph *G* we mean a finite undirected simple graph. The subgraph of *G* obtained by removing the vertex *v* and all the edges incident with *v* is called the subgraph obtained by the removal of the vertex *v* and is denoted by G - -v. The degree of a vertex *v* in a graph *G* is the number of edges incident with *v*. The degree of *v* is represented by $d_G(v)$. A cycle of length *n* is represented by C_n and a path with *n* vertices is denoted by P_n . A graph is said to be connected if there exists a path between any two vertices in *G*. If a graph which is not connected is said to be disconnected graph. The set of vertices adjacent to *v* in *G* is denoted by $N_G(v)$, the neighbours of *v* in *G*. The complete graph K_p has every pair of its vertices adjacent. A bipartite graph or bigraph *G* is a graph whose vertex set V(G) can be partitioned into two subsets V_1 and V_2 such that every line of *G* joins a point of V_1 to a point of V_2 . If *G* contains every line joining V_1 and V_2 , then *G* is called complete bipartite graph. If V_1 has *m* vertices and V_2 has *n* vertices, we write $G = K_{m,n}$. Clearly, $K_{m,n}$ have m + n vertices and mn edges. $K_{1,n}$ is called a star for $n \ge 1$. It is denoted by S_n . The Book B_n is the graph $S_n \times P_2$, where S_n is the star with n + 1 vertices. A (n,m) - dragon is formed by joining an end point of a path P_m to a point of cycle C_n . It is denoted by D(n,m).

In [7] Lint and Seidel introduces the vertex switching. For a finite undirected graph G(V, E) and a subset $S \subset V$, the switching of *G* by *S* is defined as the graph $G^{S}(V, E')$ which is obtained from *G* by removing all edges between *S* and its complement *V*–*S* and adding as edges all non edges between *S* and *V* – *S*. For $S = \{v\}$, we write G^{v} instead of $G^{\{v\}}$ and the corresponding switching is called as vertex switching [3]. Duplication of a vertex *v* of graph *G* produces a new graph *G'* by adding a new vertex *v'* such that $N_{G'}(v') = N_G(v)$ [5]. In [1], C. Jayasekaran and M. Ashwin Shijo introduced the concept anti-duplication of a vertex in a graph and studied its properties. In [2]C. Jayasekaran and M. Ashwin Shijo introduced the concept anti-duplication graph for a given graph and studied its properties. For standard definitions and notations we follow Harary[6].

In this paper, we introduce anti-duplication self vertex switching in a graph and calculate the number of anti-duplication self switching vertices $adss_1(G)$, for the graph *G* when *G* is a path P_n , a cycle C_n , a complete graph K_n , a star graph S_n , a book graph B_n and a dragon graph D(n,m) has been found.

2. Anti-duplication of a vertex in a Graph

Definition 2.1. [1] Anti-duplication of a vertex v in G produces a new graph G' by adding a new vertex v' such that $N_{G'}(v') = [N_G[v]]^c$.

The graph obtained from G by anti-duplication of the vertex v is denoted by AD(vG).

Example 2.2. Consider the graph G given in figure 2.1. The anti-duplication of the vertices v_1, v_2, v_3 and v_4 are given in figures 2.2, 2.3, 2.4 and 2.5, respectively.

We recall the theorems which are used in the next section.

Theorem 2.3. [8] If v is a self vertex switching of a graph G of order p, then $d_G(v) = (p-1)/2$.

Theorem 2.4. [1] Let G be a graph of order p. Let v be any vertex in G and v' be the anti-duplication vertex of v in AD(vG) = G'. Then $d_{G'}(v) = d_G(v)$

Theorem 2.5. [1] Let G be a graph of order p. Let v be any vertex in G and v' be the anti-duplication vertex of v in AD(vG) = G'. Then $d_{G'}(v') = p - 1 - d_G(v)$.

Notation 2.6. [4] Let us consider a cycle $C_r = (v_1, v_2, v_3, ..., v_r)$ (clockwise). For our convenience we denote it by $C_{r(v_1)}$. Identifying an end vertex of paths P_m at v_i and P_s at v_j in $C_{r(v_1)}$ is denoted by $C_{r(v_1)}(0, ..., P_m, 0, ..., P_s, 0, ..., 0)$. Thus the graph G given in figure 2.4 is $C_{4(v)}(P_2, 0, P_3, 2P_2)$

Fig 2.6. $C_{4(v)}(P_2, 0, P_3, 2P_2)$

3. Anti-duplication self vertex switching in a graph

Definition 3.1. Let G be a graph and let v' be the antiduplication vertex of v in AD(vG). A vertex v is called antiduplication self switching vertex of a graph G if v is a self vertex switching of AD(vG).

The set of all anti-duplication self-switching vertices is denoted by $ADSS_1(G)$.

The number of all anti-duplication self-switching vertices is denoted by $adss_1(G)$.

Example 3.2. The graph G given in figure 2.7 has v_1 as an anti-duplication self-switching vertex since v_1 is a self vertex switching of $AD(v_1G)$. Clearly v_2 and v_4 are the other anti-duplication self-switching vertices of G as $AD(v_2G) \cong [AD(V_2G)]^{v_2}$ and $AD(V_4G) \cong [AD(V_4G)]^{v_4}$ and hence $adss_1(G) = 3$.

Theorem 3.3. If v is an anti-duplication self-switching vertex of a graph G of order p, then p is even and $d_G(v) = p/2$.

Proof. Let *v* be an anti-duplication self-switching vertex of a graph *G* of order *p* and let *v'* be the anti-duplication vertex of *v* in *AD*(*vG*). Then *v* is a self-switching vertex of *AD*(*vG*). By definition *AD*(*vG*) is of order *p* + 1. By Theorem 2.3, *p* + 1 is odd and $d_{AD(vG)}(v) = (p+1-1)/2 = p/2$. This implies that *p* is even and by Theorem 2.4 $d_G(v) = d_{AD(vG)}(v) = p/2$. Hence the theorem.

Theorem 3.4. If v is an anti-duplication self-switching vertex of a graph G, then v is non-adjacent to minimum degree vertices in G.

Proof. Let *v* be an anti-duplication self-switching vertex of graph *G* and *v'* be the anti-duplication vertex of *v* in AD(vG). Let *u* be a minimum degree vertex in *G*. Suppose *u* is adjacent to *v* in *G*. Then by definition, *u* is adjacent to *v* but non-adjacent to *v'* in AD(vG). This implies that $d_{AD(vG)}(u) = d_G(u)$. In $[AD(vG)]^v$, *v* is non-adjacent to *u* and hence $d_{[AD(vG)]^v}(u) = d_{AD(vG)}(u) - 1 = d_G(u) - 1$. Clearly *u* is a minimum degree vertex with degree equal to $d_G(u) - 1$ in $[AD(vG)]^v$. This implies that AD(vG) is not isomorphic to $[AD(vG)]^v$ which is a contradiction to *v* is anti-duplication self-switching vertex. Hence *v* is non-adjacent to the minimum degree vertices.

4.
$$adss_1(G)$$
 when G is $P_n, C_n, K_n, K_{n,m}, S_n, B_n$
and $D(n,m)$.

In this section we find the number of anti-duplication self switching vertices for the graphs $P_n, C_n, K_n, K_{n,m}, S_n, B_n$ and D(n,m).

Theorem 4.1. For path P_n ,

$$adss_1(P_n) = \begin{cases} 2 \ if \ n = 2\\ 0 \ otherwise \end{cases}$$

Proof. By definition *n* must be even. We consider the following cases.

Case 1. *n* = 2

It is clear that both the vertices of P_2 are anti-duplicating self-switching vertices and hence $adss_1(P_2) = 2$.

Case 2. *n* = 4

Let $v_1v_2v_3v_4$ be the path P_4 . Clearly v_1 and v_4 have degree 1 and hence they are not anti-duplicating self-switching vertices of P_4 . As v_2 is adjacent with v_1 and v_3 is adjacent with v_4 and v_1 and v_4 are the vertices with minimum degree, by Theorem 3.4, v_2 and v_3 are not anti-duplicating self-switching vertices in P_4 and hence $adss_1(P_4) = 0$. **Case 3.** $n \neq 2, 4$

Clearly P_n does not contain a vertex with degree n/2 and hence by Theorem 3.3, $adss_1(P_n) = 0$.

The theorem follows from cases 1, 2 and 3. \Box

Theorem 4.2. For cycle C_n , $adss_1(C_n) = 0$.

Proof. We consider the following two cases.

Case 1. *n* = 4

Let $v_1v_2v_3v_4v_1$ be the cycle C_4 . Clearly $AD(v_iC_4) = C_{4(v_i)}(0, 0, P_2, 0)$ and $[AD(v_iC_4)]^{v_i} = C_{3(v_i)}(0, 2P_2, 0), 1 \le i \le 4$. This implies that v_i is not a self vertex switching of $AD(v_iC_4)$ and hence v_i is not an anti-duplicating self-switching vertex of C_4 . This implies that $adss_1(C_4) = 0$.

Case 2. $n \neq 4$

Clearly C_n does not contain a vertex with degree n/2 and hence by Theorem 3.3, $adss_1(C_n) = 0$.

The theorem follows from cases 1 and 2. \Box

Theorem 4.3. For a complete graph K_n ,

$$adss_1(K_n) = \begin{cases} 2 \ if \ n = 1 \\ 0 \ otherwise \end{cases}$$

Proof. If n = 2, then $K_2 = P_2$ and hence by Theorem 4.1, $adss_1(K_2) = 2$.

If $n \neq 2$, then K_n does not contain any vertex with degree p/2 and hence $adss_1(K_n) = 0$. Hence the proof.

Theorem 4.4. For a complete bipartate graph $K_{m,n}$,

$$adss_1(K_{m,n}) = \begin{cases} 2 \ if \ n = m = 1\\ 0 \ otherwise \end{cases}$$

Proof. Let $K_{n,m}$ be a (p,q) graph where n + m = p. We consider the following three cases.

Case 1. *n* = *m* = 1

Clearly $K_{1,1} = P_2$ and by Theorem 4.1, we have $adss_1(K_{1,1}) = 2$.

Case 2. $n = m \neq 1$

Let $v_1, v_2, ..., v_n$ and $u_1, u_2, ..., u_n$ be the vertices of $K_{n,n} =$ G and $E(G) = u_i v_i, 1 \le i, j \le n$. Clearly $d_G(v_i) = d_G(u_j) =$ n = p/2. Let v'_i be the anti-duplication vertex of the vertex v_i in $AD(v_iG), 1 \le i \le n$. Now v_i is non-adjacent to $v_k, 1 \le i \le n$. $k \le n, i \ne k$ and adjacent to $u_j, 1 \le j \le n$ and hence v'_i is adjacent to v_k and non-adjacent to u_i in $AD(v_iG)$. By Theorem 2.5, $d_{AD(v_iG)}(v'_i) = 2n - n - 1 = n - 1$. Clearly $d_{AD(v_iG)}(v_i) =$ $d_G(v_i) = n$ and $d_{AD(v_iG)}(v_k) = n+1; 1 \le i, j, k \le n, i \ne k$. Now in $[AD(v_iG)]^{v_i}$ we have $d^*(v_i) = 2n - n - 1 + 1 = n$ and $d^*(v_i) = 2n - n - 1 + 1 = n$ n-1+1=n; $d^*(v_k)=n+2$ and $d^*(u_j)=n-1$, $1 \le j,k \le j$ $n, i \neq k$, where $d^*(v_i)$ denotes the degree of the vertex v_i in $AD(v_iG)^{v_i}$. Clearly $[AD(v_iG)]^{v_i}$ contains a vertex v_k with degree n+2 but $AD(v_iG)$ does not contain any vertices with degree n+2. This implies that v_i is not a self vertex switching of $AD(v_iG)$ and hence v_i is not an anti-duplication self vertex switching of $G = K_{n,n}$. As v_i is interchange similar

to all other vertices of $K_{n,n}$, there does not exist any vertex with anti-duplication self vertex switching in $K_{n,n}$ and hence $adss_1(K_{n,n}) = 0$.

Case 3. $n \neq m$

In this case, $K_{n,m}$ does not contain any vertices of degree p/2 and hence by Theorem 3.3, $adss_1(K_{n,m}) = 0$.

From cases 1,2 and 3, the theorem follows.

Corollary 4.5. For the star graph $S_n = K_{1,n}$,

$$adss_1(S_n) = \begin{cases} 2 \ if \ n = 1\\ 0 \ otherwise \end{cases}$$

Proof. The star graph S_n is a complete bipartate graph $K_{1,n}$.

Hence by Theorem 4.4, $adss_1(S_n) = \begin{cases} 2 \ if \ n = 1 \\ 0 \ otherwise \end{cases}$.

Theorem 4.6. For the book graph $B_n (n \ge 2)$, $adss_1(B_n) = 0$.

Proof. When $n = 1, B_1 = C_4$ and hence by Theorem 4.2, $adss_1(B_1) = 0$. Let $n \ge 2$. Let $v_0, v_1, v_2, ..., v_n$ and $u_0, u_1, u_2, \dots, u_n$ be the vertices of two copies of the star graph $S_n = K_{1,n}$ where u_0 and v_0 are the central vertices respectively. Join u_i and v_i , $0 \le i \le n$. The resultant graph is the book graph B_n with vertex set $V(S_n) = \{u_i, v_i; 0 \le i \le n\}$ and edge set $E(G) = \{u_0u_i, v_0v_i, u_i, v_i; 0 \le i \le n\}$. This implies that B_n has p = 2n + 2 vertices and q = 3n + 1 edges. Clearly, $d_{B_n}(u_i) =$ $d_{B_n}(v_i) = 2, 1 \le i \le n \text{ and } d_{B_n}(u_0) = d_{B_n}(v_0) = n + 1 = p/2.$ Since $n \ge 2$, $p/2 = n+1 \ge 3$ Since $d_{B_n}(v_i) = d_{B_n}(u_j) = 2 \ne 3$, by Theorem 3.3, u_i and v_i , $1 \le i \le n$ are not anti-duplication self-switching vertices of B_n . Also u_0 and v_0 are adjacent to the minimum degree vertices u_i and v_i , respectively, by Theorem 3.4, u_0 and v_0 are not anti-duplication self-switching vertices of B_n . Thus $adss_1(B_n) = 0$. Hence the proof.

Theorem 4.7. For the dragon graph G = D(n,m), $n \ge 3$ and $m \ge 1$

$$adss_1(D_{n,m}) = \begin{cases} 2 \text{ if } n = 3, m = 1\\ 0 \text{ otherwise} \end{cases}$$

Proof. Let $v_1v_2...v_m$ be the path P_m and let $u_1u_2...u_nu_1$ be the cycle C_n . Join u_1 and v_1 . The resultant graph G is (n,m) - dragon. The vertex set $V(G) = \{v_i, u_j; 1 \le i \le m; 1 \le j \le n\}$ and edge set $E(G) = \{v_iv_{i+1}, u_ju_{j+1}, v_1u_1, u_1u_n; 1 \le i \le m-1; 1 \le j \le n-1\}$. Clearly G has $p = n + m \ge 4$ vertices and q = n + m edges. Also $d_G(v_i) = d_G(u_j) = 2$ for $1 \le i \le m-1, 2 \le j \le n, d_G(v_m) = 1$ and $d_G(u_1) = 3$. Now we consider the following cases.

Case 1. *p* = 4

In this case, D(3,1) is the only possible dragon graph and hence m = 3, n = 1. Clearly, u_2 and u_3 are the two antiduplicating self-switching vertices of D(3,1). Hence $adss_1(D(3,1)) = 2.$

Case 2. p = 6

The possible dragon graphs with 6 vertices are D(3,3), D(4,2) and D(5,1). We consider the following subcases.

Subcase 2.a. G = D(3,3)

Clearly, the vertex set is $V(G) = \{v_i, u_j; 1 \le i \le 3; 1 \le j \le 3\}$ and edge set is $E(G) = \{v_1v_2, v_2v_3, u_1u_2, u_2u_3, u_1u_3, v_1u_1\}$. Clearly, $d_G(u_1) = 3 = p/2$ and $d_G(v) \ne p/2$ for $v \ne u_1$ in *G*. Hence by Theorem 3.3, *v* is not an anti-duplication self-switching vertex. Let u'_1 be the anti-duplication vertex of u_1 . By definition of anti-duplication of a vertex, u'_1 is adjacent with only v_2 and v_3 in AD(uG). Now, in $[AD(u_1G)]^{u_1}, u_1$ is not adjacent with u_2 and u_3 . This implies that the vertices u_2 and u_3 forms a component K_2 in $[AD(u_1G)]^{u_1}$. Hence u_1 is not a self vertex switching of $AD(u_1G)$. This implies that u_1 is not an anti-duplication self-switching vertex of the dragon graph D(3,3).

Subcase 2.b. G = D(4, 2)

Clearly, the vertex set is $V(G) = \{v_i, u_j; 1 \le i \le 2; 1 \le j \le 4\}$ and edge set is $E(G) = \{v_1v_2, u_1u_2, u_2u_3, u_3u_4, u_4u_1, v_1u_1\}$. Clearly, by Theorem 3.3, the vertices u_2, u_3, u_4, v_1 and v_2 are not anti-duplication self-switching vertices. Let u' be the anti-duplication vertex of u_1 . By definition of anti-duplication of a vertex, u'_1 is adjacent with u_3 and v_2 in $AD(u_1G)$ and hence the vertices u_1 and u_3 are of degree 3 and all other vertices are of degree 2. Now, in $[AD(u_1G)]^{u_1}, u_1$ is not adjacent with u_2 and u_4 . This implies that both the vertices are of degree 1. But $AD(u_1G)$ does not contain any vertex with degree 1. Hence there doesnot exist an isomorphism between $AD(u_1G)$ and $[AD(u_1G)]^{u_1}$. This implies that u_1 is not an anti-duplication self-switching vertex of the dragon graph (4, 2).

Subcase 2.c. G = D(5, 1)

In this case, $V(G) = \{u_1, u_2, u_3, u_4, u_5, v_1\}$ and $E(G) = \{u_1u_2, u_2u_3, u_3u_4, u_4u_5, u_5u_1, v_1u_1\}$. Clearly, by Theorem 3.3, the vertices u_2, u_3, u_4, u_5 and v_1 are not anti-duplication self-switching vertices. Also by Theorem 3.4, u_1 is not an anti-duplication self-switching vertex as u_1 is adjacent to v_1 , the minimum degree vertex of G. Thus from the above three cases

we have $adss_1(G) = 0$.

Case 3. $p \neq 4, 6$.

Clearly D(n,m) does not contain any vertices with degree p/2 and hence by Theorem 3.3, $adss_1(D(n,m)) = 0$.

The theorem follows from cases 1, 2 and 3. $\hfill \Box$

5. Conclusion

In this paper, we have found the number of anti-duplication self-switching vertices in some standard graphs like Path, Cycle, Complete graph, Book graph, Dragon graph and Star graph. One can find the number $adss_1(G)$ for some more graphs.

References

- [1] C. Jayasekaran, M. Ashwin Shijo, Some Results on Anti-duplication of a vertex in graphs, *Advances in Mathematics: A Scientific Journal*, 6(2020), 4145–4153.
- [2] C. Jayasekaran, M. Ashwin Shijo, Some Results on Anti-Duplication Graphs, Accepted for publication in Non-Linear Studies.
- [3] C. Jayasekaran, Self vertex Switching of trees, Ars Combinatoria, 127(2016), 33–43.
- [4] C. Jayasekaran, Self vertex switchings of connected unicyclic graphs, *Journal of Discrete Mathematical Sciences* and Cryptography, 15(6)(2012), 377–388.
- [5] C. Jayasekaran and V. Prabavathy, A characterisation of duplication self vertex switching in graphs, *International Journal of Pure and Applied Mathematics*, 118(2)(2018), 149–156.
- [6] F. Harrary, *Graph Theory*, Addition Wesley, 1972.
- [7] J.H. Lint and J.J. Seidel, Equilateral points in elliptic geometry, *In Proc. Kon. Nede. Acad. Wetensch., Ser. A*, 69(1966), 335–348.
- [8] V. Vilfred and C. Jayasekaran, Interchange similar self vertex switchings in graphs, *Journal of Discrete Mathematical Sciences and Cryptography*, 12(4)(2009), 467– 480.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

