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Sum of fractional series through extended
q-difference operators
V. Chandrasekar1* and J. Kathiravan2

Abstract
In this paper, we define the extended q-difference operator, q-polynomial factorial and inverse of the extended
q-difference operator and obtain the relation between shift operator and extended q-polynomial factorials. Also,
we obtain the formula for some fractional series of arithmetic and geometric progressions in the field of Numerical
Methods using the inverse of extended q-difference operator. Suitable examples are provided to illustrate the
main results.
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1. Introduction
The theory of difference equations is based on the dif-

ference operator ∆ defined as

∆u(k) = u(k+1)−u(k),k ∈ N = {0,1,2, · · ·} . (1.1)

Also, many authors [1, 4, 5, 11] have suggested the definition
of difference operator ∆` as

∆`u(k) = u(k+ `)−u(k),k ∈ [0,∞), ` ∈ (0,∞), (1.2)

and no significant results developed in the field of numerical
methods. In 2006, by taking the definition of ∆ as given in
(1.2) and the theory of difference equations was developed in a
different direction and many interesting results were obtained

in the field of Numerical Methods [6]-[10].
In the field of approximation theory, the applications of

q-calculus are new area in last 30 years. The first q-analogue
of the well-known Bernstein polynomials was introduced by
Lupas in the year 1987. In 1997, Phillips considered another q-
analogue of the classical Bernstein polynomials. Later several
other researchers have proposed the q-extension of the well-
known exponential-type operators which includes Baskakov
operators, Szasz-Mirakyan operators, Meyer-Konig-Zeller op-
erators, Bleiman, Butzer and Hahn operators, Picard operators,
and Weierstrass operators. Also, the q-analogue of some stan-
dard integral operators of Kantorovich and Durrmeyer type
was introduced, and their approximation properties were dis-
cussed [2].

In [12], while discussing the definition of q−derivative
operator ∆q as

∆qu(k) =
u(kq)−u(k)
(q−1)k

,q ∈ (0,∞),

and they didn’t developed any significant results in Numerical
Methods. But recently, V.Chandrasekar and K.Suresh have
generalized the definition of ∆q by ∆q(`) as

∆q(`)u(k) =
u(kq)− `u(k)

(q− `)k
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for the real valued function u(k) and ` ∈ (0,∞) and also ob-
tained the several types of arithmetic-geometric progressions
in the field of Numerical methods [3].

With this background, in this paper, we define the ex-
tended q−difference operator and derive the formula for frac-
tional series in the field of Numerical Analysis using its in-
verse operator.

2. Preliminaries
In this section, we present some basic definitions and

preliminary results for further subsequent discussions.

Definition 2.1. If u(k) is real valued function, then we define
the extended q−difference operator ∆q(`) as

∆q(`)u(k) = u((k+ `)q)−u(k),q, ` ∈ (0,∞). (2.1)

Lemma 2.2. The relation between ∆q(`) and Eq(`) is

Eq(`) = ∆q(`)+1. (2.2)

Proof. The shift operator Eq(`) is defined by

Eq(`)u(k) = u((k+ `)q) ,k ∈ [0,∞). (2.3)

The proof follows from (2.1) and (2.3).

Lemma 2.3. If q, ` ∈ N(1) = {1,2, · · ·}, then

1+∆q(`) = (1+∆)q(`) . (2.4)

Lemma 2.4. If q and ` are positive reals and n is positive
integer, then

Enq(`) =
n

∑
r=0

nCr∆
r
q(`). (2.5)

Proof. Equation (2.5) follows by (2.2).

The following two Lemma’s are easily deductions from
∆q(`).

Lemma 2.5. Let u(k) and v(k) 6= 0 be any two real valued
functions. Then

∆q(`)[u(k)v(k)] = v((k+ `)q)∆q(`)u(k)

+u(k)∆q(`)v(k).
(2.6)

Lemma 2.6. If u(k) and v(k) 6= 0 are any two real valued
functions, then

∆q(`)

[
u(k)
v(k)

]
=

v(k)∆q(`)u(k)−u(k)∆q(`)v(k)
v(k)v((k+ `)q)

.

The following is the binomial theorem according to ∆q(`).

Theorem 2.7. If m and n are any two positive integers, then

[(k+ `)]m =
1

qmn

[
n

∑
r=0

nCr∆
r
q(`)(k

m)

]

Proof. The proof follows by operating both sides on u(k) =
km in (2.5) .

Example 2.8. If θ is in degrees taking only integer values in
the anticlockwise direction then

[sin(k+θ)] =
1
qn

[
n

∑
r=0

nCr∆
r
q(`)sin(k)

]
.

Proof. The proof follows by taking ` = θ and operating on
u(k) = sin(k) in (2.5).

3. Extended q-Polynomial Factorial

In this section, we define the extended q-polynomial facto-
rial, relation between q-polynomial factorial and q-difference
operator according to ∆q(`).

Definition 3.1. If n is positive integer, then we define the
extended q−polynomial factorial is denoted by k(n)q(`) is defined
as

k(n)q(`) = k
(

k− `

q

)(
k−2`

q2

)
· · ·
(

k− (n−1)`
qn−1

)
. (3.1)

Lemma 3.2. If q and ` are positive reals and n is a positive
integer, then

∆q(`)k
(n)
q(`) = k(n−1)

q(`)

[
qn−1
qn−1 k+Cq(`)

]
, (3.2)

where Cq(`) =
(qn+(n−1))`

qn−1 .

Proof. The proof follows from (2.1) and (3.1).

Theorem 3.3. If kn
q(`) is extended q-polynomial factorial and

m,n are the any two positive integers then

∆
m
q(`)k

n
q(`) =

(qn−1)
qn−1 ∆

m−1
q(`)

(
k(n−1)

q(`) k(1)q(`)

)
+

(qn +(n−1))`
qn−1 ∆

m−1
q(`) k(n−1)

q(`)

(3.3)

Proof. The proof follows by induction method on m and n.

Theorem 3.4. If q and ` are positive reals and n is a negative
integer, then

∆q(`)

[
k+n`

k+(n−1)`

]
=

(1−q)`k−q`2

[k+(n−1)`] [(k+ `)q+(n−1)`]
(3.4)

Proof. (3.4) follows from (2.1) and using lemma 2.6.
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4. Inverse of Extended q-difference
Operator

In this section, we define the inverse of extended q-difference
operator and derived some interesting results using its inverse.

Definition 4.1. The inverse of extended q-difference operator
denoted by ∆

−1
q(`) is defined as if

∆q(`)v(k) = u(k) then v(k) = ∆
−1
q(`)u(k)+ c j (4.1)

and the nth order inverse operator denoted by ∆
−n
q(`) is defined

as

i f ∆
n
q(`)v(k) = u(k) then v(k) = ∆

−n
q(`)u(k)+ c j,

where c j is a constant, depends upon k ∈ N`( j), j = k−
[ k
`

]
`.

Lemma 4.2. If u(k) and v(k) 6= 0 are any two real valued
functions, then

∆
−1
q(`) [u(k)v(k)] = u(k)∆−1

q(`)v(k)

−∆
−1
q(`)

[
∆
−1
q(`)v((k+ `)q)∆q(`)u(k)

]
Proof. The proof follows from (2.6) and Definition 4.1.

Theorem 4.3. If k, ` and q are positive real values, then

[ k
` ]

∑
r=1

u

k− `
r
∑

t=1
qt

qr

= ∆
−1
q(`)u(k)−∆

−1
q(`)u

(
jq(`)
)
, (4.2)

where jq(`) =
k−`

[ k
` ]
∑

t=1
qt

q[
k
` ]

.

Proof. The proof follows from (4.1) and the relation

∆q(`)

 [
k
` ]

∑
r=0

u

k− `
r
∑

t=1
qt

qr


= u(k).

Lemma 4.4. For λ 6= 1, k ≥ 2q` and P(k) is any function of
k then

[ k
` ]

∑
r=1

λ


 k−`

r
∑

t=1
qt

qr

q


P

k− `
r
∑

t=1
qt

qr


=

λ kq

λ
∆q(`)k−1

[
1−

λ
∆q(`)k∆q(`)

λ
∆q(`)k−1

+
λ

2∆q(`)k∆2
q(`)(

λ
∆q(`)k−1

)2 + · · ·

P(k)+ c j.

Proof. If F(k) is any function of k then

∆q(`)λ
kF(k) = λ

((k+`)q)F ((k+ `)q)−λ
kF(k)

= λ
kq
[
λ
`qEq(`)−λ

(1−q)k
]

F(k)

= λ
kqP(k)

where

P(k) =
[
λ
`qEq(`)−λ

(1−q)k
]

F(k) (or)

(
λ
(1−q)k

)−1
[

λ `qEq(`)

λ (1−q)k
−1

]−1

P(k) = F(k).

Operating ∆
−1
q(`) on both sides of the equation

∆q(`)λ
kF(k) = λ

kqP(k),

we get

∆
−1
q(`)λ

kqP(k) = λ
kF(k)+ c

= λ
k
(

λ
(1−q)k

)−1
[

λ `qEq(`)

λ (1−q)k
−1

]−1

P(k)+ c j.

The proof follows by (2.2), (4.1) and the Binomial theorem.

5. Applications in Numerical Methods
In this section, we derived some fractional series using

the inverse of extended q-difference operators with suitable
examples are provided.
Theorem 5.1. If q and ` are positive reals, then

[
k
`

]
∑
r=1


q(2)


 k−`

r
∑

t=1
qt

qr

2

+ `2

+ (2q2−2q+1
)
`

 k−`
r
∑

t=1
qt

qr


 k−`

r
∑

t=1
qt

qr + `

q− `




= k|kjq(`) . (5.1)

Proof. (5.1) follows from (2.1) and lemma 4.2.

Example 5.2. Consider the fractional series

F =
79002

(27)(57)
+

(70686)(3)
(729)(17)

+
(1284822)(9)
(19683)(103)

+ · · ·+ (1.32350526×1011)(2187)
(2.824295365×1011)(43663)

Solution: Taking k = 65, `= 8, and q = 3 in (5.1), we get

F =65−

65−8
8
∑

t=1
3t

38


= 65+11.98826398 = 76.98826398.
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Theorem 5.3. If k ∈ [0,∞) and n is a negative integer, then

[ k
` ]

∑
r=1


(1−q)`

 k−`
r
∑

t=1
qt

qr

−q`2

 k−`
r
∑

t=1
qt

qr + `

q+(n−1)`

 k−`
r
∑

t=1
qt

qr +(n−1)`




=

k+n`
k+(n−1)`

|kjq(`) .

(5.2)

Proof. From (2.1) and (4.1), we have

∆
−1
q(`)

[
(1−q)`k−q`2

((k+ `)q+(n−1)`)(k+(n−1)`)

]
=

[
k+n`

k+(n−1)`

]
.

(5.3)

The proof follows from (4.2) and (5.3).

Example 5.4. Consider the fractional series

F =
−78

(−13)(13)
+

−39
(−26)(−13)

+
−39

(−65)(−26)

+ · · ·+ (−39)(4096)
(−319475)(−159731)

Solution: Substituting n = −10,k = 46, ` = 3, and q = 2 in
(5.2), we get

F =
16
13
−



 46−3
15
∑

t=1
2t

215

+(−30)

 46−3
15
∑

t=1
2t

215

+(−33)


= 1.230769231−0.923073792
= 0.307695439.

Theorem 5.5. If q and ` are positive reals and n is a positive
integer, then

∆q(`)

[
k+n`

k+(n+1)`

]
=

(q−1)`k+q`2

[k+(n+1)`] [(k+ `)q+(n+1)`]
(5.4)

Proof. By using (2.1) and lemma 2.6, we get (5.4).

Theorem 5.6. If k ∈ [0,∞) and n ∈ N(1), then

[ k
` ]

∑
r=1


(q−1)`

 k−`
r
∑

t=1
qt

qr

+q`2

 k−`
r
∑

t=1
qt

qr + `

q+(n+1)`

 k−`
r
∑

t=1
qt

qr +(n+1)`




=

k+n`
k+(n+1)`

|kjq(`) .

(5.5)

Proof. From (2.1) and (4.1), we have

∆
−1
q(`)

[
(q−1)`k+q`2

((k+ `)q+(n+1)`)(k+(n+1)`)

]
=

[
k+n`

k+(n+1)`

]
.

The proof follows from (4.2) and the above relation.

Example 5.7. Consider the fractional series

F =
376

9125
+
(376)(3)

35125
+
(376)(9)
210469

+· · ·+ (376)(19683)
(7.857849644×1011)

Solution: Substituting n = 7,k = 41, `= 4, and q = 3 in (5.5),
we get

F =
69
73
−



 41−4
10
∑

t=1
3t

310

+28

 41−4
10
∑

t=1
3t

310

+32


= 0.945205479−0.846158555
= 0.099046924.

6. Conclusion
In this paper, an advance has been developed for some results
on the solutions of extended q-difference equations governed
by (4.2) along with the function u(k) in the field of Numerical
analysis. Also, by selecting large value for k and small positive
value for q and ` one can find the sum of several fractional
series easily using the Theorem mentioned above.
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