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1. Introduction
In 2002 Császár[3]Introduced the notion of generalized topo-
logical spaces (GTS) and generalized continuity in his paper
named ’Generalized topology, generalized continuity’.

The purpose of present paper is to introduce G− Lindeloff
and study some basic properties of this structure. In section
2, collect all preliminaries and basic definitions useful for
subsequent sections. In section 3 we discuss some properties
of generalized connectedness and some basic theorems. In
section 4 introduce the concept of G− Lindeloff spaces and
discuss some basic theorems.

2. Preliminaries
Definition 2.1 ([4]). Let X be a set and exp(X) its power set.
According to Császár, a subset G of exp(X) is called general-
ized topology (GT) on X and (X ,G.) is called a generalized
to pological space (GTS) if G has the following properties.

1. Φ ∈ G .

2. G is closed under arbitrary union.

Definition 2.2 ([4]). A GTG is called strong if X ∈ G .

Definition 2.3 ([4]). A subset A is called A is called G -open
if A ∈ G . A subset B is called G -closed if X\B is G -open. The
generalized topology is denoted by G -topology.

Definition 2.4 ([4]). Let (X ,G ) and
(
Y,G 1

)
are two general-

ized topological spaces, f : X → Y be a function. Then f is
called

(
G ,G 1

)
continuous on X , if for any G 1-open set O in

Y, f−1(O) is G open in X.

Definition 2.5 ([4]). The function f called a G -homeomorphism
from X to Y , if both f and f−1 are G -continuous. If we have
a G -homeomorphism between X and Y we say that they are
G homeomorphic and denoted by X ∼=G Y .

Definition 2.6 ([5]). Let (X ,G ) be s GTS. A collection U
of subsets of X is said to be a G -cover of X if the union of
elements U equals X.

Definition 2.7 ([5]). Let (X ,G ) be a GTS.A G -subcover of a
G -cover τ is a sub collection µ of U which itself is a G -cover.
If the elements of t are G -open then we say that U is a G -open
cover.

Definition 2.8 ([5]). If every G -open cover of X has a finite
G -sub cover then we say that X is G -compact.

Theorem 2.9 ([5]). G -continuous image of G -compact set is
G -compact.
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Definition 2.10 ([2]). The intersection of G -closed set con-
taining A is called the G− closure of A and is denoted by
CG (A).

The fundamental reference for the topological ring and
their properties is [6].

Definition 2.11 ([7]). Let (X ,G ) be a G -topological space
and B be a sub collection of G is called a base for G -topological
space, if every G -open set can be expressed as union of some
members of B.

Definition 2.12 ([5]). Let (X ,G ) be a GTS. A point x ∈ X is
called a G -cluster point of A⊆ X if U ∩(A\{x}) 6= φ for each
U in G with x in U.

Theorem 2.13 ([8]). B ⊆ P(X) is a base for a GTG if and
only if whenever U is a G -open set and x ∈U, then there exist
a B ∈ B such that x ∈ B⊆ B.

Definition 2.14 ([7]). Let (X ,GX ) and (Y,GY ) be G -topological
spaces. The product G -topology on X×Y is the G G-topology
having as a basis the collection B of all sets of the form
U×V , where U ∈ G GX and V ∈ G GY .

Definition 2.15 ([1]). Let (X ,G G) be a GTS. X is called G−
connected if there are no nonempty disjoint G -open subsets
U,V of X such that U ∪V = X.

Definition 2.16 ([9]). Let (X ,G ) be a GTS and Y be a subset
of X then GY = {U ∩Y : U ∈ G } is a GT on Y , it is called the
subspace GT on Y .

3. More results on generalized
connectedness in generalized topology

Theorem 3.1. The G -connectedness is preserved under g-
continuous functions.

Proof. Let f : X → Y is a G -continuous onto function. As-
sume that X is G -connected. To show that Y is G -connected.
Assume the contradiction that there are two disjoint G -open
subsets U,V of Y such that U ∪V = Y. Then X = f−1(Y ) =
f−1(U ∪V ) = f−1(U)∪ f−1(V ). Thus X can be expressed
as union of two disjoint G -open subsets of X . Which is a
contradiction.

Theorem 3.2. Suppose X and Y are G -homeomorphic GTS.
Then X and Y are either both G -connected or both not G -
connected.

Theorem 3.3. A union of two intersecting G -connected sub
spaces is G -connected. That is, suppose X = U ∪V , where
U,V are both G -connected, and U ∩V 6= /0. Then X is G−
connected.

Proof. Assume X is not G− connected, X = A∪B, where A
and B are nonempty, disjoint and G -open subsets. Pick a point
v ∈U ∩V. We can assume v ∈ A. Now consider U ∩A and

U∩ B. They are G -open subsets in the subspace GT GU . Also
U ∩A contains v and so is nonempty. If U ∩B is non-empty,
we would get U is not G− connected. So we must have U ∩B
is empty. So U ⊆ A. Using the same argument we get V ⊆ B.
But then X =U ∪V is contained in A, and B must be empty.
Contradiction.

Theorem 3.4. Let (X ,G ) be a GTS, then X is G -connected if
and only if there are no two nonempty subsets A,B of X such
that X = AUB and CG (A)∩CG (B) = φ .

Proof. Assume X is G -connected. If possible there exist two
nonempty subsets A,B of X such that X = AUB and CG (A)∩
CG (B) = φ . Taking complements and apply DeMorgan’s law
on both sides of the equation CG (A)∩CG (B) = φ , implies
that CG (A)c∪CG (B)c = X .

Also CG (A)c∩CG (B)c = φ , for if there exist z∈X suchthat
z ∈CG (A)c∩CG (B)c, which implies that z /∈CG (A) and z /∈
CG (B) =⇒ z /∈CG (A)∪CG (B)⊇ A∪B = X =⇒ z /∈ X . This
become a contradiction. Hence X can be expressed as union
of two disjoint nonempty G -open sets, this is a contradiction
to the fact that X is G -connected.

Conversely assume there are no two nonempty subsets
A,B of X such that X =AUB and CG (A)∩CG (B)= φ . If possi-
ble X is not G− connected, then there exist two nonempty dis-
joint G -open sets A,B of X such that X = AUB. So A = X−B
is G -closed. Similarly B is G-closed. Hence CG (A) = A and
CG (B) = B. So there are no two nonempty subsets A,B of
X such that X = AUB and CG (A)∩CG (B) = φ . which is a
contradiction. Hence X is G -connected.

Definition 3.5. Let (X ,G ) be a GTS, x0 ∈ X and N ⊆ X . Then
x0 is said to be a generalized interior point of N, if there is a
G-open set V such that x0 ∈V ⊆ N. The set of all generalized
interior points of N is called the generalized interior of N and
is denoted by G int(N).

Example 3.6. Consider X =R and Z be the set of all integers.
If G = {U ⊆ R : U ⊆ R−Z}, then G is a GT on X and 1

2 is
a generalized interior point of the set of rational numbers Q.

Theorem 3.7. Let (X ,G ) be a GTS and A ⊆ X. Then G int
(A) is the union of all G -open sets contained in A. It is also
the largest G -open subset of X contained in A.

Proof. Let M be the family of all G -open sets contained in
A.M is nonempty because φ ∈M . Let V =

⋃
G∈M G . Clam:

V =Gint(A). Now x∈V then x∈ G for some G ∈M . That is
x ∈ G ⊆ A⇒ x ∈ G int(A). conversely let x ∈ G int(A). Then
there is a G -open set H such that x∈H ⊆A. Then H ∈M and
so H ⊆V. So x ∈V. Suppose G is any G -open set contained
in A. Then G ∈M and so G ⊆ G int(A). Hence G int(A) is
the largest G -open set contained in A.

Definition 3.8. Let A be a subset of a GTS X. Then its gener-
alized boundary is the set CG (A)∩CG (X −A). It is denoted
by G ∂A.
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Remark 3.9. 1. The generalized boundary of a set is al-
ways a G -closed set

2. The generalized boundary of a set is same as The gen-
eralized boundary of its complement.

Theorem 3.10. Let A be a subset of a GTS X then CG (A) is
the disjoint union of G int (A) with the generalized boundary
of A.

Proof. Claim: CG (A) = G int(A)∪G ∂A. We have

G int(A)∪G ∂A

= G int(A)∪ (CG (A)∩CG (X−A))

= [G int(A)∪ (CG (A))]∩ [G int(A)∪ (CG (X−A))]

= (CG (A))∩X

=CG (A)

Theorem 3.11. Let (X ,G ) be a GTS and A ⊆ X. Then A is
G -closed if and only if it contains its generalized boundary
and A is G -open if and only if it disjoint from its generalized
boundary.

Proof. Assume A is G− closed. Then CG (A) = A. We have
G ∂A = CG (A)∩CG (X −A) ⊆ CG(A) = A. conversely sup-
pose G ∂A⊆ A. It is enough to prove that CG (A)⊆ A. From
above theorem CG (A)=G int(A)∪G ∂A⊆A. Hence CG (A)=
A. So A is G− closed. Assume A is G -open. Then

G ∂A∩A = [CG (A)∩CG (X−A)]∩A

= [CG (A)∩ (X−A)]∩A

= φ

Conversely assume G ∂A∩A = φ . Then G ∂A⊆ X −A. But
the generalized boundary of A is same as the generalized
boundary of (X −A). Hence by above part (X −A) is G -
closed. So A is G -open.

Theorem 3.12. Let (X ,G ) be a GTS and A ⊆ X. Then A is
both G− closed and G-open (i.e G -clopen ) if and only if
G ∂A = φ .

Proof. A is both G-closed and G -open implies G ∂A⊆ Aand
G ∂A∩A = φ . Hence G ∂A = φ . Conversely assume G ∂A =
φ . So G∂A⊆ A and G ∂A∩A = φ . Hence by above theorem,
A is both G -closed and G -open.

Example 3.13. Consider X = R and Z be the set of all inte-
gers. If G = {U ⊆R : U ⊆R−Z}, then G is a GT on X. Note
that the generalized boundary of Z is CG (Z)∩CG (R−Z) =
Z∩R= Z.

Theorem 3.14. Let (X ,G ) be a GTS and A,B are subsets of
X . Then the given statements are equivalent:

1. AUB = X and CG (A)∩CG (B) = φ

2. AUB = X and A∩B = φ and A,B are both G− closed
in X.

3. B = X−A and A is both G -open and G -closed in X.

4. B = X−A and the generalized boundary of A is empty.

5. AUB = X and A∩B = φ and A,B are both G -open in
X.

Proof. (1) =⇒ (2)
CG (A)∩CG (B) = φ ⇒ A∩ B = φ as A ⊆ CG (A) and B ⊆
CG (B). Also CG (A)⊆X−CG (B)⊆X−B=A. So CG (A)=A
as A⊆CG (A). Hence A is G− closed in X . Similarly B is G -
closed in X .
(2) ⇒ (3)
By assumption A,B are both G -closed in X and , which im-
plies X −A and X −B are G -open in X . But X −A = B and
X−B = A.
(3) ⇒ (4)
B = X−A and both A,B are G− closed in X implies that the
generalized boundary of A=CG (A)∩CG (X−A)=A∩B= φ .
(4) ⇒ (5)
B = X−A⇒ AUB = X and A∩B = φ . By theorem 3.11A is
G -open and G− closed in X . Since B = X−A, both A and B
are G -open in X .
(5) ⇒ (1)
Assume AUB = X and A∩B = φ and A,B are both G -open
in X . Then A = X −B and B = X −A. Hence A,B are both
G -open and G− closed in X . So CG (A) = A and CG (B) = B
Hence CG (A)∩CG (B) = φ .

Corollary 3.15. If X is not a strong GTS, then X must be
G -connected.

Proof. If X is not a strong GTS, then X is not G -open. So
X cannot be expressed as disjoint union of two nonempty
G -open sets in X .

Theorem 3.16. Let (X ,G ) be a GTS. Then the following
statements are equivalent:

1. X is G -connected.

2. X cannot be written as the disjoint union of two nonempty
G -closed subsets of X

3. Every nonempty proper subset of X has a nonempty
generalized boundary.

4. X cannot be written as the disjoint union of two nonempty
G -open subsets of X

Definition 3.17. Two subsets of A and B of a GTS X are said
to generalized separated ( or G− separated) if CG (A)∩B= /0
and A∩CG (B) = φ .

Example 3.18. Let X = {1,2,3} and G = {X ,φ ,{1,2},{3}}
is a GT on X . Then {1,2} and {3} are G− separated.
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Example 3.19. Consider X = R and Z be the set of all inte-
gers. If G = {U ⊆R : U ⊆R−Z}, then G is a GT on X. Then
Q−Z and Z are notG− separated. Because Qc is G -open
so Q is G -closed. Hence the smallest G -closed set containing
Q−Z is Q ·Q∩Z 6= /0.

Remark 3.20. 1. Note that A and B are G− separated if
and only if they are disjoint G− closed subsets of A∪B
with subspace GT in A∪B.

2. A GTS is G -connected if it is not the union of two non-
empty G -separated subsets.

Theorem 3.21. Let X be a GTS and C be a G -connected
subset of X. Suppose C ⊆ A∪ B where A and B are G−
separated subsets of X . Then either C ⊆ A or C ⊆ B

Proof. Let G =C∩A and H =C∩B. Then G,H are G -closed
in A∪B. Also G ∩H = φ . But C be a G -connected subset of
X . So either G = φ or H = φ . In the first case C ⊆ B while in
the second, C ⊆ A

Theorem 3.22. Let C be a collection of G− connected sub-
sets of X such that no two members of C are G− separated.
Then UC∈C C is also G− connected.

Proof. Let M = UC∈C C. If M is not G -connected, then we
can write M as A∪ B where A, B are nonempty and G−
separated subsets of X . By above proposition, for each C ∈ C
either C ⊆ A or C ⊆ B. Claim: C ⊆ A for all C ∈ C or C ⊆ B
for all C ∈ C . If not then there exist C,D ∈ C such that C⊆ A
and D⊆ B. But, A,B are G− separated subsets of X . Hence
their subsets are also G -separated subsets contradicting the
hypothesis. Thus all members of C are contained in A or all
are contained in B. So M = A or M = B, contradicting that
A,B are both nonempty.

Theorem 3.23. Let C be a collection of G− connected sub-
sets of X of a space X and suppose K is a G -connected subset
of X (not necessarily a member of C ) such that C∩K 6= φ

for all C ∈ C . Then (Uc∈CC)∪K is G -connected.

Proof. Let M = (UC∈C C)∪K. Let H = {K ∪C : C ∈ C }.
Clearly M =

⋃
H∈H H. By above theorem each member of

H is G -connected since it is a union of two G -connected sets
which intersect. Now any two members of H have at least
points of K in common and so not G -separated. So by above
theorem M is G -connected.

Theorem 3.24. Let X1,X2 be generalized topological spaces
and X = X1×X2 with G− product topology. Then X is G -
connected.

Proof. If either X1 or X2 is empty then so is X and the result
hold trivially. So assume both X1 and X2 are non empty. Fix a
point y1 ∈ X1. Then the set {y1}×X2 is G -homeomorphic to
X2 and hence is G -connected. Call it K. For each x ∈ X2, the
set X1×{x} is similarly G -connected and its intersection with
K is nonempty. Also note that X1×X2 =(∪x∈X2X1×{x})∪K.
So by above theorem X1×X2 is G− connected.

Remark 3.25. In an ordinary topological space closure of
a connected set is connected. But in generalized topological
space the G− closure of a G -connected set need not be G -
connected.

Example 3.26. Let X = {a,b,c,d} and

G = {X , /0,{a,b},{b,c},{a,b,c},{c,d},{b,c,d}}.

Let A = {a,b,c}. Then A is G− connected and CG (A) = X .
since X = {a,b}∪{c,d}, we see that X is not G− Connected.

Definition 3.27. A generalized component (G− component)
of a GTS is a maximally G -connected subset which is not
properly contained in any G -connected sub set of that GTS.

Remark 3.28. In ordinary topological spaces components
are closed, but in generalized topological spaces G− compo-
nents need not be G− closed.

Example 3.29. Let X = {a,b,c,d} and

G = { /0,{a,b},{b,c},{a,b,c}}.

Let A = {a,b,c}. Then A is G -connected and a G− compo-
nent of X . But A is not G− closed.

Theorem 3.30. Any two distinct G -components are mutually
disjoint.

Proof. Let C,C′ be two G− components. If C∩C′ is nonempty
then by theorem 3.23C∪C′ be G -connected. But C ⊆C∪C′

and C′ ⊆ C∪C′. So by maximality of C and C′ we get =
C∪C′ =C′. Thus two distinct G− components are mutually
disjoint.

Theorem 3.31. Every nonempty G -connected subset is con-
tained in a unique G -component.

Proof. Let A be a nonempty G -connected subset of a GTS
X . Let C be the collection of all G -connected subsets of X
containing A and let M =UC∈C C. Then any two members of
C intersect, so by theorem 3.22,M is G− connected. Clearly
A⊆M. We claim M is a

G -component. For suppose N is a G -connected subset of
X containing M. Then N ∈C and so N⊆M. Hence M =N. In
other words, M is a maximally G -connected subset of X . Thus
every nonempty subset is contained in a G -component. Such
a G -component is unique since two distinct G -components
are disjoint.

Theorem 3.32. Let B be a base for a GT G on a set X and
letY ⊆ X. Let BY = {B∩Y : B ∈ B}. Then BY is a base for
the subspace GT GY on Y .

Proof. Here we use theorem 2.14. Let y ∈ Y and U be a G -
open set in Y containing y. Then U = H ∩Y for some G -open
set in H in X . So y ∈ H and hence there exist B ∈ B such that
y ∈ B ⊆ H. Then y ∈ B∩Y ⊆ H ∩Y = U and B∩Y ∈ BY .
Hence by theorem2.14, BY is a base for the subspace GT GY
on Y .
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4. G -Lindeloff Spaces

Definition 4.1. Let (X ,G ) be a GTS. Then X is said to be
G− Lindeloff space iff each G -cover of X has a countable
G -open subcover.

Theorem 4.2. If (X ,G ) is a countable GTS. Then X is G−
Lindeloff .

Proof. Let X = {x1,x2, . . . ,xn, . . .} . Let F be a G -open cov-
ering of X . Then each element of X belongs to at least one of
the element of F ,sayx1 ∈ F1,x2 ∈ F2, . . . ,xn ∈ Fn, . . . where
each Fi ∈ F for i = 1,2,3, . . . ,n, . . . . Then the collection
{F1,F2, . . . ,Fn, . . .} is a countable sub collection of F and
which is a G -open cover of X . Hence X is G− Lindeloff.

Theorem 4.3. Let (X ,G ) be a GTS, where G = {U ⊆ X :
X\U is either countable or all of X}, then X is G− Lindeloff.

Proof. Let F be a G -open cover of X . Then the comple-
ment of each member of F is either countable or all of X .
Let G be a non empty arbitrary member of F , then X\G
is countable. LetX\G = {x1,x2, . . . ,xn, . . .} . Since F is a
G -open cover of X , each xi, i = 1,2,3, . . . ,n, . . . belongs to at
least one member of F , say x1 ∈ F1,x2 ∈ F2, . . . ,xn ∈ Fn, . . . ,
where Fi ∈ F for i = 1,2,3, . . . ,n, . . . . Then the collection
{G ,F1,F2, . . . ,Fn, . . .} is a countable sub collection F which
is a G -open cover of X . Hence X is G -Lindeloff .

Theorem 4.4. Let (X ,G ) be a GTS. If F1,F2, . . . ,Fn, . . . are
G− Lindeloff subset of X then

⋃
∞
n=1 Fn is is G− Lindeloff. i.e

Countable union of G− Lindeloff sets is is G− Lindeloff.

Proof. Let U and V be any two G− Lindeloff subsets of
X . Let F be a G -open cover of U ∪V . Then F is also
a G -open cover of both U and V . So by hypothesis there
exist countable sub collection of F of G -open sets, say,
{U1,U2, . . . ,Un, . . .} and {V1,V2, . . . ,Vn, . . .} covering U and
V respectively. Clearly the collection {U1,U2, . . . ,Un, . . . ,V1,V2, . . . ,Vn, . . .}
is a countable collection of G -open sets covering U ∪V . By
induction every countable union of G Lindeloff sets is is G−
Lindeloff.

Theorem 4.5. Let (X ,G ) be a GTS and A⊆ X. Then A is a
G− Lindeloff subset of X if and only if (A,GA) is G− Lindeloff

Proof. Assume that A is a G− Lindelof f subset of X . Let
F be a G -open cover of (A,GA). So each member G of F
is of the form H ∩ A for some H ∈ G . For each G ∈ F ,
fix D(G ) ∈ G such that G = D(G )∩ A. Then the family
{D(G ) : G ∈F} is a G -open cover of A by members of G .
Since A is a G− Lindeloff subset of X , this G -open cover has
a countable G− open sub cover, say, {D(Gi) : i = 1,2, . . .}
where Gi ∈F , for all i = 1,2, . . . , Then {G1,G2, . . . ,Gn, . . .}
is a countable sub cover of F . Hence (A,GA) is G− Lindeloff.

Conversely assume (A,GA) is G− Lindeloff f . Let F be a
G -open cover of A by members in G . Then {G ∩A : G ∈F}
is a G -open cover of A by members in GA. By assump-
tion this G -cover has a countable G -open sub cover, say,

{Gi∩A : i = 1,2, . . .} where Gi ∈F for i = 1,2, . . .. Clearly
{G1,G2, . . . ,Gn, . . .} is a countable subfamily of F , covering
the set A. Thus A is a G− Lindeloff subset of X .

Theorem 4.6. Let (X ,G ) be a GTS and X is G− Lindeloff .
Let A⊆ X is G− closed in X . Then (A,GA) is G− Lindeloff

Proof. Assume X is G− Lindeloff f and A⊆ X is G− closed
in X . Let F be a G -open cover of A by members in GA.
For each U ∈F , fix a G -open set V (U) in X such that A∩
V (U) =U . Then the family L = {V (U) : U ∈F}∪{X−A}
is a G -open cover of X and hence admits a countable G -
open sub cover consisting of V (U1) ,V (U2) , . . . ,V (Un) , . . .
and possibly X −A. But then {U1,U2, . . . ,Un, . . .} covers A
and is a countable G -open sub cover of F . Hence (A,GA) is
G− Lindeloff.

Theorem 4.7. Every uncountable sub set of a G− Lindeloff
space X has at least one G -cluster point in X.

Proof. Assume X is a G -Lindeloff space and A be an uncount-
able sub set of X . Assume that A has no G -cluster point in X .
Then for each x ∈ X , there exist Ux ∈ G with x ∈Ux and such
that Ux∩A= {x} or φ . Now the collection {Ux : x ∈ X} is a G -
open cover of X . since X is G− Lindeloff this collection has a
countable sub cover, say Ux1 ,Ux2 , . . . ,Uxn , . . . But (Ux1 ∩A)∪
(Ux2 ∩A)∪ . . .∪(Uxn ∩A)∪ . . .= {x1}∪{x2}∪ . . .∪{xn}∪ . . .
or φ =⇒ (Ux1 ∪Ux2 ∪ . . .∪Uxn . . .)∩A= {x1,x2, . . . ,xn, . . .}or
φ , contradicts that A is uncountable.

Theorem 4.8. The G -Lindeloff property is preserved under
G -continuous functions.

Proof. Let (X ,G1) and (X ,G2) are two GTS’s. Let f : (X ,G1)
→ (X ,G2) be a (G1,G2) continuous function from X onto Y.
Let X be G1− Lindeloff. Let F be any G2-open cover of Y ,
then the collection

{
f−1(G ) : G ∈F

}
is a G1-open cover of

X . since X is G1− Lindeloff , there exist a countable G1-open
sub cover of X , say

{
f−1 (G1) , f−1 (G2) , . . . , f−1 (Gn) , . . . .

}
,G1,

G2, . . . Gn, . . . ∈F . Since the mapping is onto, the collection
{G1,G2, . . . ,Gn, . . .} is a G2-open sub cover of Y. Hence Y is
G2− Lindeloff.
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