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Weak Roman domination in Chess graphs
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Abstract
Let G = (V,E) be a graph and f : V →{0,1,2} be a function. A vertex u with weight f (u) is said to be undefended
with respect to f , if it is not adjacent to any vertex with positive weight. The function f is a weak Roman dominating
function (WRDF) if each vertex u with f (u) = 0 is adjacent to a vertex v with f (v) > 0 such that the function
f ′ : V → {0,1,2} defined by f ′(u) = 1, f ′(v) = f (v)− 1 and f ′(w) = f (w) if w ∈ V −{u,v}, has no undefended
vertex. The weight of f is w( f ) = ∑

v∈V
f (v). The weak Roman domination number, denoted by γr(G), is the minimum

weight of a weak Roman dominating function on G. In this paper, we present a constant time algorithm to obtain
γr(KNm,n), where, KNm,n is the Knight’s graph.
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1. Introduction
The Roman Empire was the greatest in the History of Empires,
designated so, owing to the Military Power it possessed, the

influence it had on the rest of the world at the time it existed,
and the duration of time it existed. One of its emperors, Con-
stantine, the Great, who faced continuous threat of attacks by
his neighbouring enemies, devised a plan to protect all his ter-
ritories. He created two types of armies for the protection of
various territories that made up the Roman empire under his
reign, armies that travelled from a territory at which they are
stationed to any of its neighbouring territories to protect them
and armies that remained stationery and protected only those
territories at which they are stationed. Graph theoretically, the
scenario could be depicted as a graph, in which the territories
are represented as vertices and the neighbourhood relationship
between pairs of territories are represented as edges. A formal
discussion on the strategy of the Emperor, Constantine, the
Great was first published by Ian Stewart [8]. Motivated by this,
Cocayne et al. [5] defined the Roman dominating function
(RDF) on a graph G = (V,E) as a function f : V →{0,1,2}
under which, if u is any node with f (u) = 0, then u is adjacent
to a vertex v for which, f (v) = 2. The weight of a Roman dom-
inating function f defined on a graph G = (V,E) is denoted by
w( f ) and is defined as w( f ) = ∑ f (u), where the summation
runs over all the vertices u in V . Denoting by Vi, the set of
all vertices u in V with f (u) = i, there is a one-to-one corre-
spondence between the functions f : V → {0,1,2} and the
ordered partitions (V0,V1,V2). We thus identify any function
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f : V → {0,1,2}, with an ordered partition (V0,V1,V2). The
Roman domination number γR(G), of a graph G, is the mini-
mum weight of any RDF defined on G. A γR(G)-function is an
RDF with minimum weight. The Roman domination has been
extensively studied in the literature [5, 14, 15, 17]. A similar
parameter, the weak Roman domination number was defined
by Henning and Hedetniemi [7] as follows. For a function
f : V → {0,1,2}, a vertex u with f (u) = 0 is said to be un-
defended, if u is not adjacent to any node v with f (v) > 0.
The function f : V →{0,1,2}, is called a weak Roman dom-
inating function (WRDF), if u is any vertex with f (u) = 0,
then u is adjacent to some vertex v with f (v)> 0, such that,
under the function f ′ : V → {0,1,2}, defined by f ′(u) = 1,
f ′(v) = f (v)−1, f ′(x) = f (x), for all x∈V \{u,v}, no vertex
is undefended. The weight of a weak Roman dominating func-
tion f defined on a graph G = (V,E) is defined as ∑ f (u),
where the summation runs over all the vertices in V . The
minimum weight of a WRDF is called the weak Roman dom-
ination number, and is denoted by γr(G). A γr(G)-function
is a WRDF with minimum weight. Many researchers have
studied the parameter γr(G) [3, 9, 11–13, 16].

Consider a m×n chess board with m rows and n columns.
A graph in which the vertices are the mn squares of the chess
board and edges are lines joining any two vertices from each
of which a chess piece can move to the other using a legal
move of that chess piece, specified by the rules of the game
of chess, is called the chess graph associated with that chess
piece. The knight’s graph denoted by KNm,n, is defined as
the graph which has for its vertices the squares that make up
the chessboard, and edges, the lines which join two vertices
from each of which a knight chess piece can move to the other,
using a legal knight’s move. Thus vertex (i, j) is adjacent to
the vertex (k, l) if and only if, 1 ≤ i 6= k ≤ m, 1 ≤ j 6= l ≤ n
and |i− k|+ | j− l|= 3.

The Queen’s graph denoted by Qm,n is defined as the
graph which has its vertices, the squares that make up the
m×n chessboard, and edges, the lines which join two vertices
from each of which the queen chess piece can move to the
other, using a legal queen’s move. Thus, the vertex (i, j) is
adjacent to the vertex (k, l) if and only if i = j or k = l or
|i− k|= | j− l|.

The Rook’s graph denoted by Rm,n is defined as the graph
which has its vertices, the squares that make up the m× n
chessboard, and edges, the lines which join two vertices from
each of which the rook chess piece can move to the other,
using a legal rook’s move. Thus, the vertex (i, j) is adjacent
to the vertex (k, l) if and only if i = k or j = l.

The Bishop’s graph denoted by Bm,n is defined as the
graph which has its vertices, the squares that make up the
m×n chessboard, and edges, the lines which join two vertices
from each of which the bishop chess piece can move to the
other, using a legal bishop’s move. Thus, the vertex (i, j) is
adjacent to the vertex (k, l) if and only if |i− k|= | j− l|.

The bishop’s graph is a disconnected graph with two com-
ponents, which are subgraphs induced by vertex sets consist-

ing of the white squares only and the black squares only. Thus
the queen’s graph is the union of the rook’s graph and the
bishop’s graph.

The King’s graph denoted by Km,n is defined as the graph
which has its vertices, the squares that make up the m× n
chessboard, and edges, the lines which join two vertices from
each of which the king chess piece can move to the other,
using a legal king’s move. Thus, the vertex (i, j) is adjacent
to the vertex (k, l) if and only if i 6= k or j 6= l, |i− k| ≤ 1 and
| j− l| ≤ 1.

Much has been studied on the chess graphs in [1, 2, 4, 6,
10, 18].

2. Definitions and Notation
Two vertices in the Knight’s graph are said to be harmonious,
if they have at least one vertex adjacent to them, in common.
Given a pair of harmonious vertices, they can at the most be
adjacent to two other vertices, in common, and no more. If
two vertices are not harmonious, then we call them inharmo-
nious. A set of three or more vertices are said to be mutually
harmonious, if any two of them are harmonious. We make the
following observations.

1. In a Knight’s graph, ∆≤ 8. For optimal labelling, we
will label with 2 a vertex with degree at least 3. How-
ever, if the degree of a vertex is two, then the vertices
adjacent to this vertex are harmonious and hence they
can each be labelled with 1 for protecting at least three
vertices.

2. In any Knight’s graph, the maximum cardinality of a set
of mutually harmonius vertices is four. For instance, in
KN4,4, a1,2,a2,1,a2,3 and a3,2 are mutually harmonious.
Further the vertex a2,2 is inharmonious with each of
the vertices a2,1,a1,2,a2,3 and a3,2. Hence any vertex
protected by a2,2 will not be protected by a2,1, a1,2, a2,3
and a3,2.

3. Two vertices in the same row of the chess board and
in successive columns are inharmonious as are two
vertices in the same column and in successive rows.

The outer rim is the set {ai, j/i= 1,m,1≤ j≤ n}∪ {ars/s=
1,n, 1≤ r ≤m}. If the outer rim is not the whole of the chess
board, we define the inner rim as the set {ai, j/i= 2,m−1,2≤
j ≤ n−1}∪ {ars/s = 2,n−1,2≤ r ≤ n−1}. The set of all
vertices that do not lie on the inner rim or on the outer rim is
called the central board. A vertex on the central board is said
to be a central vertex. Any central vertex is adjacent to eight
vertices in the Knight’s graph. It is to be noted that the central
baord or both the inner rim and the central board can be empty.
If either m = 2 or n = 2, then the chess board consists of only
the outer rim. For m > 2 and n > 2, the chess board will nec-
essarily contain both the outer rim and the inner rim. If either
m < 5 or n < 5, then the central board is empty. Based on how
the vertices are labelled in a column, we name such columns
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as follows. In a m×n chess board, a column in which at least
one legion is placed at each vertex is called a pad. A pad
in which all the vertices are placed with a single legion is
denoted by P(m). We denote by P(m)({i, j . . . , l},{a,b, . . . ,d})
a pad in which a single legion is placed at rows i, j, . . . , l
and two legions are placed at rows a,b, . . . ,d. A column in
which all the vertices are placed with no legion is called to-
tally dependent and is denoted by T D(m). A column in which
at least one vertex has no legion in it is called a dependent
column. We denote by D(m)(i, j, . . . , l) a dependent column in
which a single legion is placed at rows i, j, . . . , l and no legion
elsewhere and by D(m)({i, j . . . , l},{a,b, . . . ,d}) a dependent
column in which a single legion is placed at rows i, j, . . . , l,
two legions are placed at each vertex in rows a,b, . . . ,d and
no legion elsewhere.

3. The WRDN of the Knight’s graphs
KNm,n

In this section, we find the γr-value f the Knight’s graphs
KNm,n, for certain specific values of m and propose a linear
time algorithm for finding the γr-value of the Knight’s graphs
KNm,n for arbitrary values of m and n.

3.1 Solution Methodology
For determining the γr-value of the Knight’s graph, we adopt a
strategy that is two pronged. In the first, we follow the integral
board approach, in which we find the γr-value of the knight’s
graph KNm,n, m ≤ 6, n ≤ 6, for each m and n, considering
them as independent graphs. In the second, we consider the
split board approach, in which we split the board into boards
of smaller orders and use the optimal WRDF of the smaller
boards to produce the optimal WRDF of the entire board.
The split board method is suitable only in the case when the
number of rows exceeds three (or six) and the number of
columns exceeds six (or three) or explicitly for the knight’s
graph KNm,n, m > 3 and n > 6 (or m > 6 and n > 3).

3.2 The Knight’s graph KN2,n
We shall now find the γr-value of the Knight’s graphs KN2,n,
for arbitrary n. We have the following results.

Theorem 3.1. For the Knight’s graph KN2,n,

γr(KN2,n) =

{
2
{⌈

3(n+1)
14

⌉
+
⌈

3(n−1)
14

⌉}
, if n is odd

4
⌈ 3n

14

⌉
, if n is even

Proof. The graph KN2,n is the disjoint union of four paths,
two of which are of order

⌊ n
2

⌋
and the other two,

⌈ n
2

⌉
. Hence

by [7] it follows that,

γr(KN2,n) = 2

⌈
3
⌈ n

2

⌉
7

⌉
+2

⌈
3
⌊ n

2

⌋
7

⌉

=

{
2
{⌈

3(n+1)
14

⌉
+
⌈

3(n−1)
14

⌉}
, if n is odd

4
⌈ 3n

14

⌉
, if n is even

3.3 The Knight’s graph KN3,n
We now consider the Knight’s graphs KN3,n and find their
γr-value for arbitrary values of n. Due to the triviality we do
not consider the case n = 1. The case that n = 2 has already
been handled in Theorem 3.1. So let n > 2.

Lemma 3.2. For the Knight’s graph, KN3,3, γr(KN3,3) = 5.

Proof. There are nine vertices in the graph KN3,3. No vertex
in the graph has degree > 2. Hence we do not label any vertex
with 2. The graph is the disjoint union of a cycle on eight
vertices and an isolated vertex (a22). Hence γr(KN3,3) =
γr(C8) + 1, where C8 is a cycle on eight vertices. Hence
γr(KN3,3) = 4 + 1 = 5 [7]. To achieve this, we place the
legions according to the placement pattern of legions given by
(P(3),D(3)(2),D(3)(3)).

Lemma 3.3. For the Knight’s graph, KN3,4, γr(KN3,4) = 6.

Proof. It is a trivial verification that γr(KN3,4) = 6 and place
the legions given as (P(3),T D(3),T D(3),P(3)).

Lemma 3.4. For the Knight’s graph KN3,5, γr(KN3,5) = 6.

Proof. The vertex a2,3 is adjacent to four vertices in the graph
and no other vertex has this property. Placing two legions at
a2,3 would account for the protection of five vertices in the
graph. If the remaining ten vertices are to be taken care of
by inharmonious vertices, we would require five legions in
all. However the mutually harmonious vertices a1,3,a2,2,a2,4
and a3,3 are sufficient for the protection of all the other ver-
tices, if we place a single legion at each. Further there exists
no other set containing fewer number of mutually harmo-
nious and inharmonious vertices for the protection of all the
other vertices. Hence the four mutually harmonious vertices
a1,3,a2,2,a2,4 and a3,3 with a single legion placed at each of
them together with two legions placed at a3,3 would opti-
mally protect all the vertices of the graph. Hence the optimal
WRDF is given by the placement pattern of legions given by
(T D(3),D(3)(2),D(3)({1,3},{2}),D(3)(2),T D(3)) and hence
γr(KN3,5) = 6.

Lemma 3.5. For the Knight’s graph KN3,6, γr(KN3,6) = 8.

Proof. If the first five columns are labelled as in the case of the
five columns of KN3,5, in the same order, as given in Lemma
3.4, the vertices a2,6 and one of a1,6 or a3,6 would have no
protection. However they will get protection if a legion is
placed at a2,6 and one of a1,6 or a3,6. Thus γr(KN3,6) ≤ 8.
However with fewer than eight legions, we cannot protect the
graph KN3,6. For, if we have to protect all the vertices of the
fourth, fifth and the sixth columns alone, we would require
five legions in all as shown in Lemma 3.2 and they have to be
placed using the pattern, say, (P(3),D(3)(2),D(3)(3)) in the re-
spective columns. In this case, no vertex in the first column is
protected. If we place these five legions in columns three, four
and five, then again the vertices a1,1,a1,3 and a2,6 will have no
protection. In a similar manner wherever we place five legions
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in any of three consecutive columns, at least three vertices will
lose protection, which cannot be protected by just two legions.
Hence at least three additional legions are required. There-
fore, γr(KN3,6)≥ 8. It follows that, γr(KN3,6) = 8. This can
be achieved by the placement of legions (P(3), T D(3), T D(3),
P(3), D(3)(2), D(3)(3)) or (T D(3), D(3)(2), D(3)({1,2},{2}),
D(3)(2), T D(3), D(3)(2,3)).

Lemma 3.6. For the Knight’s graph KN3,7, γr(KN3,7) = 9.

Proof. Arguing similar to Lemma 3.5, we get the result. To
achieve the γr-value, we use the pattern (P(3), T D(3), T D(3),
P(3), T D(3), T D(3), P(3)).

Theorem 3.7. For n≥ 7,

γn(KN3,n) =

{
n+2, n≡ 1 (mod 3),
n+3, otherwise

Proof. The case n = 7 has been proved in Lemma 3.6.
Let n > 7.
Case 1: n≡ 1 (mod 3)

In this case, the placement of legions using the pattern
given by (P(3), T D(3), T D(3), P(3), T D(3), T D(3), P(3), . . . ,
T D(3), T D(3), P(3)) defends all the vertices of the graph. Let
the columns in the graph be C1,C2, . . . ,Cn =C1,C2, . . . ,C3k+1,
k ≥ 2. The vertices in C1 are labeled using P(3). The
remaining columns can be partitioned as (C2,C3,C4), . . .
(Cn−2,Cn−1,Cn). Each of these partitions are labeled using
(T D(3),T D(3),P(3)). The number of legions in such a parti-
tion is 3 and the number of such partitions is n−1

3 . Added with
the three legions in C1, the total number of legions used is( n−1

3

)
+3 = n+2.

Case 2: n≡ 0 (mod 3)
So, n−2≡ 1 (mod 3)
By Case 1, all the vertices of the first n−2 columns can be

protected using (n−2)+2= n legions. To protect the last two
columns, we will require at the least 3 legions, which can be
accomplished by placing the legions in these columns using
D(3)(2,3), D(3)(2). Hence the total number of legions re-
quired for protection is n+3. The placement pattern required
is (P(3), T D(3), T D(3), P(3), T D(3), T D(3), P(3), . . . , T D(3),
T D(3), P(3), D(3)(2,3), D(3)(2)) and γr(KN3,n) = n+ 3, in
this case.
Case 3: n≡ 2 (mod 3)

So, n−1≡ 1 (mod 3)
Arguing as in Case 2, the first n−1 columns can be pro-

tected using (n− 1)+ 2 = n+ 1 legions. The last column
can only be protected by placing a minimum of 2 legions,
placed either using D(3)(1,2) or D(3)(2,3). Thus γr(KN3,4) =
n+1+2 = n+3. One placement pattern required to achieve
this is (P(3), T D(3), T D(3), P(3), T D(3), T D(3), P(3), . . . ,
T D(3), T D(3), P(3), D(3)(1,2)).

4. The Knight’s graph KN4,n

Since the case n = 1 is trivial and the cases n = 2 and n = 3
have been discussed in the previous section, we start with the

case n = 4.

Lemma 4.1. For the Knight’s graph KN4,4, γr(KN4,4) = 6.

Proof. It is a trivial verification that γr(KN4,4) = 6. This can
be achieved by placing legions according to the placement
pattern given by (T D(4),D(4)(3),D(4)({2,4},{3}),D(4)(3)).

Lemma 4.2. For the Knight’s graph KN4,5, γr(KN4,5) = 6.

Proof. An argument similar to the one given in Lemma 3.4
proves the result. The placement pattern of legions to achieve
this γr-value is given as, (T D(4), D(4)(3), D(4)({2,4},{3}),
D(4)(3), T D(4)).

Lemma 4.3. For the Knight’s graph KN4,6, γr(KN4,6) = 9.

Proof. The first five columns of KN4,6 can be protected with
six legions if we place legions in these columns following
Lemma 4.2 using (T D(4), D(4)(3), D(4)({2,4},{3}), D(4)(3),
T D(4)). In that case, only one of the vertices a2,6 or a4,6 will
have protection from a3,4. If we allow the single
legion placed at a3,4 to protect a2,6, the other vertices a1,6, a3,6
and a4,6 will have no protection unless we place a single legion
in each of these vertices. Thus γr(KN4,6) = 9. This can be
achieved by following the placement pattern of legions (T D(4),
D(4)(3), D(4)({2,4},{3}), D(4)(3), T D(4), D(4)(1,3,4)).

Lemma 4.4. For the Knight’s graph KN4,7, γr(KN4,7) = 10.

Proof. The placement pattern of legions (T D(4), D(4)(2),
D(4)({2,4},{3}), D(4)(2), T D(4), D(4)(2,3,4)) will protect
all the vertices in the first six columns of the graph KN4,6.
However, in this case, a4,7 will have no protection unless we
place a single legion at the same. So, γr(KN4,7) = 10. This is
achieved by the placement pattern of legions (T D(4), D(4)(3),
D(4)({2,4},{3}), D(4)(3), T D(4), D(4)(1,3,4), D(4)(4)).

Lemma 4.5. For the Knight’s graph KN4,8, γr(KN4,8) = 12.

Proof. There are two inharmonious vertices a3,3 and a3,6,
each adjacent to six vertices in the board. Hence we place
two legions each at these vertices, which will account for the
protection of fourteen vertices, in all. For the protection of the
remaining fourteen vertices, if we place a legion each in each
of these vertices, we will require fourteen additional legions.
Further these fourteen vertices cannot be partitioned into seven
distinct pairs of vertices. But, there are two disjoint sets of
four mutually harmonious legions {a3,2,a2,3,a4,3,a3,4} and
{a3,5,a2,6,a4,6,a3,7}, each of which can account for the pro-
tection of sixteen vertices, if a single legion is placed at each
of these eight vertices. However since the number of rows is
only 4, each of these sets of vertices account for the protec-
tion of seven vertices, accounting together for the protection
of the remaining fourteen vertices. Hence, γr(KN4,8) = 12.
To achieve this, we follow the placement pattern of legions
at the vertices as given in (T D(4), D(4)(3), D(4)({2,4},{3}),
D(4)(3), D(4)(3), D(4)({2,4},{3}), D(4)(3), T D(4)).
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Note 4.6. The above solution for the 4×8 can be obtained
using the split board approach, where we split the 4×8 chess-
board into two 4×4 chessboards and solve the γr-value de-
termination problem for the two 4× 4 boards and use the
solutions to obtain the solution of the original 4× 8 chess-
board. For 4×4 chessboard, we have γr(KN4,4) = 6, achieved
by placement of legions (T D(4), D(4)(3), D(4)({2,4},{3}),
D(4)(3)). We use this pattern for the first four columns as well
as for the last four columns of the 4×8 chessboard. Hence
the vertices in all the eight columns of the 4×8 chessboard
will be protected with twelve legions. Hence γr(KN4,7) =

12. We get the alternate placement pattern (T D(4), D(4)(3),
D(4)({2,4},{3}), D(4)(3), T D(4), D(4)(3), D(4)({2,4},{3}),
D(4)(3)) to achieve this.

Lemma 4.7. For the Knight’s graph KN4,9, γr(KN4,9) = 12.

Proof. We use the split board approach and obtain the solution
by splitting the 4× 9 into a 4× 5 chessboard and a 4× 4
chessboard. The γr-values of both the boards are the same,
both equal to six, which yields γr(KN4,9)= 12. The placement
pattern of legions can be obtained from Lemma 4.1 and 4.2.

We now state Lemma 4.8 without proof, since we can get
the solution using the split board approach.

Lemma 4.8. For the Knight’s graph KN4,10, γr(KN4,10) = 12.

Once the split board approach has come into play for the
4× n Knight’s graph, we can apply the approach to obtain
the γr-values of all the 4×n Knight’s graphs for n≥ 10. For
this we tabulate the γr-values of the 4× n Knight’s graphs
for n < 10 and use them for the purpose. The justification
for using the split board approach has been detailed at the
beginning of Section 7.

5. The Knight’s graph KN5,n

The 5×5 Knight’s graph KN5,5 is the most important of all
the Knight’s graphs considered so far, for the development of
the further theory. It is the placement pattern of this Knight’s
graph in which every legion participate in the least redundant
protection of all the legions. Further, the size of the 5× 5
chessboard yields itself for the maximum number of vertices
to be protected by just 6 legions placed in the chessboard.
The following measure of efficiency will make the further
discussion clear and smooth.

For a m× n Knight’s graph KNm,n, we define the uti-
lization factor of the graph KNm,n as the ratio of m× n to
γr(KNm,n). We call the wastage of a vertex v the maximum
number of vertices that v can protect, but it does not do so as
a result of non-existence of the vertices or that some other ver-
tex u is protecting a vertex w that is adjacent to v, independent
of the legion placed at v, meaning that even after the legion
placed at v is withdrawn, u can still protect w and all the other
vertices that u was protecting prior to the withdrawal of the
legion at v.

Lemma 5.1. For the Knight’s graph KN5,5, γr(KN5,5) = 6.

Proof. The graph KN5,5 has a single central vertex a3,3 and
placing two legions at a3,3 will account for the protection of
nine vertices including a3,3. The remaining sixteen vertices
will be protected by placing a legion each at the four mutually
harmonious vertices {a2,3,a3,2,a3,4,a4,3}. The required place-
ment pattern is (T D(5), D(5)(3), D(5)({2,4},{3}), D(5)(3),
T D(5)) and γr(KN5,n) = 6.

Note 5.2. We note that only the central vertex is capable of
protecting eight other vertices and the four mutually harmo-
nious vertices can protect a maximum of twelve other vertices.
Hence the single central vertex and the four harmonious ver-
tices can protect twenty vertices and account for the protection
of twenty five vertices, in all, including themselves, with six
legions. Hence there is no wastage for any vertex. The utiliza-
tion factor for KN5,5 is 25

6 = 4.16.

Lemma 5.3. For the Knight’s graph KN5,6, γr(KN5,6) = 10.

Proof. The first five columns of KN5,6 can be protected by
six legions if these columns are placed with legions using
the placement pattern of legions as given in Lemma 5.1 as
(T D(5),D(5)(3),D(5)({2,4},{3}),D(5)(3),T D(5)). The sin-
gle legion at a4,3 can protect only one of the vertices a2,6 or
a4,6. If we allow a2,6 to be protected, the remaining four ver-
tices in column six will have no protection unless we place a
legion at each of the same. Hence γr(KN5,6) = 10. One way to
achieve this is by using the placement pattern of legions at the
six columns of KN5,6 as (T D(5), D(5)(3), D(5)({2,4},{3}),
D(5)(3), T D(5), D(5)(1,3,4,5)).

We state without proof three lemmas, Lemma 5.4, Lemma
5.5 and Lemma 5.6. The proof of Lemma 5.4 is similar to
the proof of Lemma 5.3, whereas the proofs of Lemma 5.5
and Lemma 5.6 are similar to that of Lemma 4.5 and that of
Lemma 4.7.

Lemma 5.4. For the Knight’s graph KN5,7, γr(KN5,7) = 12.

Lemma 5.5. For the Knight’s graph KN5,8, γr(KN5,8) = 12.

Lemma 5.6. For the Knight’s graph KN5,9, γr(KN5,9) = 12.

Note 5.7. In obtaining the γr-values of the graphs considered
in Lemma 5.5 and Lemma5.6, we use the split board approach.

6. The Knight’s graph KN6,n

We shall now consider the Knight’s graphs KN6,n and find
their γr-values. We start with the Knight’s graph KN6,6, as the
other cases have already been discussed.

Lemma 6.1. For the Knight’s graph KN6,6, γr(KN6,6) = 12.

Proof. There are four central vertices {a3,3,a3,4,a4,3,a4,4} in
the 5× 6 chessboard, of which there are two pairs of har-
monious vertices namely, {a3,3,a4,4} and {a4,3,a3,4}. Hence
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they can protect in all 32 - 4 = 28 vertices of the chessboard if
we place two legions at each of them. Thus these four vertices
account for the protection of 32 vertices, including them-
selves. The remaining four vertices namely a1,1,a1,6,a6,1 and
a6,6 need a legion placed at each of them for their protection.
Hence γr(KN5,6) = 12. This can be achieved by the placement
pattern (D(6)(1,6), T D(6), D(6)({ },{3,4}), D(6)({ },{3,4}),
T D(6), D(6)(1,6)).

Lemma 6.2. For the Knight’s graph KN6,7, γr(KN6,7) = 16.

Proof. By the split board approach, if we split the 6×7 chess-
board into a 6× 4 and a 6× 3 board, these split boards can
be protected using nine and seven legions respectively, which
sum up to sixteen legions. Hence, γr(KN6,7) = 16, since by
the integral board approach, the number of legions required
is also the same. The placement pattern of legions using the
split board approach can be obtained from the respective split
boards that make up the given chessboard. The placement
pattern using the integral board approach will be (D(6)(1,6),
T D(6), D(6)({ },{3,4}), D(6)({ },{3,4}), T D(6), D(6)(1,6),
D(6)(1,2,5,6)).

Lemma 6.3. For the Knight’s graph KN6,8, γr(KN6,8) = 18.

Proof. The γr-value is obtained using the split board approach
as using the integral board approach, the minimum number
of legions required for protection is 20. Thus γr(KN6,8) = 18.
The placement pattern of legions can be obtained from the
respective split boards that makeup the given chessboard.

We now state the following two lemmas without proof.

Lemma 6.4. For the Knight’s graph KN6,9, γr(KN6,9) = 18.

Lemma 6.5. For the Knight’s graph KN6,10, γr(KN6,10) = 20.

7. The Knight’s graph KN7,n, KN8,n and
KN9,n

We start the discussion with KN7,7

Lemma 7.1. For the Knight’s graph KN7,7, γr(KN7,7) = 20.

Proof. If consider the integral board approach, we identify
that there are eight central vertices a3,3, a3,4, a3,5, a4,3, a4,5,
a5,3, a5,4 and a5,5, which when placed with two legions each
will protect all the vertices of the graph KN5,7 except the
five vertices, a1,1,a1,7,a4,4,a7,1 and a7,7, which can be pro-
tected only by placing a single legion at each one of these
vertices. Hence the total number of legions required in this
approach is 21. However using the split board approach, we
get, γr(KN7,7) = 19. The placement pattern of legions can
be obtained from the respective split boards that makeup the
given chessboard.

The proof of the following lemmas are trivial using the
split board approach as the integral board approach would not
require lesser number of legions for the protection of all the
vertices of the chessboards considered.

Lemma 7.2. For the Knight’s graph KN7,8, γr(KN7,8) = 20.

Lemma 7.3. For the Knight’s graph KN7,9, γr(KN7,9) = 22.

Simple verifications reveal that the γr-values of the Knight’s
graphs KN8,n and KN9,n can be obtained using the split board
approach and the γr-values are tabulated in Table 1.

8. The general Knight’s graph KNm,n

We now tabulate the values of γr(KNm,n) for 1 ≤ m ≤ 9,
1≤ n≤ 9 in a lookup table (Refer Table 1), from which the
γr-values of the Knight’s graphs KNm,n can be obtained for
m≥ 10, n≥ 10. From Table 1, it can be seen that whenever
we can split m or n into a sum of two numbers such that their
product is maximum, and at least one of the parts is greater
than equal to 4, the split board approach applies. Given a
m×n chessboard, split the chessboard in to four parts namely
first, a p×q chessboard where p is the largest multiple of 5
that is less than m−5 and q is the largest multiple of 5 less
than n− 5, the second, a s× q chessboard, where s denotes
the remaining number of rows of the given board that exists
beyond row p, the third, a p× t chessboard where t is the
remaining number of columns that exist beyond column q
and the fourth, a s× t chessboard. Then the γr-value of the
graph KNm,n is the sum of the values of the γr-values of the
above given chessboards. This is because, the γr-value of the
5×5 chessboard has the maximum utilization factor and we
split the given board to have as many 5× 5 chessboards as
possible and the remaining portion of the chessboard contains
at least five rows and five columns. This is to accommodate
the fact split board approach would not give optimal values
for the m× n chessboards where m ≤ 6, n ≤ 6 and only the
integral board approach gives the optimal values. The above
splitting of the given chessboard gives the γr-values to the
Knight’s graphs considered. In respect of the chessboard with
the number of columns and the number of rows, each less
than or equal to 9, the γr-values are obtained directly from the
lookup table.

Lookup table giving the γr-value of the Knight’s
graph - KNm,n

Table 1

n
∖

m 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9
2 2 2 4 4 6 8 8 8 10
3 3 4 5 6 6 8 9 11 12
4 4 4 6 6 6 9 10 12 12
5 5 6 6 6 6 10 12 12 12
6 6 8 7 9 10 12 16 18 18
7 7 8 10 10 12 16 20 20 22
8 8 8 11 12 12 18 20 24 24
9 9 10 12 12 12 19 22 24 24
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9. The algorithm for finding γr(KNm,n)

We now present the optimal algorithm for finding the γr-value
of a given Knights graph γr(KNm,n).

Optimal WRDN algorithm
Input : m,n - the order of the chessboard, the lookup table T
Algorithm :

Step 1 Find x =
⌊
(m−5)

5

⌋
, y =

⌊
(n−5)

5

⌋
,

p = 5∗ x, q = 5∗ y, s = m− p, t = n−q
Step 2 Compute

g = 6∗ x∗ y+T (s, t)+ y∗T (s,5)+ x∗T (5, t)
Output : g - the WRDN of the Knight’s graph KNm,n

Theorem 9.1. The Optimal WRDN algorithm is correct.

Proof. The proof of correctness follows from the discussion
given at the beginning of section 8.

Theorem 9.2. Optimal WRDN algorithm is a constant time
algorithm.

Proof. The lookup table is a 9×9 table and requires constant
time to populate and retrieve values from. Step 1 computes
constant number of values in constant time. Step 2 computes
the γr-value of the given m× n Knights graph in constant
time. Hence the Optimal WRDN algorithm is a constant time
algorithm.

10. The γr-value of some other Chess
Graphs

We observe the following

1. γr(Qm,n) = min(m,n),

2. γr(Rm,n) = max(m,n),

3. γr(Bm,n) = m+n−1,

4. γr(Km,n) = {2(m mod 3+n mod 3)+ x+ y},

where x =

{⌈ 3m
7

⌉
, if m≡ 1 mod 3

2m, if m≡ 2 mod 3

and y=


3(n−1)

7 , if n≡ 1 mod 3 and m≡ 1 mod 3
3(n−2)

7 , if n≡ 1 mod 3 and m≡ 2 mod 3
2(n−1), if n≡ 2 mod 3 and m≡ 1 mod 3
2(n−2), if n≡ 2 mod 3 and m≡ 2 mod 3

11. Conclusion
There are not many constant time algorithms for graphs of ar-
bitrary order. In this paper, we have designed a constant time
algorithm, for finding the weak Roman domination number of
the Knight’s graphs, which are graphs of arbitrary order. This
is possible, since the algorithm designed requires the order
of the chess board considered as input and not the vertices

themselves. The findings of the paper reiterates the fact that
constant time algorithms can be designed for processing ar-
bitrarily large graphs, though such algorithms are rare, given
the nonlinearity that is inherent in graphs.
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