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A parameter uniform convergence for a system of
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Abstract
In this paper an initial value problem for a system of two singularly perturbed first order differential equations with
different perturbation parameters and Robin initial conditions is considered on the interval (0,1]. A numerical
method composed of a classical finite difference scheme on a piecewise uniform Shishkin mesh is suggested.
This method is proved to be first - order convergent in the maximum norm uniformly in the perturbation parameters.
A numerical illustration is provided to support the theory.
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1. Introduction
A coupled system of two Singularly Perturbed Ordinary Dif-
ferential Equations of first order with the prescribed Robin
initial conditions is considered. The leading term of each
equation is multiplied by a small positive parameter and the
parameters may differ. The solution exhibits overlapping lay-

ers. A Shishkin mesh is constructed in the domain of the
IVP. A Finite Difference scheme applied on this mesh (which
is piecewise uniform) is proved to be uniformly convergent
almost first order accurate in both the parameters. Numerical
results are presented in support of the theory.
Consider the singularly perturbed linear system

~L~u(x)=

{
ε1u′1(x)+a11(x)u1(x)+a12(x)u2(x) = f1(x)
ε2u′2(x)+a21(x)u1(x)+a22(x)u2(x) = f2(x), x ∈Ω

(1.1)

~u(0)− εi~u′(0) = ~φ (1.2)

where,~u(x) = (u1(x),u2(x))T , ~φ = (φ1,φ2)
T . The parameters

εi, i = 1,2 are assumed to be distinct.

Assumption 1.1. The functions ai j, fi ∈ C(2)(Ω), i, j = 1,2,
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satisfy the following inequalities

(i) a11(x)> |a12(x)|, a22(x)> |a21(x)|
(ii) a12(x), a21(x)≤ 0

}
∀ x∈Ω. (1.3)

Assumption 1.2. The positive number α satisfy

0 < α < min
x∈Ω

{a11(x)+a12(x),a21(x)+a22(x)}. (1.4)

Assumption 1.3. The singular perturbation parameters ε1,ε2
satisfy 0 < ε1 < ε2 ≤ 1.

The problem (1.1) and (1.2) can also be written in the
operator form

~L~u = ~f on Ω (1.5)

with

~β~u(0) = ~φ (1.6)

where the operators~L,~β are defined by

~L = ED+A, ~β = I−ED

where E =

(
ε1 0
0 ε2

)
, I is the identity operator and D =

d
dx

is the first order differential operator.
The above problem is singularly perturbed in the following
sense. The reduced problem obtained by putting each εi =
0, i = 1,2 in the system (1.1) is the linear algebraic system

A(x)~u0(x) = ~f (x) (1.7)

where A(x) =
(

a11(x) a12(x)
a21(x) a22(x)

)
, ~u0(x) = (u0,1(x),u0,2(x))T

and ~f (x) = ( f1(x), f2(x))T .
Notice that the equation (1.7) has a unique solution for each
value of x, and hence the arbitrary robin initial conditions (1.2)
cannot be imposed. This shows that there are initial layers in
the components of the solution in the neighborhood of x = 0.

For the case ε1 < ε2, the solution~u = (u1,u2)
T has the fol-

lowing layer pattern. Both the components u1 and u2 exhibit
an initial layer of width O(ε2), while the component u1 has
an additional layer of width O(ε1).

2. Analytical Results

The operator~L satisfies the following maximum principle.

Lemma 2.1. Let A(x) satisfy (1.3) and (1.4). Let ~ψ =(ψ1,ψ2)
T

be any function in the domain of~L such that ~β~ψ(0)≥~0. Then
~L~ψ(x)≥~0 on x ∈Ω implies that ~ψ(x)≥~0 on x ∈Ω.

Proof. Let i∗,x∗ be such that ψi∗(x∗) ≤ ψi(x). Assume that
the lemma is false. Then ψi∗(x∗)< 0. For x∗ = 0, then

(~β~ψ)i∗(0) = ψi∗(0)− εi∗ψ
′
i∗(0)

< 0, which is a contradiction.

Therefore, x∗ 6= 0.
Suppose x∗ ∈ (0,1], then

(~L~ψ)i∗(x∗) = εi∗ψ
′
i∗(x
∗)+

2

∑
j=1

ai∗ j(x∗)ψi∗(x∗)

< 0, which contradicts the assumption.

Hence our assumption ψi∗(x∗)< 0 is wrong. It follows that
ψi∗(x∗) ≥ 0 and thus that ~ψ(x) ≥~0, for all x ∈ Ω, which
proves the lemma.

As an immediate consequence of the above lemma the
stability result is established in the following.

Lemma 2.2. Let A(x) satisfy (1.3) and (1.4). Let ~ψ be any
vector-valued function in the domain of~L, then for each x ∈
[0,1], then

|~ψ(x)| ≤max{||~β~ψ(0)||, 1
α
||~L~ψ||}

Proof. Consider the two functions

~θ±(x) = max
{
‖ ~β~ψ(0) ‖, 1

α
‖~L~ψ ‖

}
± ~ψ(x), x ∈Ω

~θ±(x) = M±~ψ(x)

where M = max{||~β~ψ(0)||, 1
α
||~L~ψ||}. Then, it is not hard to

verify that ~β~θ±(0) ≥ 0 and ~L~θ±(x) ≥ 0 on Ω. It follows
from Lemma 2.1 that ~θ±(x) ≥ 0 on Ω. Hence,

|~ψ(x)| ≤max{||~β~ψ(0)||, 1
α
||~L~ψ||}

3. Estimates of Derivatives
Lemma 3.1. Let A(x) satisfy (1.3) and (1.4). Let ~u be the
solution of (1.1), (1.2). Then, for each i, i = 1,2 and x ∈Ω,
there exists a constant C such that

|ui(x)| ≤C
{
‖ ~φ ‖+ ‖ ~f ‖

}
|u′i(x)| ≤Cε

−1
i

{
‖ ~φ ‖+ ‖ ~f ‖

}
|u′′i (x)| ≤Cε

−2
i

{
‖ ~φ ‖+ ‖ ~f ‖+ ‖ ~f ′ ‖

}
.

Proof. From Lemma 2.2, it is evident that,

|~u(x)| ≤ ||~β~ψ(0)||+ 1
α
||~L~ψ||.

Thus,

|ui(x)| ≤C
{
‖ ~φ ‖+ ‖ ~f ‖

}
.

499



A parameter uniform convergence for a system of two singularly perturbed initial value problems with different
perturbation parameters and Robin initial conditions — 500/505

Rewrite the differential equation (1.1), we get

~u′(x) = E−1(~f −A~u)

Hence, |u′i(x)| ≤Cε
−1
i (||~φ ||+ ||~f ||).

Differentiating (1.1) once, we get

E~u′′(x)+A(x)~u′(x) = ~f ′(x)−A′(x)~u(x).

Using the bounds of~u′ and~u, we get the desired result, that is

|u′′i (x)| ≤Cε
−2
i [||~f ′||+ ||~φ ||+ ||~f ||].

The Shishkin decomposition of the solution~u of (1.1) is given
by

~u =~v+~w (3.1)

where the smooth component~v = (v1,v2)
T of the solution~u

satisfies

~L~v = ~f on (0,1] (3.2)

with

~β~v(0) =~u0(0)−E~u′0(0) (3.3)

and the singular component ~w = (w1,w2)
T is the solution of

~L~w(x) =~0 for x ∈ (0,1] (3.4)

with

~β~w(0) = ~φ −~β~v(0). (3.5)

The smooth component~v is subjected to further decom-
position. Since the component u1 has ε1 sublayer, the compo-
nent v1 is given a further decomposition,v1 = u0,1 + ε2(v1,2 +
ε1v1,1)(

v1
v2

)
=

(
u0,1
u0,2

)
+

(
ε1ε2 ε2

0 ε2

)(
v1,1 v1,2
0 v2,2

)T (1
1

)
(3.6)

~v(x) =~u0(x)+~ϒ(x) (3.7)

where

~ϒ(x) = (ϒ1,ϒ2)
T , ϒ j =~ε j

j (~v
j
j )

T (3.8)

~ε 1
1 = (ε1ε2,ε2), ~ε 2

2 = (0,ε2)

From (3.2),

~L~v = ~f on (0,1] (3.9)

with

~β~v(0) = ~β (~u0 +~ϒ)(0) (3.10)

From(3.6), it is observed that the components vi, j, i= 1,2, j =
1,2 satisfy the following system of equations

a11v1,2 +a12v2,2 =−
ε1

ε2
u′0,1 (3.11)

ε2v′2,2 +a21v1,2 +a22v2,2 =−u′0,2 with

(v2,2− ε2v′2,2)(0) = 0 (3.12)

and

ε1v′1,1 +a11v1,1 =−v′1,2
with (v1,1− ε1v′1,1)(0) = 0. (3.13)

The singular component of the solution~u satisfies

~L~w =~0 on (0,1] (3.14)

with

~β~w(0) = ~β (~u−~v)(0). (3.15)

From the expressions and using lemma for~v, it is found that
for k = 0,1,2

|v(k)1,2| ≤C(1+ ε
−1
2 ) for k = 0,1

|v(k)1,1| ≤C(1+ ε
−1
1 ε

−1
2 ) for k = 2. (3.16)

From (3.7), (3.8) and (3.16), the following bounds for vi, i =
1,2, hold

|v(k)i | ≤C for k = 0,1

|v(k)i | ≤Cε
−1
i for k = 2. (3.17)

To find bounds on the layer component ~w of ~u, consider the
layer functions

B1(x) = e

−αx
ε1 , B2(x) = e

−αx
ε2 . (3.18)

Lemma 3.2. Let A(x) satisfy (1.3) and (1.4).Then the solution
~w(x) = (w1(x),w2(x))T of the problem (1.1) satisfies

|w1(x)| ≤CB2(x)

|w2(x)| ≤CB2(x)

|w′1(x)| ≤C(ε−1
1 B1(x)+ ε

−1
2 B2(x))

|w′2(x)| ≤Cε
−1
2 B2(x)

|w′′1(x)| ≤Cε
−1
1 (ε−1

1 B1(x)+ ε
−1
2 B2(x))

|w′′2(x)| ≤Cε
−1
1 (ε−1B1(x)+ ε

−1
2 B2(x))

Proof. To derive the bound on ~w, define the two functions,

θ
±
i (x) =CB2(x)+wi(x), for i = 1,2 and x ∈Ω.
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For a proper choice of C,

~β~θ±(0)≥~0.

To derive the first order derivatices, consider the equation
(~L~w)1 = 0

ε1w′1(x)+a11(x)w1(x)+a12(x)w2(x) = 0

which implies that

|w′1(x)| ≤Cε
−1
1 B2(x).

In particular,

|w′1(0)| ≤Cε
−1
1 .

Similarly,

|w′2(x)| ≤Cε
−1
2 B2(x).

To derive the sharper bound for w′1(x), consider the equation
satisfied by w1,

ε1w′1(x)+a11(x)w1(x)+a12(x)w2(x) = 0
(ie), ε1w′1(x)+a11(x)w1(x) =−a12(x)w2(x)

Differentiating (1.1) once, we get

L1w′1(x) = (−a12(x)w2(x))′−a′11(x)w1(x)

which leads to,

|(~L~w′)1(x)| ≤Cε
−1
2 B2(x).

Consider the functions,

θ
±(x) =C(ε−1

1 B1(x)+ ε
−1
2 B2(x)).

Then,

(~Lθ
±)1(x) =C(−α +a11(x))(ε−1

1 B1(x)+ ε
−1
2 B2(x))

≥ 0, for a proper choice of C.

Therefore, (~Lθ±)1(x)≥ 0 on Ω. Further it is not hard to see
that ~βθ±(0)≥~0. Hence by using the maximum principle for
the operator~L, the required bound on w′1(x) follows.

Differentiating (~L~w)1 = 0 and (~L~w)2 = 0 once and using
the estimates of w′1(x) and w′2(x), one can obtain the desired
result for i = 1,2,

|w′′i (x)| ≤Cε
−1
i (ε−1

1 B1(x)+ ε
−1
2 B2(x)).

This completes the proof.

4. The Shishkin mesh

A piecewise uniform Shishkin mesh Ω
N with N mesh-intervals

is now constructed on Ω= [0,1] as follows for the case ε1 < ε2.
In the case ε1 = ε2 a simpler construction requiring just one
parameter τ suffices. The interval [0,1] is subdivided into 3
sub-intervals [0,τ1]∪ (τ1,τ2]∪ (τ2,1]. The parameters τ1,τ2
which determine the points separating the uniform meshes,
are defined by τ0 = 0,τ3 =

1
2

τ2 = min
{

1
2
,

ε2

α
lnN

}
(4.1)

and

τ1 = min
{

τ2

2
,

ε1

α
lnN

}
(4.2)

Clearly,

0 < τ1 < τ2 ≤
1
2
.

Then, on the sub-interval (τ2,1] a uniform mesh with N
4 mesh

points is placed and on each of the sub-intervals (0,τ1] and
(τ1,τ2], a uniform mesh of N

8 mesh points is placed. Note that,
when both the parameters τr,r = 1,2, take on their left hand
value, the Shishkin mesh becomes a classical uniform mesh
on [0,1]. This construction leads to a class of four possible
Shishkin piecewise uniform meshes M~b, where~b = (b1,b2)

with bi = 0 if τi =
τi+1

2 and bi = 1 otherwise.

5. The Discrete Problem
The Initial Value Problem (1.1), (1.2) is discretised using the
backward Euler scheme applied on the piecewise uniform
fitted mesh Ω

N . The discrete problem is

~LN~U(x j) = ED−~U(x j)+A(x j)~U(x j) = ~f (x j), j = 1(1)N (5.1)

~U(x0)−ED+~U(x0) = ~φ . (5.2)

The problem (5.1), (5.2) can also be written in the operator
form

~LN~U = ~f on Ω
N with

~β N~U(0) = ~φ

where~LN = ED−+A with
~β N = I−ED+

and D+, D− are the difference operators

D−~U(x j) =
~U(x j)−~U(x j−1)

x j− x j−1
,

D+~U(x j) =
~U(x j+1)−~U(x j)

x j+1− x j
, j = 1,2, . . . ,N.

The following discrete results are analogous to those for the
continuous case.
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Lemma 5.1. Let A(x) satisfy (1.3) and (1.4). Let ~Ψ=(Ψ1,Ψ2)
T

be any vector-valued mesh function, such that ~β N~Ψ(0) ≥~0.
Then~LN~Ψ≥~0 on ΩN implies that ~Ψ≥~0 on Ω

N
.

Proof. Let i∗, j∗ be such that Ψi∗ = min
i=1,2

min
0≤ j≤N

Ψi(x j) and

assume that the lemma is false. Then, Ψi∗(x j∗)< 0. If x j∗ = 0,
then

(~β N~Ψ)i∗(0) = Ψi∗(0)− εi∗D+
Ψi∗(0)

< 0, a contradiction

Therefore, x j∗ 6= 0.

Suppose x j∗ ∈ΩN , then

(~LN~Ψ)i∗(x j∗) = εi∗D−Ψi∗(x j∗)+
2

∑
k=1

ai∗k(x j∗)Ψk(x j∗)

< 0

which is a contradiction. Hence proves the lemma.

Lemma 5.2. Let A(x) satisfy (1.3) and (1.4). Let ~Ψ be any
vector-valued mesh function on Ω

N
, then for i = 1,2,

Ψi(x j)≤max
{
||~β N~Ψ(0)||, 1

α
||~LN~Ψ||

}
, 0≤ j ≤ N

Proof. Consider the two mesh functions

~Θ±(x j) = max
{
||~β N~Ψ(0)||, 1

α
||~LN~Ψ||

}
±~Ψ(x j)

Using the properties of A(x), it is not hard to verify that
~β N~Θ±(0)≥~0 and~LN~Θ± ≥~0 on ΩN . Applying the discrete
maximum principle (Lemma 5.1) then gives ~Θ± ≥~0, and so

Ψi(x j)≤max
{
||~β N~Ψ(0)||, 1

α
||~LN~Ψ||

}
as required.

6. The Local Truncation Error
From Lemma 5.2, it follows that in order to bound the error
||~U−~u||, it suffices to bound LN(~U−~u). But this expression
satisfies

~LN(~U(x j)−~u(x j)) =~LN~U(x j)−~LN~u(x j)

= ~f (x j)−~LN~u(x j)

=~L~u(x j)−~LN~u(x j)

= (~L−~LN)~u(x j)

and

((~L−~LN)~u)i(x j) = (D−−D)vi(x j)+(D−−D)wi(x j)

which is the local truncation of the first derivative. Then, by
the triangle inequality,

|(~LN(~U−~u))i(x j)| ≤ |(D−−D)vi(x j)|+ |(D−−D)wi(x j)|.

Analogous to the continuous case, the discrete solution ~U
can be decomposed into ~V and ~W which are defined to be
solutions of the following discrete problems

(~LN~V )(x j) = ~f (x j) on Ω
N , ~β N~V (0) = ~β~v(0) (6.1)

and

~LN~W )(x j) =~0 on Ω
N , ~β N~W (0) = ~β~w(0) (6.2)

where~u and ~w are the solutions of (3.2), (3.3) and (3.4), (3.5)
respectively.

Further, for i = 1,2,

|(~β N(~V −~v))i(0)|= |(D−D+)vi(0)|

|(~β N(~W −~w))i(0)|= |(D−D+)wi(0)|

|(~LN(~V −~v))i(x j)|= |εi(D−−D)vi(x j)| (6.3)

|(~LN(~W −~w))i(x j)|= |εi(D−−D)wi(x j)| (6.4)

The error at each point x j ∈Ω
N is denoted by ~U(x j)−~u(x j).

Then the local truncation error ~LN(~U(x j)−~u(x j)) has the
decomposition

~LN(~U−~u)(x j) =~LN(~V −~v)(x j)+~LN(~W −~w)(x j)

Therefore, the local truncation error of the smooth and singular
components can be treated separately. In view of this, it is to
be noted that for any smooth function ψ , the following two
distinct estimates of the local truncation of its first derivative
hold.

|(D−−D)ψ(x j)| ≤ 2max
s∈I j
|ψ ′(s)| (6.5)

and

|(D−−D)ψ(x j)| ≤
h j

2
max
s∈I j
|ψ ′′(s)| (6.6)

where I j = x j− x j−1.

The error in the smooth and singular components are bounded
in the following section.

7. Error estimate
The proof of the theorem on the error estimate is split into
two parts. First, a theorem concerning the error in the smooth
component is established. Then the error in the singular com-
ponent is established.

The following theorem gives the estimate of the error in the
smooth component ~V .
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Theorem 7.1. Let A(x) satisfy (1.3) and (1.4). Let~v denote
the smooth component of the solution of (1.1), (1.2) and ~V
denote the smooth component of the solution of the problem
(5.1), (5.2). Then

|(~LN(~V −~v))i(x j)| ≤CN−1.

Proof. From the expression (6.6),

|(~β N(~V −~v)i(0)| ≤Cεi(x1− x0) max
s∈[x0,x1]

|v′′i (s)| (7.1)

≤CN−1.

By the local truncation error, we have∣∣∣(~LN(~V −~v))i(x j)
∣∣∣≤Cεi(x j− x j−1)|~v|2

It is to be noted that x j−x j−1 ≤ 2N−1 holds for all choices of
the piecewise uniform mesh the estimate for~v obtained above
then yields

|(~LN(~V −~v))i(x j)| ≤CN−1 (7.2)

as required.

In order to estimate the error in the singular component of
the solution~u, the following lemmas are required.

Theorem 7.2. Let conditions (1.3) and (1.4) hold. If ~w de-
notes the singular component of the solution of (1.1), (1.2)
and ~W be the singular component of the solution of the prob-
lem (5.1), (5.2) then,

|(~LN(~W −~w))i(x j)| ≤CN−1 lnN.

Proof. Fron the expression (6.6),

|(~β N(~W −~w))i(0)| ≤Cεi(x1− x0) max
s∈[x0,x1]

|w′′i (s)|

(7.3)

≤CN−1 lnN.

It is to be noted that for each i = 1,2 and j = 1,2, . . . ,N, on
each mesh M~b, and from Lemma (3.2), it can be seen that for
j = 1,2, . . . , N

2 ,

|εi(D−−D)wi(x j)| ≤Ch j max
[s∈I j ]
|εiw′′i (s)|

≤Ch j

2

∑
q=1

Bq(x j−1)

εq

≤C
h j

ε1
(7.4)

Hence,

|εi(D−−D)wi(x j)| ≤C
h j

ε1

The theorem is proved for four cases.
Case (i): On mesh M~b with~b = (0,0)

Here the mesh is uniform and hence h j = x j− x j−1 = N−1.

Since τ1 =
1
2
,

ε1

α
lnN ≥ 1

2
(or) ε

−1
1 ≤C lnN.

Therefore,

|εi(D−−D)wi(x j)| ≤C
h j

ε1
≤CN−1 lnN using (7.4)

Case (ii): On mesh M~b with~b = (0,1)
In this case, the mesh is piecewise uniform and the following
are true: τ1 =

τ2

2
, τ2 =

ε2

α
lnN. Hence,

τ2

2
<

ε1

α
lnN (or)

ε1 >
ε2

2
. Also, τ2− τ1 = τ1.

On the interval (0,τ1],

|εi(D−−D)wi(x j)| ≤C
h j

ε1

≤C
τ1N−1

ε1

≤CN−1 lnN using (7.4)

On the interval (τ1,τ2]

|εi(D−−D)wi(x j)| ≤C
h j

ε1

≤C
(τ2− τ1)N−1

ε1

≤CN−1 lnN as τ2− τ1 = τ1

On the interval (τ2,1]

|εi(D−−D)wi(x j)| ≤Cε1 max
[x j−1,x j ]

|w′′i (s)|

≤CB2(x j−1) since ε1 ≤ ε2

≤CN−1.

Case (iii): On mesh M~b with~b = (1,0)

Here, the mesh is piecewise uniform. As τ1 =
1
2
,ε2 ≤C lnN

and as τ1 =
ε1

α
lnN, ε1 <

ε2

2
.

On the interval (0,τ1],

|εi(D−−D)wi(x j)| ≤C
h j

ε1
≤CN−1 lnN.

On the interval (τ1,τ2],

|εi(D−−D)wi(x j)| ≤ εi(D−−D)[wi,1(x j)+wi,2(x j)]

≤CB1(x j−1)+CN−1 lnN

Since, x j > τ1, x j−1 ≥ τ1 and hence B1(x j−1)≤ N−1.

|εi(D−−D)wi(x j)| ≤CN−1 lnN.

On the interval (τ2,1], proceeding as in the interval (τ1,τ2],

|εi(D−−D)wi(x j)| ≤CBi(x j−1)+CN−1 lnN.
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Since, x j > τ2, x j−1 ≥ τ2 and hence Bi(x j−1)≤ N−1, as τ2 >
2ε1

α
lnN >

ε1

α
lnN.

Hence,

|εi(D−−D)wi(x j)| ≤CN−1 lnN.

Case (iv): On mesh M~b with~b = (1,1)
On the interval (0,τ1],

|εi(D−−D)wi(x j)| ≤CN−1 lnN.

On the interval (τ1,τ2], the proof follows by using the same
procedure used in case (iii) in the respective intervals.
On the interval (τ2,1],

|εi(D−−D)wi(x j)| ≤CB2(x j−1)

≤CN−1 lnN.

Hence the theorem.

Theorem 7.3. Let~u be the solution of the continuous problem
(1.1), (1.2) and ~U be the solution of the discrete problem (5.1),
(5.2). Then

||(~LN(~U−~u))|| ≤CN−1

Proof. From Lemma 5.2, it is clear that, in order to prove the
above theorem it suffices to to prove that ||(~LN(~U −~u))|| ≤
CN−1. But, ||(~LN(~U −~u))|| ≤ ||(~LN(~V −~v))||+ ||(LN(~W −
~w))||. Hence using theorems 7.1 and 7.2, the above result is
derived.

8. Numerical Illustration
The numerical method proposed above is illustrated through
an example presented in this section.

Example 8.1. Consider the initial value problem

ε1u′1(x)+3u1(x)−u2(x) = 3,
ε2u′2(x)−u1(x)+5u2(x) = 1

}
∀ x ∈ (0,1]

with

u1(0)− ε1u′1(0) = 2
u2(0)− ε2u′2(0) = 1

The numerical solution obtained by applying the fitted
mesh method (5.1) and (5.2) to the Example 8.1 is shown in
Figure 1. The order of convergence and the error constant are
calculated and are presented in Table 1.

Table 1
Values of DN

ε ,D
N , pN , p∗ and CN

p∗ generated for the example 8.1.

η Number of mesh points N
64 128 256 512 1024

1.0000 0.0490 0.0282 0.0152 0.0078 0.0040
0.1250 0.0649 0.0481 0.0324 0.0203 0.0120
0.0156 0.0649 0.0481 0.0324 0.0203 0.0120
0.0019 0.0649 0.0481 0.0324 0.0203 0.0120
0.0002 0.0649 0.0481 0.0324 0.0203 0.0120

DN 0.0649 0.0481 0.0324 0.0203 0.0120
pN 0.431 0.571 0.677 0.752
CN

p 1.510 1.510 1.370 1.150 0.923
The order of ~ε -uniform convergence p∗ = 0.431
Computed ~ε -uniform error constant, CN

p∗ = 1.510

Figure 1

References
[1] H.G.Roos, M.Stynes and L.Tobiska. Numerical Methods

for Singularly Perturbed Differential Equations. Springer
Verlag, 1996.

[2] J.J.H. Miller, E.O’Riordan, and G.I. Shishkin. Fitted nu-
merical methods for singular perturbation problems. Er-
ror estimates in the maximum norm for linear problems
in one and two dimensions. World Scientific publishing
Co.Pvt.Ltd., Singapore, 1996.

[3] R. E. O’Malley. Introduction to Singular Perturbations.
Academic Press, New York, 1974.

[4] E. P. Doolan, J.J.H. Miller, W. H. A. Schilders, Uniform
Numerical Methods for Problems with Initial and Bound-
ary Layers, Boole Press, 1980.

[5] P.A. Farrell, A.F. Hegarty, J.J.H. Miller, E.O’Riordan,
and G.I.Shishkin. Robust computational techniques for
boundary layers. Chapman and hall/CRC, Boca Raton,
Florida,USA, 2000.

[6] P. Maragatha Meenakshi, S. Valarmathi, and J.J.H. Miller.
Solving a partially singularly perturbed initial value prob-
lem on shishkin meshes. Applied Mathematics and Com-
putation, 215:3170-3180, 2010.

[7] S. Valarmathi and J.J.H. Miller. A parameter-uniform fi-
nite difference method for a singularly perturbed initial

504



A parameter uniform convergence for a system of two singularly perturbed initial value problems with different
perturbation parameters and Robin initial conditions — 505/505

value problem: a special case. Lecture notes in Computa-
tional Science and Engineering, Springer-Verlag, 29:267-
276, 2009.

[8] N. Shivaranjani, N.Ramanujam, J.J.H. Miller, and S.
Valarmathi. A parameter uniform method for an initial
value problem for a system of singularly perturbed delay
differential equations. Springer proceedings in Mathemat-
ics and Statistics, 87:127-138, 2014.

[9] Sonlin Chen, Weigen Hou, Xiaohui Jiang, Finite ele-
ment analysis for singularly perturbed advection- diffu-
sion Robin boundary values problem, Advances in Pure
Mathematics, No.3,pp 643-646 (2013).

[10] Ni Shou Ping, Diagonalization method for a singularly
perturbed vector Robin problem, Applied Mathematics
and Mechanics, Volume 10, 329-336, (1989).

[11] Janet Rajaiah, Valarmathi Sigamani, A Parameter-
Uniform Essentially First Order Convergent Fitted Mesh
Method for a Singularly Perturbed Robin Problem, Inter-
national Journal of Mathematics Trends and Technology
(IJMTT) - Volume 59, Number 1- July 2018.

?????????
ISSN(P):2319−3786

Malaya Journal of Matematik
ISSN(O):2321−5666

?????????

505

http://www.malayajournal.org

	Introduction
	Analytical Results
	Estimates of Derivatives
	The Shishkin mesh
	The Discrete Problem
	The Local Truncation Error
	Error estimate
	Numerical Illustration
	References

