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1. Introduction

Levine [14] introduced generalized closed sets ( g-closed sets)
in general topology as a generalization of closed sets. Ap-
plying the concepts of g-closed sets in general topological
spaces, several results in general topology were improved
by introducing and studying g-closed maps by Malghan in
1984 [15] and g-continuous maps by Balachandran et al. [2]
in 1991. Further generalized preregular closed sets, general-
ized preregular continuous maps were introduced and studied
by Gnanambal [11] in the year 1997 for general topological
spaces. Ekici and Kerre [10] introduced fuzzy contra contin-
uous in 2006. In this paper, we have introduced a new class
of generalized mappings namely fuzzy 6g"’-continuous and
fuzzy 6g'"-irresolute mappings in fuzzy topological spaces.
Some of their properties have been investigated. As an appli-
cation of these mappings fuzzy Ty space, fuzzy Tyng space
are introduced and investigated.

2. Preliminaries

Throughout this paper, (P, T) or simply P mean fuzzy topo-
logical space (abbreviated as fts). We denote and define the
closure and interior for a fuzzy set (briefly, fs) A by

fClA) = N\{u:u>2,1-pet}

and fInt(A) = \/{p:p <A,p et}

Fuzzy 6-closure of A [9] and fuzzy semi-0-closure of A [17]
are defined by

fClo(A) = \{fCl(u): A <p, pet}and

fsClg(A) = N{fsCl(p): 2 <, pis afuzzy semi-open
(i.e., u < fCI(fInt(u))) in T} respectively.
Definition 2.1. A fs A of (P,7) is called a fuzzy

(i) 6-closed (briefly, f0c) [9]if A = fClg(A)

(i) semi-0-closed (briefly, fs0¢) [17] A = fsClg(A)

(iii) regular (resp. 0, semi, semi 8 & o)-open (briefly, fro
[1] (resp. fOo [9], fso [1], fsOo [17] & fowo [5]))
if A = fInt(fCI(A)) (resp. A = fIntg(A) [9], A <
SCU(fInt(L)), A = fsintg(A) & A < fInt(fCI(fInt
(A))) ); faCI(A) (resp. fsCl(A) denoted and defined
by N{v:v 2D A,vis foc( resp. fsc)}).

Definition 2.2. A fs A of (P, 7) is called a fuzzy
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(i) generalized (resp. generalized semi, 8-generalized & 0
generalized semi) closed (in short, fgc [3] (resp. fgsc
[16], fOgc [9] & fOgsc [12])) if fCI(A) < Vv (resp.
SsCL(A) < v, fClg(A) < v & fsClg(L) < V), when-
ever A < vandVvis fosetin P.

(i) semi (resp. 0-semi) generalized closed (in short , fsgc
[4] (resp. fOsgc [17])) if fsCI(A) <V (resp. fsClg(A)
< V), whenever A < v and Vv is fso setin P.

n

(iii) g" (resp. g*s & gi))-closed (briefly, fg"'c [13] (resp.
fgsc[13]1 & fg"c [13]))if fCI(A) < v (resp. fsCI(A)
<v & faCl(A) <v), whenever A <V and V is fuzzy
generalized semi open (briefly, fgso) set in P.

(iv) generalized (resp. generalized semi, 6-generalized,
semi generalized, 6-semi generalized, g/, g*s, g &
6 generalized semi) open set (in short, fgo [3] (resp.
fgso [16], fOg0 [9], fsgo [4], fOsgo [17], fg" o [13],
fg*so [13], fgllo [13] & fOgso [12])) if AC is fgc
(resp. fgsc, fOgc, fsge, fOsge, f§"c, fg*sc, feuc &
fOgsc).

"

(v) fuzzy 0g" (resp. Og*s, "0, g*s0 & gl/0)-closed
[6, 7] (briefly, f0g" c (resp. fOg*sc, fg"0c, fg*sOc
& fgu6c)) set if fClg(A) (resp. fsClg(A), fCI(A),
fsCl(A) and faCl(A) ) < u whenever A < u and U is
fuzzy 0 generalized semi open (briefly, fOgso) in X.

Definition 2.3. A function: (P,t) — (Q, 0) is called a fuzzy

(i) continuous [8] (in short fCts) if =1 (U) is a fo set in
P,V fosetU in Q.

(ii) g (resp. 8 & Ogs )-continuous (in short fgCts [3] (resp.
fOCts [17] & fOgsCts [12])) function if A~ 1(U) is a
fgc (resp. fOc & fOgsc)in P,V fcsetU in Q.

n

(i) fuzzy 6g" (resp. g0, gt 0 & 0g*s)-continuous [6, 7]
(briefly, f0g" Cts (resp. fg"0Cts, fgh/0Cts & fOg*s
Cts) if h™'(U) is a f0g"c (resp. fg"Oc, fgllOc &
fOg*sc)in P for every fcset U in Q.

(iv) fuzzy 0g" (resp. g 0)-irresolute [6, 7] (briefly, f0g""
Irr (resp. fg"0Irr))if L1 (V) isa f0g"c (resp. fg"
Bc)in PV f0g"c (resp. fg"6c)V in Q.

Definition 2.4. A function i : (P,7) — (Q, 0) is called a fuzzy
contra continuous [10] (in short fcCts) if h~'(U) is a fc set
in P,V fosetU in Q.

3. Fuzzy contra 6g"’-continuous and
irresolute functions

Definition 3.1. A function & : P — Q is called

"

(i) fuzzy contra 6g" (resp. g0, gl 6 & 6g*s)-continuous
(briefly, fcO0g" Cts (resp. fcg" 0Cts, fcgl! 0Cts & fcO
g*sCts))if h~' (1) isa f0g"c (resp. fg" Oc, fgnbOc &
fOg*sc)in P for every foset A in Q.
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"

(ii) fuzzy contra 8g" (resp. g’ @)-irresolute (briefly, fcOg"”
Irr (resp. fcg"OIrr)) if h~'(n) is a fOg"c (resp.
f&"6c)in PV f0g" o (resp. fg"60) nin Q.

Theorem 3.2. A functioni: P — Qis fcOg"'Ctsiff V fc set,
ninQ,h'(n)isa f6g"oin P.

Proof. Let 1) be any fc set Q. Since 1 —n is fo, then by
assumption it follows that 7= (1—n) =1—h"1(n) is f0g"0
in P. Converse is similar. 0

Theorem 3.3. (i) Every fcOCts function is a fc0g"'Cts.

(ii) BEvery fcOg"Cts function is a fcOg*sCts.

(iii) Every fcOg"'Cts function is a fcg” 0Cts.
But not conversely.

Proof. Let h: P — Q be a fcOCts (resp. fc0g"Cts and
fc@g" Cts) function. Let A be a fo set in Q. Since A is a
fcOCts (resp. fcOg"'Cts and fcOg"'Cts), h"'(A) is a fOc
(resp. f0g"c and f0g"c) in P and every fOc (resp. f0g" ¢
and f0g"c) setis a fOg"c (resp. fOg*sc and fg""0c) in
[6, 7], therefore for a fo set A in Q, h~'(A) is a f8g" c (resp.
fOg*sc and fg"0c) setin P. Hence his a fcOg"'Cts (resp.
fcBg*sCts and fcg" OCts). O

Example 3.4. Let P = {l/} = Q and the fs’s A & B are defined
by A(l) = 0.6, B(l) = 0.5. Consider 7 = {0,A,1} and ¢ =
{0,B,1}. Then (P,7) and (Q,0) are fts. Then the identity
(denoted by, i) i: (P,7) — (Q,0) is a fcOg" Cts map but not
a fcOCts, since for the fo set B in Q, i~'(B¢) is not a fOc
butitisa f0g"c setin (P, 7).

Example 3.5. Let P = {l,m} = Q and the fs’s A, B & K are
defined by A(l) = 0.5, A(m) = 0.4; B(I) = 0.2, B(m) = 0.1
& K(1) =0.1, K(m) =0.2. Consider T = {0,A4,1} and 0 =
{0,B,1}. Then hh: (P,7) — (Q,0), h(l) =m, h(m) =1, h s
a fcBg*sCts map but not a fc0g" Cts, since for the fo set B
inQ, "' (B°) =K isnota f0g"cbut it is a fOg*sc set in
(PT).

Example 3.6. Let P = {p,q} =Qandthe fs’sL, M\, R& S
are defined by L(p) = 0.4, L(q) =0.4; M(p) = 0.5, M(q) =
0.4; R(p) = 0.6, R(q) =0.5 & S(p) = 0.5, S(g) = 0.6. Con-
sider T = {0,L,M,1} and o = {O,R,1}. Then h: (P,7) —
(Q,0), h(p) = q, h(q) = p, is a fcg""B8Cts map but not a
fcBg"'Cts, since for the fo set D¢ in Q, h~' (D) = S is not a
f0g"cbutitisa fg"0c setin (P, 7).

n

Remark 3.7. The following examples shows that the fcOg
Cts function and fc0g"” Irr function are independent.

Example 3.8. Let P = {u,v} = Qand the fs’sU, V & W are
defined by U(u) =0.3, U(v) =0.4; V(u) = 0.5, V(v) = 0.6;
W(u) =0.3, W(v) =0.4. Consider 7 = {0,U,1} and ¢ =
{0,V,1}. Theni: (P,7) — (Q,0) is a fcOg" Cts map but not
a fc@g" Irr, since for the f8g" 0 set W in (Q,0), i~ (W) is
nota f0g"cin (P,1).
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Example 3.9. Let P = {u} = Q and the fs’s U,V & W are
defined by U(u) = 0.3, V(u) = 0.8, W(u) = 0.3. Consider
7={0,U,V,1} and 6 = {O,W,1}. Theni: (X,7) — (¥,0)
isa fcOg"Irr map but not a fc@g" Cts, since for the fo set
Wein Q,i"1(W¢),isnota f0g"cin (P, 7).

Theorem 3.10. The map goh: P — R with h: P — Q and
g:0—R,isa

(1) fcOg"Ctsif hisa fcOg"Cts and g is a fcCts.
(ii) fcOg"Irrif hisa fcOg"Irrand gisa fcOg"Irr.
(iii) fcOg"Irrif hisa fcOg"Irr and gis a fcOg" Cts.

Definition 3.11. A fts’s P is called fuzzy Tygn-space (briefly
fTogms) [6, 7]if every f0g" c setin Pisa fc set.

Theorem 3.12. Let P be any frs and Q be fTggms and h :
P — Qbea fcOg" Irr function. Then his a fcOg" Cts.

Proof. Obvious. O

Theorem 3.13. Let 2: P — Q be a fcOg" Cts with P (resp.

Q) be a fTyyms, then his a fcCts (resp. fcOg"Irr).

Theorem 3.14. The map goh: P — R is a fc0g"'Cts, if
h:P—Qisa f0g"Ctsand g: Q — Risa fcOg"Cts with Q
as angg///S.

Proof. Since g is fcOg"'Cts, g7' (1) is a f0g"c setin Q V
fo, A,inR. Since Qisa fTogns, g~ '(A)is a fcin Q implies
h'(g7"(X)) = (goh)' (1) is f0g"c setin P. Hence a goh
isa fcOg" Cts. O

Theorem 3.15. A function h: P — Q is a fcg" 6Cts iff the
inverse image of each fc setin Qisa fcg” 6o in P.

Theorem 3.16. Every
(i) fcCts function is a fcg” OCts.
(ii) fcg"” OCts function is a fcgl OCts.
(iii) fcg" OIrr function is a fcg" OCts.
But not conversely.

Proof. We prove only (i) and (ii). Suppose h: P — Q be a
fcCts (resp. fcg" Cts). Then h='(A) is fc (resp. fg"'6c¢)
Y fo, A in Q. Since every fo (resp. fg" 00) setis a fg"" 0o
(resp. fgq/
fg///

"
o

”0c) set in P. Hence h is a fcg” 0Cts (resp. fcg
O

Example 3.17. Let P={p,q} =Qand the fs’sL, M, R &
S are defined by

L(p) =04, L(qg) =0.4;

M(p)=0.5 M(q) =0.4;
R(p) =0.3, R(q) = 0.4,

80), fora foset A in Q, h=' (1) is a fg" Oc (resp.
0Cts).
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S(p) =0.6, S(q) =0.7.

Consider 7 = {0,L,M,1} and 6 = {0,R,1}. Then (P, 7) and
(Q,0) are fts. Define h: (P,7) — (Q,0) as h(p) =q, h(q) =
p. Then h is a fcg"” OCts map but not a fcCts, since for the
fosetRin Q, h"'(R°) = Sisnota fcbutitisa fg"”0c set
in (P, 7).

Example 3.18. Let P = {u} and the fs’s U, V & W are
defined by U(u) = 0.5; V(1) = 0.3; W(u) = 0.4. Consider
7={0,U,V,1} & 6 = {0,W,1}. Theni: (P,7) — (Q,0) is

a fcgl 0Cts map but not a fcg” 6Cts, since for the fo set W¢

in Q, i '(W) =W¢isnota fg"8cbutitis a fglrOc set in
(P.7).

Example 3.19. Let P = {u,v} =Qand the fs’sU,V & W
are defined by

U(u)=0.3,U(v)=0.3;

V(u)=0.6, V(v) =0.5;
W(u) =0.6, W(v) =0.6.

Consider 7 = {0,U,1} & 6 = {0,V,1}. Theni: (P,1) —
(Q,0) is a fcg"” 6Cts map but not a fcg"” 61rr, since for the
f&" 8o setWin (Q,0),i ' (W)isnota fg"”8cin (P,T).

Theorem 3.20. The map goh: P — R with h: P — Q and
g:0—R,isa

(1) fcg"OCtsif hisa fcg"'0Cts & gisa fCts.

(i) fcg”OIrrif hisa fcg"0Irr & gis a fg'" 0Irr func-
tions.

(iii) fcg"OCts if his a fcg" OIrr & g is a fg" OCts func-
tions.

Definition 3.21. A fts’s P is called fuzzy T,mg-space (briefly
fTyngs) if every fg" Oc (resp. fg"'8o) setin Pis a fc (resp.
fo) set.

Theorem 3.22. Let P be any f1s & Q be a fTyngs and h :
P — Qbe fcg" 0Irr function. Then A is a fcg" 6Cts.

Proof. Obvious. O

Theorem 3.23. Every fTgonsis a fTymgs.

Proof. Let X be a fTyyns and let A be a f0g"c set in X.
Then by definition, A is a fc set in P. Since every f0g"c
setis a fg"0c set. Thus A is a fg”’0c in P. Hence P is a

ng///gs. O

Theorem 3.24. Leth: P — Qbe a fcg"’0Cts & P (resp. Q)
be a fTyngs, then his a fcCts (resp. fcg” OIrr).

Proof. Obvious. 0

Theorem 3.25. If h: P — Q is fcg""0Cts & g: Q — R is
fg"6Cts & Qbea fTyngs,thengoh: P — Risa fg" 0Cts.

0gl0
S0,
S5027:

(N
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Proof. Suppose g is a fg""0Cts, then g=' (1) is a fg""Oc in
Q,V fc AinR. Since Qis a fTyngs, g (1) is fcin Q. Also
since h: P — Qs fcg”0Cts, h ™' (g7 (1)) is a fg" 8o in P.
ie,h (g7 (1)) =(goh)~'(A)isa fg" Qo setin P. O

Theorem 3.26. Let h: P — Q be an onto, fcg” 0Irr & a fC
map. If Pis a fTyugs then Q is also a fTymgs.

Proof. Let A,in Q,be a fcg”0o. h~'(A),in P,is a fg"Oc
set, since h is a fcg" 0Irr. Also since Pisa fTyngs, h™'(A)
isa fcin P. Andso h(h='(A)) = A is a fcin Q as h is both
JC and onto function. Hence Q is a fT,mgs. 0

Theorem 3.27. Let h: P — Q be an onto, fcOg" Irr & a fC
map. If Pis a fTggns then Q is also a fTygns.

Proof. LetA,inQ,bea f0g"0. h~'(1),inP,isa f8g" c and
fe,since hisa f0g"Irr and fTygns. And so h(h™' (1)) =4
isa fcin Q as h is both fC and onto function. Hence Q is a
nggN/S. O

Conclusion

In this paper, we introduced a new class of generalized map-
pings in a contra part namely fuzzy contra 6g"’-continuous
and fuzzy contra g’ -irresolute mappings in fzs’s. Further,
some of their properties in contra mappings have been in-
vestigated. Also, an application of these mappings fuzzy
Ty gm-space, fuzzy T,mg-space are introduced and investigated
in fts. These can be carried out to open mappings and closed
mappings in their future work.
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