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Abstract
In this paper we use Adomian Decomposition Method to solve time fractional p−KdV equation.
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1. Introduction
The population will demand for bare essentials of life such as
food, water and shelter. There essentials can be provided by
infrastructure that can sustain them for the long-term. If con-
tinuously fossil fuels used instead of sustainable options, then
the availability of basic needs will become difficult. Therefore
our demand for green products and services lead to sustain-
abilty.
To increase the sustainability of the product , many companies
are involved in sustainable production without using fossil
fuels. During sustainable production sensors are designed to
create data, which can be used to analyze and identify flaws in
the product. By reducing spoilage and identifying the flaws,
products can create more sustainable supply chain. Therefore
sensors will play an important role in the creation of more
sustainable society, as sensors are useful in safety, security,
surveillance, monitoring and awareness.
Typical sensor systems such as radar, Infrared(IR) and Sonar

report measurements from various resources targets back-
ground noise sources or internal error sources. The target
tracking objective is to collect sensor data and then partition
the sensor data in the tracks. Once tracks are formed, we can
estimate number of targets, target velocity, future predicted
position and target classification characteristics [1].

Therefore in recent years, researchers are working to find
accurate and fast method to track real-world position and ori-
entation of moving targets. Tracking is a process of estimating
the current and future state of target [2].
Target tracking process can be defined as a set of algorithm
and the algorithm is based on a nonlinear KdV equation as a
moving target detector. In the paper [3], it is proved that the
solutions of inhomogeneous KdV equation helps to get the
right information about moving targets by using soliton reso-
nance method. A novel neural architecture named ”Spectral
network” is being proposed for detecting targets in a cluttered
background and results can be interpreted in terms of reso-
nances by KdV equations [2].
Therefore we observe the importance of KdV equation in
target tracking process which is important for sensor data
analysis and leads to sustainability. In this paper we will study
time fractional Potential KdV (p-KdV) equation which is very
important form of KdV and also useful in plasma physics,
mechanics, lattice dynamics etc. We reviewed that in the pa-
per [4], p-KdV was solved by (G′

G , 1
G ) expansion method and

obtained soliton solutions are designated in terms of kink, bell-
shaped solitary waves, periodic and singular periodic wave
solutions. In [5] the kink solution and travelling wave solu-
tion of the p-KdV equation was obtained by using tanh-coth
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method. In paper [6] p-KdV equation was solved by ansatz
method.
During last decades, fractional calculus has been used in
viscoelasticity, rheology, electrical engineering, biology, im-
age processing, physics etc. Several methods are used to
solve fractional differential equations such as Laplace trans-
form method [16], Fourier transform method [1], Perturbation
method, Iteration method [18]etc. In this paper we use Ado-
mian Decomposition Method to solve time fractional p-KdV
equation.
The KdV equation is given by-

∂w(x, t)
∂ t

+ εw
∂w(x, t)

∂x
+µ

∂ 3w(x, t)
∂ 3x

= 0

Here w(x, t) is the dependent variable, x and t are independent
variables. The parameters ε and µ are real constants.
The p-KdV is given by [19] -

∂w(x, t)
∂ t

+ ε

(
∂w(x, t)

∂x

)2

+µ
∂ 3w(x, t)

∂ 3x
= 0

Here first term is the evolution term, second term is nonlinear
term and third term is dispersion term. Now we will consider
time fractional p-KdV equation as under-

∂ α w(x, t)
∂ tα

+ε

(
∂w(x, t)

∂x

)2

+µ
∂ 3w(x, t)

∂ 3x
=0, 0<α ≤ 1, t > 0

The aim of this paper is to solve time fractional p-KdV equa-
tion by using Adomian Decomposition Method. We will give
some formulae and theorem in Section 2 which are used in
our calculations. Section 3 is devoted for ADM to solve time
fractional p−KdV alongwith uniqueness and convergence of
solution. In section 4 some numerical problems are solved
and presented graphically by using Mathematica software.

2. Basic Preliminaries and Properties of
Fractional Derivatives

In this section, we study some definitions and properties of
fractional calculus.

Definition 2.1. The Caputo fractional derivative of the func-
tion f (x) is defined as

Dβ
∗ f (x) = J(m−β )Dm f (x)

=
1

Γ(m−β )

∫ x

0

1
(x− t)(1−m+β )

f (m)(t)dt,

for m−1 < β ≤ m, m ∈ N,x > 0, f ∈Cm
−1

Properties:
For f (x) ∈Cµ , µ ≥−1, α,β ≥ 0 and γ >−1, [6] we have

(i) Jα Jβ f (x) = Jα+β f (x),

(ii) Jα Jβ f (x) = Jβ Jα f (x),

(iii) Jα xγ = Γ(γ+1)
Γ(α+γ+1)x(α+γ).

Lemma 2.2. If m−1 < α ≤ m, m ∈ N and f ∈Cm
µ , µ ≥−1,

then

Dα
∗ Jα f (x) = f (x)

Jα Dα
∗ f (x) = f (x)−

m−1

∑
k=0

f (k)(0+)
xk

k!
,x > 0.

3. The Fractional Adomian
Decomposition Method (FADM)

To demonstrate Time Fractional ADM to solve p-KdV, we
consider following time fractional p-KdV equation-

∂ α w(x, t)
∂ tα

+ ε

(
∂w(x, t)

∂x

)2

+µ
∂ 3w(x, t)

∂ 3x
= 0,

0 < α ≤ 1, t > 0, initial condition: w(x,0) = f (x).
Operating with the operator Jα on both sides of equation, we
have

Jα

[
∂ α w(x, t)

∂ tα
+ ε

(
∂w(x, t)

∂x

)2

+µ
∂ 3w(x, t)

∂ 3x

]
= 0,

0 < α ≤ 1, t > 0. Now, we decompose the unknown function
w(x, t) into sum of an infinite number of components given
by the decomposition series

w(x, t) =
∞

∑
n=0

wn(x, t) (3.1)

The nonlinear terms Nu(x, t) are decomposed in the following
form:

Nw(x, t) =
∞

∑
n=0

An (3.2)

where the Adomian polynomial can be determined as follows:

An =
1
n!

[
dnN
dλ n (

n

∑
k=0

λ
kuk)

]
λ=0

(3.3)

where An is called Adomian polynomial and that can be easily
calculated by Mathematica software. Substituting the decom-
position series and using lemma (2.1), we get

∞

∑
n=0

wn(x, t) =
m−1

∑
k=0

∂ kw(x,0)
∂ tk

tk

k!

− Jα

[
µ

∞

∑
n=0

D3
xwn(x, t)− ε

∞

∑
n=0

An

]
, x > 0

(3.4)

The components wn(x, t), n≥ 0 of the solution w(x, t) can be
recursively determined by using the relation as follows:

w0(x, t) = w(x,0) = f (x) (3.5)

wn+1(x, t) =−Jα

[
µD3

xwn(x, t)− εAn

]
, x > 0 (3.6)
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where each component can be determined by using the pre-
ceding components and we can obtain the solution in a series
form by calculating the components wn(x, t), n≥ 0. Finally,
we approximate the solution w(x, t) by the truncated series.

φN(x, t) =
N−1

∑
n=0

wn(x, t)

lim
N→∞

φN = w(x, t)

Theorem 3.1 (Uniqueness Theorem [20]). Consider time
fractional p-KdV as follow. Taking ε = 1 and µ = 1, we have

∂ α w(x, t)
∂ tα

+

(
∂w(x, t)

∂x

)2

+
∂ 3w(x, t)

∂ 3x
= 0,

0 < α ≤ 1, t > 0, tinitial condition: w(x,0) = f (x).
The equation has a unique solution whenever 0 < γ < 1 where

γ =
(C1 +C2)tα

Γα +1
.

Proof. Let X = (C(I),‖.‖) be the Banach space of all continu-
ous functions on I = [0,T ] with norm ‖w(t)‖=maxt∈I |w(t) |.
We define a mapping M : X → X , where M(w(t)) = f (x)−
Jα N(w(t))− Jα D(w(t))
N(w(t)) denotes nonlinear term and D(w(t)) denotes disper-
sive term. Also nonlinear term N(w(t))is Lipschitzian i.e.
| N(w)−N(p) |≤C1 | w− p |, where C1 is Lipschitz con-
stant.
Let w,w′ ∈ X , we have-

‖M(w)−M(w′) ‖
= max

t∈I
| −Jα N(w(t))− Jα D(w(t)+ Jα N(w(t))+ Jα D(w(t) |

= max
t∈I
| −Jα(Dw−Dw′)− Jα(Nw−Nw′) |

= max
t∈I
| Jα(Dw−Dw′)+ Jα(Nw−Nw′) |

≤max
t∈I
| Jα(Dw−Dw′) |+ | Jα(Nw−Nw′) |

Now suppose D(w(t))is also Lipschitzian i.e.
| D(w)−D(p) |≤C2 | w− p |, where C2 is Lipschitz con-
stant.
Therefore-

‖M(w)−M(w′) ‖ ≤max
t∈I

(C1Jα | w−w′ |+C2Jα | w−w′ |) |)

≤ (C1 +C2) ‖ w−w′ ‖ tα

Γα +1

‖M(w)−M(w′) ‖ ≤ γ ‖ w−w′ ‖,where γ =
(C1 +C2)tα

Γα +1

Under the condition 0 < γ < 1, the mapping is contraction,
therefore by Banach fixed point theorem for contraction, there
exist a unique solution to equation.

Theorem 3.2 (Convergence Theorem [20,3]). Let Qn be the
nth partial sum, i.e.

Qn =
n

∑
i=0

wi(x, t)

Proof. we shall prove that (Qn) is a Cauchy sequence in Ba-
nach space X .

‖ Qn+p−Qn ‖= max
t∈I
| Qn+p−Qn |= max

t∈I
|

n+p

∑
i=n+1

wi(x, t)|

= max
t∈I
|− Jα

n+p

∑
i=n+1

Dwi−1(x, t)− Jα

n+p

∑
i=n+1

Ai−1(x, t)|

= max
t∈I
|Jα DQn+p−1−DQn−1 + Jα NQn+p−1−NQn−1|

≤max
t∈I

Jα (|(DQn+p−1−DQn−1|)+max
t∈I

Jα |NQn+p−1−NQn−1|

≤C2 max
t∈I

Jα (|(Qn+p−1−Qn−1|)+C1 max
t∈I

Jα |Qn+p−1−Qn−1|

≤ (C1 +C2)
tα

Γα +1
‖ Qn+p−1−Qn−1 ‖

‖ Qn+p−Qn ‖ ≤ γ ‖ Qn+p−1−Qn−1 ‖

where γ =(C1 +C2)
tα

Γα +1
‖ Qn+p−Qn ‖ ≤ γ ‖ Qn+p−1−Qn−1 ‖

Similarly we have

‖ Qn+p−Qn ‖ ≤ γ
2 ‖ Qn+p−2−Qn−2 ‖

...
≤ γ

n ‖ Qp−Q0 ‖
≤ γ

n ‖ Q1−Q0 ‖, f orp = 1
≤ γ

n ‖ w1 ‖

Now for n > m, where n,m ∈ N,

‖ Qn−Qm ‖
≤‖ Qm+1−Qm ‖+ ‖ Qm+2−Qm+1 ‖+ · · ·+ ‖ Qn−Qn−1 ‖

≤ (γm + γ
m+1 + · · ·+ γ

n−1) ‖ w1 ‖

≤ γ
m
[

1− γn−m

1− γ

]
‖ w1 ‖

Since 0 < γ < 1, then 1− γn−m < 1, so we have,

‖ Qn−Qm ‖ ≤
γm

1− γ
‖ w1 ‖

Since w(t) is bounded, therefore ‖ w1 ‖< ∞

lim
n→∞
‖ Qn−Qm ‖→ 0

Hence (Qn) is a Cauchy sequence in X. Therefore the solution
is convergent.
In the next section, we illustrate some examples and their
solutions are represented graphically by mathematica software.
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4. Applications

Consider following time fractional linear partial differential
equation:

∂ α w(x, t)
∂ tα

−6
(

∂w(x, t)
∂x

)2

+
∂ 3w(x, t)

∂x3 = 0

initial condition : w(x,0) = tanhx, 0 < α ≤ 1

The operator form of the above equation can be written as

Lα
t w(x, t)−6

(
Dxw(x, t)

)2

−D3
xw(x, t) = 0

initial condition: w(x,0) = tanhx, 0 < α ≤ 1.
Using equation 3.5 and 3.6, we have

w0(x, t) = w(x,0)
= tanhx

w1(x, t) =−Jα D3
xw0(x, t)+6Jα A0

= (8sech4x−4sech2xtanh2x)
tα

Γ(α +1)

w2(x, t) =− Jα D3
xw1(x, t)+6Jα A1

=(864sech4xtanh3x−1152sech6xtanhx

−96sech8xtanhx+544sech6xtanh3x

−256sech4xtanh5x)
t2α

Γ(2α +1)
...

Therefore, the series solution for the IBVP is given by

w(x, t) = w0(x, t)+w1(x, t)+w2(x, t)+w3(x, t)+ ....

Substituting values of components in above equation, we get
the solution as follow

w(x, t) =tanhx+(8sech4x−4sech2xtanh2x)
tα

Γ(α +1)

+(864sech4xtanh3x−1152sech6xtanhx

−96sech8xtanhx+544sech6xtanh3x

−256sech4xtanh5x)
t2α

Γ(2α +1)
+ ...

Fig. 1 : Graphical presentation of time fractional p-KdV
equation with α = 0.9

Fig. 2 : Graphical presentation of time fractional p-KdV
equation with α = 0.5

Test Problem (ii): Consider following time fractional linear
partial differential equation:

∂ α w(x, t)
∂ tα

−6
(

∂w(x, t)
∂x

)2

+
∂ 3w(x, t)

∂x3 = 0

initial condition: w(x,0) = 1−3tanh2
(

x
2 +1

)
, 0 < α ≤ 1.

The operator form of the above equation can be written as

Lα
t w(x, t)−6

(
Dxw(x, t)

)2

−D3
xw(x, t) = 0

initial condition: w(x,0) = 1−3tanh2
(

x
2 +1

)
, 0 < α ≤ 1.

Using equation 3.5 and 3.6 and considering µ = 1, ε = 1,we
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have

w0(x, t) = w(x,0)

= 1−3tanh2
(

x
2
+1
)

w1(x, t) =−Jα D3
xw0(x, t)+6Jα A0

=

[
6−6tanh

(
x
2
+1
)
−36tanh2

(
x
2
+1
)

+15tanh3
(

x
2
+1
)
+54tanh4

(
x
2
+1
)

−9tanh5
(

x
2
+1
)]

tα

Γ(α +1)
...

Therefore, the series solution for the IBVP is given by

w(x, t) = w0(x, t)+w1(x, t)+w2(x, t)+w3(x, t)+ ....

Substituting values of components in above equation, we get
the solution as follow

w(x, t) = 1−3tanh2
(

x
2
+1
)
+

[
6−6tanh

(
x
2
+1
)

−36tanh2
(

x
2
+1
)
+15tanh3

(
x
2
+1
)

+54tanh4
(

x
2
+1
)
−9tanh5

(
x
2
+1
)]

tα

Γ(α +1)
+ ...

Fig. 3 : Graphical presentation of time fractional p-KdV
equation with α = 0.9

Fig. 4 : Graphical presentation of time fractional p-KdV
equation with α = 0.5

5. Conclusion
1. Time fractional p-KdV equation is solved by using

ADM and it is found that ADM is very efficient and
powerful technique to find solution of nonlinear frac-
tional partial differential equation.

2. The obtained results demonstrate the reliability of the
algorithm and its wider applicability to linear and non-
linear fractional partial differential equations.

3. We also developed uniqueness theorem and conver-
gence theorem for the solution of time fractional p-KdV
equation.
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