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In this document, the incomparable integer quintuple (p,q,r,s,t) in such a way that the components with the
renowned property in algebra named as arithmetic progression with the postulation that the addition of three
consecutive terms shows a perfect square is established.
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1. Introduction

Let n be an integer. A set of positive integers (aj,dz,as,...ay)
is said to have the property D(n) if a;a; +n is a perfect square
for all 1 <i < j <mj; such a set is called a Diophantine m—
tuple [1 — 6] - In [7], the authors were evaluated the triplesin
Arithmetic Progression (a —d,a,a+d) such that2 a - d =
a?2a+d=B%2a=yx3and2a—d = o’ 2a+d = B> 2a=
x“ where a and d be two non- zero distinct integer.In [8] ,
triples were procured in Arithmetic Progression such that the
sum of any two is a perfect square. In [9], the authors found
the triples in Arithmetic Progression (a —d,a,a+d) such that
each of the expression a> — ad,2a +d,2a is a perfect square.
In [10], the authors found the quadruples of the form (x,y,z,w)
where the elements arein Arithmetic Progression satisfying
the conditions x+y = a’z+w=BZand x +y+z+w=7>.

In this manuscript, three unlike integer quintuples with the
elements in Arithmetic Progression rewarding the condition
that that the sum of three consecutive integers indicates a
perfect square is acquired.

2. Course of action for survey

Presume that p, g, r,s,t be five non-zero separate integers such
that the elements in the quintuple ( p,q,r,s,t) materialize in
Arithmetic Progression.

To symbolize this proclamation, let a and d be two non-zero
integers such that p=a—2d,q=a—d,r=a,s=a-+d,t =
a+2d.

For the exploration of the perception of the manuscript, imag-
ine the sum of three consecutive elements in the already as-
sumed quintuple is a square of an integer. The above declara-
tion is replicated by the subsequent equations

p4q+r=>3a—3d=¢> (2.1)
g+r+s=3a=n° (2.2)
r4s+1=3a+3d =y> (2.3)

Addition of (2.1) and (2.3) endow with the proportion that

2 2
. a4 2.4)
6
Similarly, subtraction of (2.1) from (2.3) bestow as in the

succeeding fraction

12— 2

d=
6

(2.5)
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Elucidationof (2.2) and (2.4) yields the following equation

2 2
2 9 +X
="

2.6)

To convert the above said value of 7] as in integer, launch the
novel conversions

n=3¢=6ux="060 (2.7)
These translations imitate (2.5) and (2.6) as follows

d =6 (w*—p?) (2.8)

A2 =2 (u* + 0?) (2.9)

The elements in the required quintuple are making into inte-
gers with the property looking for is portrayed by the three
procedures as below.
Procedure 1: Decode the parameter A as

A =u+v?
Then, the equation (2.9) can be altered by

2
(u2+v2) —9 (u2+w2)
= W+ ) w—iv)? =1+i)(1—i)(u+io)(p—io)
By escalating and balancing positive terms and thenequating

real and imaginary parts on both sides, the resulting equations

are revealed by
2

L—o=u’—v

U+ o =2uy
Resolving the above equations the most plausible values of p
and o are demonstrated by

u= % (u27v2+2uv)

w:%( 27u2+2uv)

The parametric values of A, and @ in integers are created
by selecting the options of # = 2U and and v = 2V as follows

A=4(U*+V?)
p=2(U*-Vv*+20V)
w=2(V*-U*+2UV)

The replacement of the above value of A in (2.7), endow with
the value of 1 as

n=12(U*+v?)

According to (2.2) and (2.8), the components in the essential
quintuple are offered by

a=48 (U2 +V?)’
d =1920V (V? - U?)

609

Subsequently, the necessary guintuple in which the elements
form an Arithmetic progression is discovered by

2
(p.g,rs,t) = {48 (U2 + v2) — 384UV (v2 - U2)
2 2
48 (U2 +v2) 1920V (v2 — Uz) 48 <U2 +v2)
2 2
48 (U2 +v2) 1920V (V2 -0?) 48 (U2 +V2)
13840V (v2 _ U2) }

2.1 Logical postulation is checked for certain val-
ues of U and V as tabulated below

Table 1.
u|Vv (p, g, 1,8, t) p+q+r | q+r+s | r+s+t
2 | 1 ] (3504,2352,1200, | 847 602 122
48,-1104)
51 7] (-39712,101568,
262848,424128, | 5522 | 888% | 11282
585408)
1| 3| (-4416,192,4800, | 242 1207 | 1682
9408,14016)

Procedure 2:
The same conversion of A = u? +v? supplies the alterna-
tive appearance of (2.9) as

(7+0)(7—i)

(u+iv)?(u—iv)> = 55

(H+io)(u—io)

Replicate the same course of action as mentioned in procedure
(2.1), the corresponding values of u and w satisfying the
double equations 74 — @ =5 (142 — v2) ;U +T0 = 10uv are
appraised by

_ 2 2
,u-lo(7(u v)+2uv)

0] v —u? + 14uv)

The chances of A,y and ® in integers by picking u = 10U
and v = 10Vare produced by

A =100 (U*+V?)

1 =10 (70* -7V +2UV)

0 =10(V*-U?*+140UV)
Renovate the value of A in (2.7), the value of 7 is calculated

by
n =300 (U +V?)

In sight of (2.2) and (2.8), the equivalent choices of a and d
are pointed out by

a=30000 (U2 +V?)?

d =— 4800 (6U* +6V* + 703V —TUV? — 36UV
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Hence, the needed quintuple with desired property is exposed
by

(p.g.1,s.1) = {30000 (U +V?)” +9600(6U* + 6V*

+TU3V —TUV3 = 36U%V2),30000 (U + V)

+4800 (6U* +6V* +7U°V —TUV? - 36U*V?)

30000 (U2 +V?)?,30000 (U +V2)?

— 4800 (6U* +6V* +7U°V —TUV? —36U*V?),

30000 (U2 +V?)? = 9600(6U* + 6V*
+7U3V —7UV? - 36U%V?)}
2.2 Presumption is verified for definite values of U

and V in the table given below
Table 2.

p+q+r | q+r+s | r+s+t

ulv (P, q, 1,8, 1)

01 (87600,58800,

30000,1200,
-27600)

420% | 3002 602

(-56400,346800,
750000,1153200,
1556400)

1020% | 15002 | 18602

(-110400,4800,120000, | 1207 | 6002 | 84072

235200,350400)

Procedure 3:
Commencement of the fresh renovation A = 2 Ain(9) declare
the same equation as

2A% =p’ + @’
A2 2 = g — A2
=A+u)A-p)=(0+A)(0—A)

() (-2 =G G

(2.10)

Again, make use of the transformationsﬁ =6,%=pin(2.10)
produces the proportion as

(1+6) (p=1) m

(i+p) (1-6) n’

Hereafter, calculate the values of 6 and p from (2.11) by the
process of cross multiplication and then substituting these
values in the ultimate transformation, it is determined by

n+0 @2.11)

A=m?>+n* =2 :2(m2+n2)
2

(2.12)
u =m?+2mn—n
® =n* +2mn — m?
Interpretation (2.2) and (2.7) offers the relevant values of a
and d as presented in the equations scripted below.

a=12 (m2 +n2)2

d =48mn (n2 — m2)

610

Hence, the essential quintuple in which the elements in Arith-
metic progression is rendered by

(p.q,r.5,1)

= {12 (m2 —l—n2)2 —96mn (n2 —mz) ,12 (m2 —i—nz)2
—48mn (n2 — mz) ,12 (m2 +n2)2 ;12 (m2 —|—n2)2
+48mn (n2 — mz) , 12 (m2 +n2)2 +96mn (n2 —mz)}

2.3 Supposition is authenticated for specific values
of U and V in the following table

Table 3.
m | n (P, q, 1,8, 1) pHq+r | q+r+s | r+s+t
2 [ 1] (-276,12,300, 6° 302 | 422
588,876)
517 (-14928,25392,
65712,106032, | 276% | 444% | 5642
146352)
1 ]3] (-1104,48,1200, | 122 602 842
2352,3504)

The emerging C software shows verification of the numer-
ical samples:

#include <stdio.h>

#include <conio.h>

#include <math.h>

void main()

{

char ch;

clrscr();

do {

long long int x,u,v,m,n;

long long int U,V,M,N,a,d,p,q,1,s,t,A,B,C,E.EG;
printf("\n Enter the case 1 or 2 or 3\n”);
scanf(”%I1d”,&x);

switch(x)

{

case 1:

printf("\n Enter integer values for u and v \n”);
scanf(”%I11d%I1d”,&u,&v);

U=u*u;

V=v¥*v;

a=48*(U+V)*(U+V);

d=192*u*v*(V-U);

p=a-2%*d;

g=a-d;

r=a;

s=a+d;

t=a+2%*d;

break;

case 2:

printf(’\n Enter integer values for u and v \n”);
scanf(”%I11d%I11d”,&u,&v);

U=u*u;

V=v#v;
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a=30000*(U+V)*(U+V);
d=-4800*(6*U*U+6*V*V+7*U*u*v-7*u*v*V-36*U*V);,
p=a-2*d;

q=a-d;

r=a;

s=a+d;

t=a+2%*d;

break;

case 3:

printf(”\n interger values for m and n \n”);
scanf(”%I1d%11d”,&m,&n);

M=m*m;

N=n*n;

a=12*(M+N)*(M+N);

d=48*m*n*(N-M);

p=a-2*d;

g=a-d;

r=a;

s=a+d;

t=a+2%*d;

break;

}

A=p+q+r;

B=qg+r+s;

C=r+s+t;

E=sqrt(A);

F=sqrt(B);

G=sqrt(C);

printf(’\n p+q+r=%I1d=%11d> \n q+r+s=%11d=%I1d*\ nr+s+t
=%I1d =%11d*”,AE.B,F,.C,G);

printf(’\n Do you want to continue for different cases (y/n)?”);
ch=getche();

}

while (ch=="y'———ch=="Y");

getch();

}

3. Conclusion

In this paper, an elegant integer quintuple (p,q,r,s,t) where
the components make ensure in arithmetic progression with
the conjecture that the sum of any three consecutive elements
designates a perfect square is recognized. In this manner, one
can search an integer quintuple (p,q,r,s,t) with elements in
Geometric progression or Harmonic progression satisfying
some other condition.
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