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Abstract
In this paper, the concept of fuzzy chaotic centred pre-distinctiveness space, fuzzy chaotic centred distinctiveness
space, Efremovie property, reverse Kolmogorov property and weak nested neighbourhood property are introduced
and studied. Some of their related properties are discussed.
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1. Introduction
Zadeh introduced the fundamental concepts of fuzzy sets in
his classical paper [12].Thereafter, fuzzy set theory found
applications in different areas of mathematics and its applica-
tions in other sciences. Fuzzy sets have applications in many
fields such as information [7] and control [8]. Chang [4] intro-
duced and developed the concept of fuzzy topological spaces.
In 2007, the concept of centred sysytems in fuzzy topological
spaces introduced by Uma, Roja and Balasubramanian [10].
The concept of chaotic in general metric space was introduced
by R. L. Devaney [5]. The elementary properties of chaos
(Devaney definition of chaos) were established in [1] and [2].
Futhermore, the properties of chaos were developed and stud-
ied in [11]. In this paper, the concept of fuzzy chaotic centred
pre-distinctiveness space, fuzzy chaotic centred distinctive-
ness space, Efremovie property, reverse Kolmogorov property
and weak nested neighbourhood property are introduced and
studied. Some of their interesting properties are discussed.

2. Preliminaries
Definition 2.1. [12] A fuzzy set in X is a function with do-
main X and values in I, that is an element of IX .

Definition 2.2. [3] A ditopology on a texture (S, S) is a pair
(τ,κ) of subsets of S, where the set of open sets τ satisfies

(1) S, φ ∈ τ ,

(2) G1, G2 ∈ τ ⇒ G1 ∩ G2 ∈ τ and

(3) Gi ∈ τ , i ∈ I,⇒∨i Gi ∈ τ and

the set of closed sets κ satisfies

(1) S, φ ∈ κ ,

(2) K1, K2 ∈ κ ⇒ K1 ∪ K2 ∈ κ and

(3) Ki ∈ κ , i ∈ I,⇒∧i Ki ∈ κ .

Hence a ditopology essentially a ”topology” for which there
is no a priori relation between the open and closed sets. But
if σ is a complementation on (S, S) and τ , κ are connected
by the relation κ = σ (τ), then we call (τ , κ) a complemented
ditopology on (S, S, σ ).

For A ∈ τ we define the closure [A] or cl(A) and the in-
terior]A[ or int(A) under (τ , κ) by the equalities
cl(A) = ∩ { K ∈ κ / A ⊂ K } and
int(A) = ∪ { G ∈ τ / A ⊆ G }.
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Definition 2.3. [6] Let X be a nonempty set and let f : X→
X be any mapping. Let λ be any fuzzy set in X. The fuzzy
orbit O f (λ ) of λ under the mapping f is defined as O f (λ ) =
{λ , f (λ ), f 2(λ ), ...}.

Definition 2.4. [6] Let X be a nonempty set and let f : X→
X be any mapping. The fuzzy orbit set of λ under the map-
ping f is defined as FO f (λ ) = {λ ∧ f (λ )∧ f 2(λ )∧ ... }the
intersection of all members of O f (λ ).

Definition 2.5. [6] Let (X, τ) be a fuzzy topological space.
Let f : X→ X be any mapping. The fuzzy orbit set under
the mapping f which is in fuzzy topology τ is called fuzzy
orbit open set under the mapping f . Its complement is called
a fuzzy orbit closed set under the mapping f .

Definition 2.6. [6] Let X be a nonempty set and let f : X→
X be any mapping. Then a fuzzy set γ of X is called fuzzy
periodic set with respect to f if f n(γ) = γ , for some n ∈ Z+.
Smallest of these n is called fuzzy periodic of X.

Definition 2.7. [6] Let (X, τ) be a fuzzy topological space
and let f : X→ X be any mapping. The fuzzy periodic set
with respect to f which is in fuzzy topology τ is called fuzzy
periodic open set with respect to f . Its complement is called
a fuzzy periodic closed set with respect to f .

Notation 2.8. P = ∧ { fuzzy periodic open sets with respect
to f }

Definition 2.9. [9] Let (X, τ) be a fuzzy topological space
and λ ∈ KF(X) (Where KF(X) is a collection of all nonempty
fuzzy compact subsets of X).Let f : X→ X be any mapping.
Then f is fuzzy chaotic with respect to λ if

(i) cl FO f (λ ) = 1,

(ii) P is fuzzy dense.

Notation 2.10. (i) FC (λ ) = { f : X → X / f is fuzzy
chaotic with respect to λ where λ is a fuzzy set in X }.

(ii) FCH(X) = { λ ∈ KF(X) / FC(λ ) 6= φ }.

Definition 2.11. [9] A fuzzy topological space (X, τ) is called
a fuzzy chaos space if FCH (X) 6= φ . If (X, τ) is fuzzy chaos
space then the elements of the FCH(X) are called chaotic sets
in X.

Definition 2.12. [9] Let (X, τ) be a fuzzy chaos space. Let
C be the collection of fuzzy chaotic sets in X satisfying the
following conditions:

(i) 0,1 ∈ C,

(ii) if µ1,µ2 ∈ C, then µ1∧µ2 ∈ C,

(iii) if {µ j : j ∈ J} ⊂ C, then ∨ j∈J µ j ∈ C.

Then C is called the fuzzy chaotic structure in X. The triple
(X, τ , C) is called fuzzy chaotic structure space. The elements
of C are called fuzzy chaotic open sets. The complement of
fuzzy chaotic open set is called fuzzy chaotic closed set.

Definition 2.13. [9] Let (X, τ , C) be a fuzzy chaotic Haus-
dorff space and let
p = { Ai } where each Ai is an fuzzy chaotic set. Then p is said
to be a fuzzy chaotic centred system if any finite collection
of Ai such that Ai q A j for i 6= j. The system p is said to be a
fuzzy maximal chaotic centred system (or) fuzzy chaotic end
if it cannot be included in any larger fuzzy chaotic centred
system.

Notation 2.14. Let X = { pi/i ∈ J} be a non empty set where
each pi is a fuzzy chaotic centred system in fuzzy chaotic
Hausdorff space (X, τ , C) and J be an indexed set. Now, P(X)
denotes the power set of X.

3. Fuzzy Chaotic Centred
Pre-Distinctiveness Space

Definition 3.1. Let X = { pi/i ∈ J} be a nonempty set with
an inequality relation, where each pi is a fuzzy chaotic centred
system and J be an indexed set. Let R be a relation between
subsets of X that satisfies the following conditions:

(i) pi R qi implies ¬ (pi = qi)

(ii) pi R qi implies qi R pi.

The types of complement for a subset A of X are as follows:

¬ A = { pi ∈ X: pi /∈ A },

∼ A = { pi ∈ X:∀ qi ∈ τ s.t pi 6= qi },

−A = { pi ∈ X: {pi } R A }.

For pi ∈ X, R is a fuzzy chaotic centred pre-distinctiveness
on X if it satisfies the following four axioms:

(D1) X R φ

(D2) −A ⊂ ∼A

(D3) ((A1 ∪ A2) R (B1 ∪ B2))⇔ ∀ i, j ∈ {1,2}, Ai R B j

(D4) −A ⊂ ∼ B⇒−A ⊂ −B.

Then the pair (X, R) is called a fuzzy chaotic centred pre-
distinctiveness space. If in addition, R satisfies

(D5) pi ∈ −A⇒ ∃ B ⊂ X such that pi ∈ −B and X = −A ∪
B

then it is called a fuzzy chaotic centred distinctiveness space.

Definition 3.2. Let (X, R) be a fuzzy chaotic centred pre-
distinctiveness space. Then the relation R is said to be sym-
metric if for all A, B ⊂ X, A R B⇔ B R A.

Definition 3.3. Let (X, R) be a fuzzy chaotic centred pre-
distinctiveness space and let A, B be subsets of X. If R is
a symmetric relation and A R B,then A, B are said to be
distinctive (from each other).
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Notation 3.4. The fuzzy chaotic centred point set pre distinc-
tiveness associated with the given set is obtained by defining
pi R A⇔ { pi } R A.

Proposition 3.5. Let (X, R) be a fuzzy chaotic centred pre-
distinctiveness space and let S, T be subsets of X. If S R T ,
then A R B for all A ⊂ S and B ⊂ T .

Proof. Let A ⊂ S and B ⊂ T . Then S = A ∪ S and T = B ∪ T .
Therefore
A ∪ S R B ∪ T . Hence by (D3) A R B.

Proposition 3.6. In any fuzzy chaotic centred pre distinctive-
ness space X, φ R φ .

Proof. The proof follows from (D1) and Proposition 3.5

Proposition 3.7. Let (X, R) be a fuzzy chaotic centred pre-
distinctiveness space and let S, T be subsets of X. If A R B,
then A ⊂ −B and B ⊂ ∼ A.

Proof. Let pi ∈ A. By Proposition 3.5 { pi } R B, that is pi
∈ −B. Therefore A ⊂ −B. By (D2) A ⊂ ∼ B. Hence B ⊂
∼ A.

Proposition 3.8. Let (X, R) be a fuzzy chaotic centred pre-
distinctiveness space and let T be a subset of X such that −T
is nonempty. Then φ R T .

Proof. Let pi ∈ −T . Then { pi } R T and φ ⊂ { pi }. By
Proposition 3.5 φ R T .

Proposition 3.9. Let (X, R) be a symmetric fuzzy chaotic
centred distinctiveness space, let pi ∈ X and A ⊂ X. If pi ∈
−A, then X = −{pi } ∪ −A.

Proof. By (D5), there exists S ⊂ X such that pi ∈ −S and X
= −A ∪ S. Since pi R S, by proposition 3.5 if qi ∈ S, then pi
R { qi }. Since (X, R) is symmetric, qi R { pi }. Hence S ⊂
−{ pi } and therefore X = −{pi } ∪ −A.

Note 3.10. The following three axioms hold in fuzzy chaotic
centred pre-distinctiveness space.

(E1) A R B and −B ⊂ ∼C⇒ A R C

(E2) A R B and −B ⊂ ¬C⇒ A R C.

(E3) pi R A⇒ ∀ qi ∈ X either pi 6= qi or qi R A.

Proposition 3.11. If X is a fuzzy chaotic centred pre distinc-
tiveness space satisfying E1, then A R B⇔ A R ∼∼ B, for
all subsets A and B of X.

Proof. Assume that A R B. Since −B ⊂ ∼ B = ∼∼∼ B, A R
∼∼ B. Conversely, assume that A R ∼∼ B. Since B ⊂ ∼∼ B
and by Proposition 3.5, A R B.

Definition 3.12. A fuzzy chaotic centred pre-distinctiveness
space X is said to have Efremovic property if S R T ⇒ ∃ E
⊂ X such that S R ¬ E and E R T .

Definition 3.13. A fuzzy chaotic centred pre-distinctiveness
space X is said to have reverse Kolmogorov property if ∀ pi,
qi ∈ X, ∀ S ⊂ X such that pi ∈ −S and qi /∈ −S⇒ pi 6= qi.

Proposition 3.14. A fuzzy chaotic centred pre-distinctiveness
space X with Efremovic property has reverse Kolmogorov
property.

Proof. Let (X, R) be a fuzzy chaotic centred pre-distinctiveness
space. Let U be a subset of X and let pi, qi ∈ X such that pi
∈ −U and qi /∈ −U . By Efremovic property, there exists E ⊂
X such that pi R ¬ E and E R U . If qi ∈ E, then qi ∈ −U .
This is a contradiction. Hence { qi } ⊂ ¬E. By Proposition
3.5 pi R { qi } and by (D2) pi 6= qi.

Proposition 3.15. For a fuzzy chaotic centred pre distinctive-
ness space X, Efremovic property implies the axiom E2.

Proof. Let A, B and C be subsets of X. Let A R B and −B ⊂
¬C. By Efremovic property, there exists E ⊂ X such that A
R ¬E and E R B. E ⊂ −B ⊂ ¬C and therefore C ⊂ ¬¬C ⊂
¬E. By Proposition 3.5 A R C. Hence the proof.

Definition 3.16. A fuzzy chaotic centred pre-distinctiveness
space X is said to be T1 fuzzy chaotic centred pre-distinctiveness
space if ∀ pi, qi ∈ X such that pi 6= qi ⇒ pi R { qi }.

Definition 3.17. A fuzzy chaotic centred pre-distinctiveness
space is fuzzy chaotic pre-distinctiveness Hausdorff space if
for every pi, qi ∈ X such that pi 6= qi, there exists U ⊂ X, V
⊂ X s.t U R V and pi ∈U , qi ∈ V .

Proposition 3.18. A symmetric T1 fuzzy chaotic pre-distinctiveness
space with Efremovic property is fuzzy chaotic pre-distinctiveness
Hausdorff.

Proof. Let X be a symmetric T1 fuzzy chaotic pre-distinctiveness
space and let pi, qi ∈ X and pi 6= qi. Since X is T1, pi R {qi
}. By Efremovic property and symmetry, there exists V ⊂ X
such that pi R ¬V and qi R V . Let U ≡ ¬V , by (D2) pi ∈
−U , qi ∈ −V and −U ⊂ ∼ ¬V ⊂ ∼−V .

Definition 3.19. A fuzzy chaotic centred pre-distinctiveness
space X is said to have weak nested neighbourhood property
if pi ∈ −S, then there exists T ⊂ X such that pi ∈ −T and
¬T ⊂ −S.

Proposition 3.20. Let X be a symmetric fuzzy chaotic cen-
tred pre-distinctiveness space and the Efremovic property
implies the weak nested neighbourhood property.

Proof. Let X be a fuzzy chaotic centred pre-distinctiveness
space and A be a subset of X. Let pi ∈ −A. Since X is
symmetric, A R {pi }. By Efremovic property , there exists
E ⊂ X such that A R ¬E and E R {pi }. Then by symmetric
property and Proposition 3.5, ¬E ⊂ −A and pi ∈ −E.
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Definition 3.21. Let (X, R) be a fuzzy chaotic centred pre-
distinctiveness space and Y be a nonempty subset of X. De-
fine the relation RY between subsets A, B of Y by A RY B⇔
A R B. We say that RY is induced on Y and it satisfies (D1-
D3). If also, (Y−A⊂Y∼ B)⇒ (Y−A⊂Y−B), then RY

is fuzzy chaotic centred pre-distinctiveness on Y. The space
(Y, RY) is called a fuzzy chaotic centred pre-distinctiveness
subspace of X. If RY satisfies (D5), then it is called a fuzzy
chaotic centred distinctiveness subspace of X.

Definition 3.22. A fuzzy chaotic centred pre-distinctiveness
space (X, R) or the pre-distinctiveness R itself is a fuzzy
chaotic centred locally decomposable if ∀ pi ∈ X and ∀ S ⊂
X such that pi ∈ −S⇒ ∃ T ⊂ X such that pi ∈ −T and X =
−S ∪ T .

Proposition 3.23. Every nonempty subset of a fuzzy chaotic
centred distinctiveness space is a fuzzy chaotic centred dis-
tinctiveness subspace.

Proof. Let Y be a nonempty subset of a fuzzy chaotic centred
distinctiveness space X. Let X be a fuzzy chaotic centred
locally decomposable and let pi ∈ −S and choose T such that
pi ∈ −T and X = −S ∪ T . For each qi ∈ X, either qi ∈ −S or
qi ∈ T hence pi 6= qi and satisfies (E3). Therefore Y has the
reverse Kolmogorov property. To prove (Y, RY) is a fuzzy
chaotic centred locally decomposable, consider, qi ∈Y and A
⊂ Y such that qi RY A. Then qi R A in X, Therefore there
exists S ⊂ X such that qi R S in X and X = (X − A) ∪ S.
Clearly, Y = (Y − A) ∪ (Y ∩ S). Since Y ∩ S ⊂ S,
qi R (Y ∩ S) in X and therefore, qi RY (Y ∩ S). Hence the
proof.
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