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Abstract. Let (Ln)n≥0 be the Lucas sequence given by L0 = 2, L1 = 1 and Ln+2 = Ln+1 + Ln for n ≥ 0. In this
paper, we are interested in finding all powers of three which are sums of two Lucas numbers, i.e., we study the exponential
Diophantine equation Ln +Lm = 3a in nonnegative integers n,m, and a. The proof of our main theorem uses lower bounds
for linear forms in logarithms, properties of continued fractions, and a version of the Baker-Davenport reduction method in
Diophantine approximation.
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1. Introduction

The determination of perfect powers of Lucas and Fibonacci sequences does not date from today. The real
contribution of determination of perfect powers of Lucas and Fibonacci sequences began in 2006. By classical
and modular approaches of Diophantine equations, Bugeaud, Mignotte, and Siksek [5] defined all perfect powers
of Lucas and Fibonacci sequences by solving the equations Fn = yp and Ln = yp respectively. From there,
many researchers tackled similar problems. It is in the same thought that, others have determined the powers of
2 of the sum/difference of two Lucas numbers [3], powers of 2 of the sum/difference of Fibonacci numbers [4],
powers of 2 and of 3 of the product of Pell numbers and Fibonacci numbers.
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We move our interest on the powers of 3 as a sum of two Lucas numbers. This paper follows the following
steps : We first give the generalities on binary linear recurrence, then we demonstrate an important inequality on
Lucas numbers and finally determine and reduce a coarse bound by section 3. The section 4 is devoted to the
reduction of the obtained bound in section 3 and discussion of possible different cases. We know from Bravo and
Lucas [3] that the only solutions of the Diophantine equation Fn +Fm = 2a in positive integers n, m and a with
n ≥ m are given by

2F1 = 2, 2F2 = 2, 2F3 = 4, 2F6 = 16,

and
F2 + F1 = 2, F4 + F1 = F4 + F2 = 4, F5 + F4 = 8, F7 + F4 = 16.

and in [4] that all solutions of the Diophantine equation Ln +Lm = 2a in nonnegative integers n ≥ m and a, are

2L0 = 4, 2L1 = 2, 2L3 = 8, L2 + L1 = 4, L4 + L1 = 8, and L7 + L2 = 32.

Here in this paper, we determine all the solutions of the following Diophantine equation:

Ln + Lm = 3a (1.1)

in nonnegative integers n ≥ m and a.
We are interested in finding all powers of three which are sums of two Lucas numbers, i.e., we study the

exponential Diophantine equation Ln + Lm = 3a in nonnegative integers n, m, and a. The proof of our main
theorem uses lower bounds for linear forms in logarithms, properties of continued fractions, and a version of the
Baker-Davenport reduction method in Diophantine approximation.

We notice that many authors have already tackled this type of problems.

2. Preliminaries

2.1. Generalities

Definition 2.1. Let k ≥ 1. The sequence {Hn}n≥0 ⊆ C is called a recurrent linear sequence of order k if the
sequence satisfies

Hn+k = a1Hn+k−1 + a2Hn+k−2 + · · ·+ akHn

for all n ≥ 0 with a1, . . . , ak ∈ C, fixed.

We suppose that ak 6= 0 (otherwise, the sequence {Hn}n≥0 satisfies a recurrence of order less than k). If
a1, . . . , ak ∈ Z and H0, . . . ,Hk−1 ∈ Z, then we can easily prove by induction on n that Hn is an integer for all
n ≥ 0. The polynomial

f(X) = Xk − a1X
k−1 − a2X

k−2 − · · · − ak ∈ C,

is called the characteristic polynomial of (Hn)n≥0. We suppose that

f(X) =

m∏
i=1

(X − αi)σi ,

where α1, . . . , αm are distinct roots of f(X) with respectively σ1, . . . , σm their multiplicities.

Definition 2.2. We define the sequences (An)n≥0 and (Bn)n≥0 for all positive integers N by{
An+2 = aAn+1 +An, A0 = 0, A1 = 1

Bn+2 = aBn+1 +Bn, B0 = 2, B1 = a.

For a = 1, (An)n≥0 = (Fn)n≥0 and (Bn)n≥0 = (Ln)n≥0 , which are Fibonacci and Lucas sequences
respectively, defined above.
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Remark 2.3. If k = 2, the sequence (Hn)n≥0 is called a binary recurrent sequence. In this case, the
characteristic polynomial is of the form

f(X) = X2 − a1X − a2 = (X − α1)(X − α2).

Suppose that α1 6= α2, then Hn = c1α
n
1 + c2α

n
2 for all n ≥ 0.

Definition 2.4. The binary recurrent sequence {Hn}n≥0 is said to be non degenerated if c1c2α1α2 6= 0 and
α1/α2 is not a root of unity.

Binet’s formula for the general term of Fibonacci and Lucas sequences is obtained using standard methods
for solving recurrent sequences, which are given by :

Fn =
αn − βn

α− β
and Ln = αn + βn

where (α, β) =

(
1 +
√

5

2
,

1−
√

5

2

)
are the zeros of the characteristic polynomial X2 −X − 1.

Definition 2.5. For all algebraic numbers γ, we define its measure by the following identity :

M(γ) = |ad|
d∏
i=1

max{1, |γi|},

where γi are the roots of f(x) = ad
d∏
i=1

(x− γi) is the minimal polynomial of γ.

Let us define now another height, deduced from the last one, called the absolute logarithmic height. It is the
most used one.

Definition 2.6. ( Absolute logarithmic height)

For a non-zero algebraic number of degree d on Q where the minimal polynomial on Z is f(x) = ad
d∏
i=1

(x−

γi), we denote by

h(γ) =
1

d

(
log |ad|+

d∑
i=1

log max{1, |γi|}

)
=

1

d
log M(γ).

the usual logarithmic absolute height of γ.

The following properties of the logarithmic height, will also be used in the next section:

• h(γ ± η) ≤ h(γ) + h(η) + log 2.

• h(γη±1) ≤ h(γ) + h(η).

• h(γs) = |s|h(γ).

2.2. Inequalities involving the Lucas numbers

In this section, we state and prove important inequalities associated with the Lucas numbers that will be used in
solving the equation (1.1).

Proposition 2.7. For n ≥ 2, we have

0.94αn < (1− α−6)αn ≤ Ln ≤ (1 + α−4)αn < 1.15αn (2.1)

Proof. This follows directly from the formula Ln = αn + (−1)nα−n. �
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2.3. Linear forms in logarithms and continued fractions

In order to prove our main result, we have to use a Baker-type lower bound several times for a non-zero linear
forms of logarithms in algebraic numbers. There are many of these methods in the literature like that of Baker
and Wüstholz in [1]. We recall the result of Bugeaud, Mignotte, and Siksek which is a modified version of the
result of Matveev [8]. With the notation of section 2, Laurent, Mignotte, and Nesterenko [7] proved the following
theorem:

Theorem 2.8. Let γ1, γ2 be two non-zero algebraic numbers, and let log γ1 and log γ2 be any determination of
their logarithms. Put D = [Q(γ1, γ2) : Q]/[R(γ1, γ2) : R], and

Γ := b2 log γ2 − b1 log γ1,

where b1 and b2 are positive integers. Further, let A1, A2 be real numbers > 1 such that

logAi ≥ max

{
h(γi),

| log γi|
D

,
1

D

}
, (i = 1, 2).

Then, assuming that γ1 and γ2 are mutiplicatively independent, we have

log |Γ| > −30.9 ·D4

(
max

{
log b′,

21

D
,

1

2

})2

logA1 · logA2,

where
b′ =

b1
D logA2

+
b2

D logA1
.

We shall also need the following theorem due to Matveev, Lemma due to Dujella and Pethő and Lemma due
to Legendre [6, 8].

Theorem 2.9. (Matveev [8])
Let n ≥ 1 an integer. Let L a field of algebraic number of degree D. Let η1, . . . , ηl non-zero elements of L

and let b1, b2, . . . , bl integers,
B := max{|b1|, ..., |bl|},

and

Λ := ηb11 · · · η
bl
l − 1 =

(
l∏
i=1

ηbii

)
− 1.

Let A1, . . . , Al reals numbers such that

Aj ≥ max{Dh(ηj), | log(ηj)|, 0.16}, 1 ≤ j ≤ l.

Assume that Λ 6= 0, So we have

log |Λ| > −3× 30l+4 × (l + 1)5.5 × d2 ×A1...Al(1 + logD)(1 + log nB)

Further, if L is real, then

log |Λ| > −1.4× 30l+3 × (l)4.5 × d2 ×A1...Al(1 + logD)(1 + logB).

During our calculations, we get upper bounds on our variables which are too large, so we have to reduce them.
To do this, we use some results from the theory of continued fractions. In particular, for a non-homogeneous linear
form with two integer variables, we use a slight variation of a result due to Dujella and Pethő, (1998) which is in
itself a generalization of the result of Baker and Davemport [2].

For a real number X , we write ‖X‖ := min{| X − n |: n ∈ Z} for the distance of X to the nearest integer.
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Lemma 2.10. (Dujella and Pethő, [6])
Let M a positive integer, let p/q the convergent of the continued fraction expansion of κ such that q > 6M

and let A, B, µ real numbers such that A > 0 and B > 1. Let ε := ‖µq‖ −M ‖κq‖.
If ε > 0 then there is no solution of the inequality

0 < mκ− n+ µ < AB−m

in integers m and n with
log(Aq/ε)

logB
6 m 6M.

Lemma 2.11. (Legendre)
Let τ real number such that x, y are integers such that∣∣∣∣τ − x

y

∣∣∣∣ < 1

2y2
.

then
x

y
=
pk
qk

is the convergence of τ .

Further, ∣∣∣∣τ − x

y

∣∣∣∣ > 1

(qk+1 + 2)y2
.

3. Main Results

Our main result can be stated in the following theorem.

Theorem 3.1. The only solutions (n,m, a) of the exponential Diophantine equation
Ln + Lm = 3a in nonnegative integers n ≥ m and a, are : (1, 0, 1) and (4, 0, 2)

i.e L1 + L0 = 3, and L4 + L0 = 9.

Proof. First, we study the case n = m, next we assume n > m and study the case n ≤ 200 with SageMath in
the range 0 ≤ m < n ≤ 200 and finally we study the case n > 200. Assume throughout that equation (1.1)
holds. First of all, observe that if n = m, then the original equation (1.1) becomes

Ln =
3a

2
.

This equation has no solution because, ∀n > 0, Ln ∈ Z. So from now, we assume n > m.
If n ≤ 200, the search with SageMath in the range 0 ≤ m < n ≤ 200 gives the solutions (n,m, a) ∈
{(1, 0, 1), (4, 0, 2)}. Now for the rest of the paper, we assume that n > 200 . Let first get a relation between a
and n which is important for our purpose. Combining (1.1) and the right inequality of (2.1), we get:

3a = Ln + Lm ≤ 2αn + 2αm < 2n+1 + 2m+1 = 2n+1(1 + 2n−m) ≤ 2n+1(1 + 1/2) < 2n+2.

Taking log both sides, we obtain

a log 3 ≤ (n+ 2) log 2 =⇒ a ≤ (n+ 2)c1 where c1 =
log 2

log 3
.

Rewriting equation (1.1) as:

Ln + Lm = αn + βn + Lm = 3a =⇒ αn − 3a = −βn − Lm.
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Taking absolute value both sides, we get

|αn − 3a| = |βn + Lm| ≤ |β|n + Lm <
1

2
+ 2αm ∵ |β|n < 1

2
, and Lm < 2αm.

Dividing both sides by αn and considering that n > m, we get:

∣∣1− α−n · 3a∣∣ < α−n

2
+ 2αm−n <

1

αn−m
+

2

αn−m
∵

1

2αn
<

1

αn−m
; n > m

Hence ∣∣1− α−n · 3a∣∣ < 3

αn−m
(3.1)

Let’s take
γ1 := α, γ2 := 3, b1 := n, b2 := a, Γ := a log 3− n logα

in order to apply Theorem 2.8. Therefore equation (3.1) can be rewritten as:∣∣1− eΓ
∣∣ < 3

αn−m
where eΓ = α−n3a. (3.2)

Since Q(
√

5) is the algebraic number field containing γ1, γ2; so we can take D := 2. Using equation (1.1)
and Binet formula for Lucas sequence, we have :

αn = Ln − βn < Ln + 1 ≤ Ln + Lm = 3a

which implies 1 < 3aα−n and so Γ > 0. Combining this with (3.2), we get

0 < Γ <
3

αn−m
(3.3)

where we used the fact that x ≤ ex − 1, ∀x ∈ R. Applying log on right and left hand side of (3.3), we get

log Γ < log 3− (n−m) logα. (3.4)

Logarithm height of γ1 and γ2 are:

h(γ1) =
1

2
logα = 0.2406 · · · , h(γ2) = log 3 = 1.09862 · · · , thus we can choose

logA1 := 0.5 and logA2 := 1.1.

Finally, by recalling that a ≤ (n+ 2)c1; c1 = 0.63093, we get :

b′ :=
b1

D logA2
+

b2
D logA1

=
n

2.2
+ a = 0.45n+ a < 0.45n+ (n+ 2)c1 < 2n.

It is easy to see that α and 3 are multiplicatively independent. Then by Theorem 2.8, we have

log Γ ≥ −30.9 · 24

(
max

{
log(2n),

21

2
,

1

2

})2

· 0.5 · 1.1

log Γ > −272

(
max

{
log(2n),

21

2
,

1

2

})2

. (3.5)

Combining (3.4) and (3.5), we obtain the following important result

(n−m) logα < 276

(
max

{
log(2n),

21

2
,

1

2

})2

. (3.6)
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Let us find a second linear form in logarithm. For this, we rewrite (1.1) as follows:

αn(1 + αn−m)− 3a = −βn − βm.

Taking absolute values in the above relation, we get

|αn(1 + αm−n)− 3a| < 2, β = (1−
√

5)/2, |β|n < 1 and |β|m < 1;∀n > 200, m ≥ 0.

Dividing both sides of the above inequality by αn(1 + αm−n), we obtain

∣∣1− 3aα−n(1 + αm−n)−1
∣∣ < 2

αn
i.e |Λ| < 2

αn
. (3.7)

All the conditions are now met to apply a Matveev’s theorem (Theorem 2.9).

• Data:

t := 3; γ1 := 3; γ2 := α; γ3 := 1 + αm−n

b1 := a; b2 := −n, b3 = −1.

As before, K = Q(
√

5) contains γ1, γ2, γ3 and has D := [K : Q] = 2. Before continuing with the
calculations, let’s check whether Λ 6= 0.

Λ 6= 0 comes from the fact that if it was zero, we would have

3a = αn + αm (3.8)

Taking the conjugate of the above relation in Q(
√

5), we get :

3a = βn + βm. (3.9)

Combining (3.8) and (3.9), we get :

αn < αn + αm = |βn + βm| ≤ |β|n + |β|m < 2.

Recall that n > 200. This relation is impossible for n > 200. Hence Λ 6= 0.

• Calculation of h(γ3)

Let us now estimate h(γ3) where γ3 = 1 + αm−n

γ3 = 1 + αm−n < 2 and γ−1 =
1

1 + αm−n
< 1

so | log γ3| < 1. Notice that

h(γ3) ≤ |m− n|
(

logα

2

)
+ log 2 = log 2 + (n−m)

(
logα

2

)
.
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• The calculation of A1 and A2 gives :

A1 := 2.2

and

A2 := 0.5

and we can take

A3 := 2 + (n−m) logα since h(γ3) := log 2 + (n−m)

(
logα

2

)

• Calculation of B

Since a < (n+ 2)c1, it follows that, B = max{1, n, a}. Thus we can take B = n+ 1.

The Matveev’s theorem gives the lower bound on the left hand side of (3.7) by replacing the data. We get :

exp (−C(1 + log(n+ 1)) · 2.2 · 0.5 · (2 + (n−m) logα))

where

C := 1.4 · 306 · 34.5 · 22(1 + log 2) < 9.7× 1011.

Replacing in equation (3.7), we get:

exp (−C(1 + log(n+ 1)) · 2.2 · 0.5 · (2 + (n−m) logα)) < |Λ| < 2

αn

which leads to

n logα− log 2 < C((1 + log(n+ 1)) · 1.1 · (2 + (n−m) logα) < 2C log n · 1.1 · (2 + (n−m) logα)

then

n logα− log 2 < 1.26× 1012 log n · (2 + (n−m) logα) (3.10)

where we used inequality 1 + log(n+ 1) < 2 log n, which holds for n > 200.
Now, using (3.6) in the right term of the above inequality (3.10) and doing the related calculations, we get

n < 7.3× 1014 log n

(
max

{
log(2n),

21

2

})2

. (3.11)

If max{log(2n), 21/2} = 21/2, it follows from (3.11) that n < 8.04825 · 1016 log n =⇒ n < 3.5 · 1018. On
the other hand, if max{log(2n), 21/2} = log(2n), then from (3.11), we get n < 7.3 · 1014 log n log2(2n) and so
n < 7.2 · 1019. We can easily see that for the two possible values of max{log(2n), 21/2}, n < 7.2 · 1019.

All the calculations done so far can be summarized in the following lemma.

Lemma 3.2. If (n,m, a) is a solution in positive integers of (1.1) with conditions n > m and n > 200, then
inequalities

a ≤ n+ 2 < 1.2× 1020 hold.
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4. Reducing of the bound on n

Dividing across inequality (3.3) : 0 < a log 3− n logα <
3

αn−m
by logα, we get

0 < aγ − n < 7

αn−m
; where γ :=

log 3

logα
. (4.1)

The continued fraction of the irrational number γ is :

[a0, a1, a2, ......] = [1, 2, 3, 1, 1, 2, 3, 2, 4, 2, 1, 11, 2, 1, 11, ......]

and let denote pk/qk its convergent. An inspection using SageMath gives the following inequality

4977896525362041575 = q41 < 1.2× 1020 < q42 = 805929983250536127817.

Furthermore, aM := max {ai|i = 0, 1, ..., 42} = 161 Now applying Lemma 2.11 and properties of continued
fractions, we obtain

|aγ − n| > 1

(aM + 2)a
. (4.2)

Combining equation (4.1) and (4.2), we get

1

(aM + 2)a
< |aγ − n| < 7

αn−m
=⇒ 1

(aM + 2)a
<

7

αn−m
=⇒ αn−m < 7 · (161 + 2)a < 1.3692 · 1023.

Applying log above and divide by logα, we get :

(n−m) ≤ log (7 · 163 · a)

logα
< 111.

To improve the upper bound on n, let consider

z := a log 3− n logα− log ρ(u) where ρ = 1 + α−u. (4.3)

From (3.7), we have

|1− ez| < 2

αn
. (4.4)

Since Λ 6= 0, then z 6= 0. Two cases arise : z < 0 and z > 0. For each case, we will apply Lemma 2.10.

• Case 1 : z > 0

From (4.4), we obtain 0 < z ≤ ez − 1 <
2

αn
. Replacing (4.3) in the above inequality, we get:

0 < a log 3− n logα− log ρ(n−m) ≤ 3aα−nρ(n−m)−1 − 1 < 2α−n

hence
0 < a log 3− n logα− log ρ(n−m) < 2α−n

and by diving above inequality by logα

0 < a

(
log 3

logα

)
− n− log ρ(n−m)

logα
< 5 · α−n. (4.5)

Taking, γ :=
log 3

logα
, µ := − log ρ(n−m)

logα
, A := 5, B := α, inequality (4.5) becomes

0 < aγ − n+ µ < AB−n.
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Since γ is irrational, we are now ready to apply lemma 2.10 of Dujella and Pethö on (4.5) for n − m ∈
{1, ..., 111}.
Since a ≤ 1.2× 1020 from lemma 3.2, we can take M = 1.2× 1020, and we get

n <
log(Aq/ε)

logB
where q > 6M

and q is the denominator of the convergent of the irrational number γ such that ε := ||µq|| −M ||γq|| > 0.
With the help of SageMath, with conditions z > 0, and (n,m, a) a possible zero of (1.1), we get
n < 112 which contradicts our assumption n > 200. Then it is false.

• Case 2 : z < 0

Since n > 200, then 2
αn < 1

2 . Hence (4.4) implies that |1− e|z|| < 2. Also, since z < 0, we have

0 < |z| ≤ e|z| − 1 = e|z||e|z| − 1| < 4

αn
.

Replacing (4.3) in the above inequality and dividing by log 3, we get:

0 < n

(
logα

log 3

)
− a+

ρ(n−m)

log 3
<

4

log 3
· α−n < 4 · α−n (4.6)

In order to apply lemma 3.2 on (4.6) for n − m ∈ {1, 2, ..., 111}, let’s take again M = 1.2 × 1020. With the
help of SageMath, with conditions z < 0, and (n,m, a) a possible zero of (1.1), we get n < 111 which
contradicts our assumption n > 200. Then it is false.

This completes the proof of our main result (Theorem 3.1). �
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