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Pythagorean triangles and addition of nonagonal,
triangular numbers
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Abstract
Oblong numbers as figurate numbers, which were first studied by the Pythagoreans are studied in terms of
special Pythagorean Triangles. The two consecutive sides and their perimeters of Pythagorean triangles are
investigated. In this study, the perimeter of Pythagorean triangles is obtained as addition of nonagonal and
triangular numbers.
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1. Introduction
In 2005, Gopalan and Devibala [2] studied Special Pythagorean
triangle. In 2008, Gopalan and Janaki [3] investigated Pythago
-rean triangles with perimeter as a pentagonal number. In 2010,
Gopalan and Vijayalakshmi [1] observed Special Pythagorean
triangles generated through the integral solutions of the equa-
tion y2=(k2+1)x2+1. After that Mita [4] investigated about
oblong numbers and Pythagorean triangles. He found that
perimeter of the Pythagorean triangles are as oblong numbers.
In 2017, Jayakumar. P and Shankarakalidoss. G [5] and [6]
investigated about Hexagonal numbers and Pythagorean trian-
gles. He investigated that perimeter as a double of hexagonal
numbers.

2. Method of Analysis
The primitive solutions of the Pythagorean Equation,

X2 +Y 2 = Z2 (2.1)

is given by [5]

X = m2−n2,Y = 2mn,Z = m2 +n2 (2.2)

for some integers m,n of opposite parity such that m > n > 0
and (m,n) = 1.

2.1 Perimeter is an addition of nonagonal and trian-
gular numbers

Definition 2.1. A natural number P is called addition of
nonagonal and triangular numbers if it can be written in
the form(

7w2−5w
)

2
+

(
w2 +w

)
2

= 2
(
2w2−w

)
,w ∈ N.

If the perimeter of the Pythagorean triangle (X ,Y,Z) is addi-
tion of nonagonal and triangular numbers W, then

X +Y +Z = 2
(
2w2−w

)
= P (2.3)

From the equations (2.2) & (2.3) 2m2 +2mn = 2
(
2w2−w

)
,

w ∈ N

m(m+n) = w(2w−1) (2.4)
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2.2 Hypotenuse and one leg are consecutive
In such cases,

m = n+1. (2.5)

This gives equation (2.4) as (n+1)(2n+1) =w(2w−1) Take,

w = n+1. (2.6)

Equations (2.2),(2.5) & (2.6) give solution of equations (2.1)
in correspondence with equations (2.3) and (2.4) i.e., X =
2n+1; Y = 2n(n+1); Z = 2n(n+1)+1;
First ten such special Pythagorean triangles (X ,Y,Z) are given
in the Table 1 below:

Table 1. Special Pythagorean Triangles
S. No. n w P X Y Z

1 1 2 12 3 4 5
2 2 3 30 5 12 13
3 3 4 56 7 24 25
4 4 5 90 9 40 41
5 5 6 132 11 60 61
6 6 7 182 13 84 85
7 7 8 240 15 112 113
8 8 9 306 17 144 145
9 9 10 380 19 180 181

10 10 11 462 21 220 221

Table 2. Verification of X2 +Y 2 = Z2 and
X +Y +Z = 2w(2w−1)

S.No X2 Y 2 X2 +Y 2 Z2 X +Y +Z
=2 w(2 w-1)

1 9 16 25 25 12 = 2.2.3
2 25 144 169 169 30 = 2.3.5
3 49 576 625 625 56 = 2.4.7
4 81 1600 1681 1681 90 = 2.5.9
5 121 3600 3721 3721 132 = 2.6.11
6 169 7056 7225 7225 182 = 2.7.13
7 225 12544 12769 12769 240 = 2.8.15
8 289 20736 21025 21025 306 = 2.9.17
9 361 32400 32761 32761 380 = 2.10.19

10 441 48400 48841 48841 462 = 2.11.21

3. Observations and conclusion

1. (X +Y −Z)2 = (Y +Z−2X +1)

2. (X +Z−Y )2 = (Y +Z +2X +1)

3. Y +Z = X2

4. (2X−Y +Z)2 = X2 +2(X +Y +Z)+2(X +Z)
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