

https://doi.org/10.26637/MJM0901/0111

Fuzzy chaotic centred quasi-uniform space

R. Malathi^{1*} and M. K. Uma²

Abstract

In this paper, the concept of fuzzy chaotic centred pre-distinctiveness space, fuzzy chaotic centred distinctiveness space, fuzzy chaotic centred filter base, fuzzy chaotic centred quasi-uniform structure, fuzzy chaotic centred tight and fuzzy chaotic centred quasi-uniform subspace are introduced and their interesting properties are discussed.

Keywords

Fuzzy chaotic centred pre-distinctiveness space, fuzzy chaotic centred distinctiveness space, fuzzy chaotic centred filter base, fuzzy chaotic centred quasi-uniform structure, fuzzy chaotic centred quasi-uniform space, fuzzy chaotic centred tight and fuzzy chaotic centred quasi-uniform subspace.

AMS Subject Classification

54A40, 03E72.

^{1,2} Department of Mathematics, Sri Sarada College for Women, Salem-636016, Tamil Nadu, India.

*Corresponding author: ¹ malathymaths90@gmail.com

Article History: Received 21 December 2020; Accepted 27 February 2021

©2021 MJM.

Contents

Introduction641
Preliminaries 641
Fuzzy Chaotic Centred Quasi-Uniform Space 642
References

1. Introduction

Fuzzy set theory, which was established by Zadeh[12] (1965), has emerged as a incredible method of representing quantitatively and controlling the imprecision in decision-making problems. Fuzzy sets have applications in many fields such as information [7] and control [8]. Chang [4] introduced and developed the concept of fuzzy topological spaces. In 2007, the concept centred sysytems in fuzzy topological spaces introduced by Uma, Roja and Balasubramanian [10]. The concept of chaotic in general metric space was introduced by R. L. Devaney [5]. The elementary properties of chaos (Devaney definition of chaos) were established in [1] and [2]. Futhermore, the properties of chaos were developed and studied in [11]. In this paper, the concept of fuzzy chaotic centred predistinctiveness space, fuzzy chaotic centred distinctiveness space, fuzzy chaotic centred filter base, fuzzy chaotic centred quasi-uniform structure, fuzzy chaotic centred quasi-uniform space, fuzzy chaotic centred tight and fuzzy chaotic centred quasi-uniform subspace are introduced and their interesting properties are discussed.

2. Preliminaries

Definition 2.1. [12] A fuzzy set in X is a function with domain X and values in I, that is an element of I^X .

Definition 2.2. [3] Let S be a set. Then $\mathfrak{S} \subseteq \mathfrak{P}(s)$ is called a texturing of S and (S, \mathfrak{S}) is called a texture space or simply a texture if

- (1) (G, ⊆) is complete lattice containing S and φ which has the property that arbitrary meets coincide with intersections, and finite joins coincide with unions. ie., ∧_{i∈I} A_i = ∩_{i∈I} A_i, A_i ∈ T, i ∈ I, for all index sets I, ∨_{i∈I} A_i = ∪_{i∈I} A_i, A_i ∈ T, i ∈ I, for all index sets I.
- (2) \mathfrak{S} is completely distributive.
- (3) \mathfrak{S} separates the points of S. That is, given $s_1 \neq s_2$ in S, we have $A \in \mathfrak{S}$ with $s_2 \in A$, $s_1 \notin A$.

A surjection $\sigma : \mathfrak{S} \to \mathfrak{S}$ is called a complementation if $\sigma^2(P)$ = P for all $P \in \mathfrak{S}$ and $P \subseteq Q$ in \mathfrak{S} implies $\sigma(Q) \subseteq \sigma(P)$. A texture with a complementation is said to be complemented.

Example 2.3. If X is a set and P(X) the powerset of X, then (X, P(X)) is the discrete texture on X. For $x \in X$, $P_x = x$ and $Q_x = X / x$.

Definition 2.4. [6] Let (X, τ) be a fuzzy topological space. Let $f : X \to X$ be any mapping. The fuzzy orbit set under the mapping f which is in fuzzy topology τ is called fuzzy orbit open set under the mapping f. Its complement is called a fuzzy orbit closed set under the mapping f.

Definition 2.5. [9] Let (X, τ) be a fuzzy topological space and $\lambda \in KF(X)$ (Where KF(X) is a collection of all nonempty fuzzy compact subsets of X).Let $f : X \to X$ be any mapping. Then f is fuzzy chaotic with respect to λ if

(i) cl $FO_f(\lambda) = 1$,

(ii) P is fuzzy dense.

Notation 2.6. (i) FC $(\lambda) = \{ f : X \to X / f \text{ is fuzzy} chaotic with respect to <math>\lambda$ where λ is a fuzzy set in X $\}$.

(ii) FCH(X) = { $\lambda \in KF(X) / FC(\lambda) \neq \phi$ }.

Definition 2.7. [9] A fuzzy topological space (X, τ) is called a fuzzy chaos space if FCH $(X) \neq \phi$. If (X, τ) is fuzzy chaos space then the elements of the FCH(X) are called chaotic sets in X.

Definition 2.8. [9] Let (X, τ) be a fuzzy chaos space. Let \mathfrak{C} be the collection of fuzzy chaotic sets in X satisfying the following conditions:

- (i) $0, 1 \in \mathfrak{C}$,
- (ii) if $\mu_1, \mu_2 \in \mathfrak{C}$, then $\mu_1 \wedge \mu_2 \in \mathfrak{C}$,
- (iii) if $\{\mu_j : j \in J\} \subset \mathfrak{C}$, then $\vee_{j \in J} \mu_j \in \mathfrak{C}$.

Then \mathfrak{C} is called the fuzzy chaotic structure in X. The triple (X, τ, \mathfrak{C}) is called fuzzy chaotic structure space. The elements of \mathfrak{C} are called fuzzy chaotic open sets. The complement of fuzzy chaotic open set is called fuzzy chaotic closed set.

Definition 2.9. [9] A fuzzy chaotic structure space (X, τ, \mathfrak{C}) is called a fuzzy chaotic Hausdorff space if for each pair of non zero fuzzy chaotic sets λ and μ such that $\lambda \neq \mu$, then there exist fuzzy chaotic open sets γ and δ such that $\lambda \leq \gamma$ and $\mu \leq \delta$ and $\gamma q \delta$.

3. Fuzzy Chaotic Centred Quasi-Uniform Space

Definition 3.1. Let $\mathfrak{X} = \{ p_i / i \in J \}$ be a nonempty set of fuzzy chaotic centred systems and let U, V be subsets of the cartesian product of $\mathfrak{X} \times \mathfrak{X}$. Define certain subsets as follows:

 $U \circ V \equiv \{ (p_i, q_i) : \exists r_i \in \mathfrak{X} \text{ such that } ((p_i, r_i) \in U \text{ and} (r_i, q_i) \in V) \},$ $U^1 \equiv U, U^{n+1} \equiv U \circ U^n \text{ (n = 1, 2....)}.$

 $U^{-1} \equiv \{ (p_i, q_i) : (q_i, p_i) \in U \}$ and, for $p_i \in \mathfrak{X}$,

$$U[p_i] \equiv \{ q_i \in \mathfrak{X} : (p_i, q_i) \in U \}$$

U is called symmetric if $U = U^{-1}$.

Definition 3.2. Let *S* be any set and \mathscr{B} be a nonempty subset of *S*. Then \mathscr{B} is called a fuzzy chaotic centred filter base on *S* if the intersection of two sets in \mathscr{B} contains a set in \mathscr{B} .

Definition 3.3. Let *S* be any set and \mathscr{B} is a fuzzy chaotic centred filter base on *S*. If \mathscr{B} satisfies the following conditions:

- (F1) The intersection of two sets in \mathscr{B} belongs to \mathscr{B}
- (F2) All supersets of sets in \mathscr{B} belong to \mathscr{B} .
- . Then \mathcal{B} is called fuzzy chaotic centred filter on S.

Definition 3.4. Let \mathfrak{X} be a nonempty set of fuzzy chaotic centred systems and let \mathscr{U} be a family of subsets of $\mathfrak{X} \times \mathfrak{X}$. If \mathscr{U} satisfies the following conditions:

- (U1) \mathscr{U} is a fuzzy chaotic centred filter on $\mathfrak{X} \times \mathfrak{X}$.
- (U2) For all $(p_i, q_i) \in \mathfrak{X}$, $p_i = q_i$ if and only if $(p_i, q_i) \in U$ for each $U \in \mathscr{U}$.
- (U3) For each $U \in \mathscr{U}$ there exists $V \in \mathscr{U}$ such that $V^2 \subset U$.
- (U4) For each $U \in \mathscr{U}$ there exists $V \in \mathscr{U}$ such that $\mathfrak{X} \times \mathfrak{X} = U \cup \neg V$.

Then \mathscr{U} is called a fuzzy chaotic centred quasi-uniform structure on \mathfrak{X} . The elements of \mathscr{U} are called the fuzzy chaotic centred entourages of (fuzzy chaotic centred quasi-uniform structure on) \mathfrak{X} , and the pair ($\mathfrak{X}, \mathscr{U}$) itself is called a fuzzy chaotic centred quasi-uniform space.

Note 3.5. The intersection of all the fuzzy chaotic centred entourages in \mathscr{U} is the diagonal. ie, $\Delta \equiv \{ (p_i, p_i) : p_i \in \mathfrak{X} \}$ of $\mathfrak{X} \times \mathfrak{X}$ by (U2).

Note 3.6. The inequality relation is symmetric, (U2) implies that if $p_i = q_i$, then $(p_i, q_i) \in U$ for all $U \in \mathcal{U}$.

Definition 3.7. The standard (fuzzy chaotic centred uniform) inequality on a fuzzy chaotic centred quasi-uniform space $(\mathfrak{X}, \mathscr{U})$ is defined by

 $p_i \neq q_i \Leftrightarrow$ there exists $U \in \mathscr{U}$ such that $(p_i, q_i) \notin U$ or there exists $U \in \mathscr{U}$ such that $(q_i, p_i) \notin U$.

Definition 3.8. The standard inequality on a fuzzy chaotic centred quasi-uniform space $(\mathfrak{X}, \mathscr{U})$ is said to be fuzzy chaotic centred tight if $\neg (p_i \neq q_i) \Rightarrow p_i = q_i$

Definition 3.9. Let $(\mathfrak{X}, \mathscr{U})$ be a fuzzy chaotic centred quasiuniform space and let \mathfrak{Y} be a nonempty subset of \mathfrak{X} . A fuzzy chaotic centred quasi-uniform structure \mathscr{U} on \mathfrak{X} induces a fuzzy chaotic centred quasi-uniform structure $\mathscr{U}_{\mathfrak{Y}}$ on a nonempty subset \mathfrak{Y} of \mathfrak{X} . The fuzzy chaotic centred entourages of $\mathscr{U}_{\mathfrak{Y}}$ are the sets $U \cap (\mathfrak{Y} \times \mathfrak{Y})$ with $U \in \mathscr{U}$. Then \mathfrak{Y} together with $\mathscr{U}_{\mathfrak{Y}}$ is called fuzzy chaotic centred quasi-uniform structure $\mathscr{U}_{\mathfrak{Y}}$ is called the fuzzy chaotic centred subspace of quasi-uniform structure on \mathfrak{Y} .

Proposition 3.10. Let $(\mathfrak{X}, \mathscr{U})$ be a fuzzy chaotic centred quasi-unform space and let U be a fuzzy chaotic centred entourage of $(\mathfrak{X}, \mathscr{U})$. Then either $p_i \neq q_i$ or $(p_i, q_i) \in U$, for every $p_i, q_i \in \mathfrak{X}$.

Proof. By (U4), there exists $V \in \mathcal{U}$ such that $\mathfrak{X} \times \mathfrak{X} = U \cup \neg V$. If $(p_i, q_i) \in \neg V$, then $p_i \neq q_i$ by the definition of the standard inequality on \mathfrak{X} .

Proposition 3.11. The standard inequality on a fuzzy chaotic centred quasi-uniform space is fuzzy chaotic centred tight.

Proof. Let $(\mathfrak{X}, \mathscr{U})$ be a fuzzy chaotic cnetred quasi-uniform space and let p_i and q_i be fuzzy chaotic centred systems of \mathfrak{X} such that $\neg (p_i \neq q_i)$. Then by Proposition 3.10 $(p_i, q_i) \in U$ for each $U \in \mathscr{U}$. Therefore by (U2) $p_i = q_i$.

Proposition 3.12. Let($\mathfrak{X}, \mathscr{U}$) be a fuzzy chaotic centred quasi-uniform space and let *V* be a fuzzy chaotic centred entourage of ($\mathfrak{X}, \mathscr{U}$). Let *n* be an integer ≥ 2 . Then V^n is a fuzzy chaotic centred entourage, and $V^{n-1} \subset V^n$.

Proof. Let $(p_i, q_i) \in V^{n-1}$, by (U2) $(p_i, p_i) \in V$. Hence $(p_i, q_i) \in V \circ V^{n-1} = V^n$. Therefore by (U1) and (F2) V^n is fuzzy chaotic centred entourage.

Proposition 3.13. Let $(\mathfrak{X}, \mathscr{U})$ be a fuzzy chaotic cnetred quasi-uniform space and let $U \in \mathscr{U}$. Then there exists $V \in \mathscr{U}$ such that $V^3 \subset U$.

Proof. Let us construct $W, V \in \mathcal{U}$ such that $W^2 \subset U$ and $V^2 \subset W$ by using (U3) twice. By Proposition 3.12 $V \subset V^2 \subset W$. Therefore $V^3 = V \circ V^2 \subset W \circ V^2 \subset W \circ W \subset U$. Hence $V^3 \subset U$.

Proposition 3.14. Let $(\mathfrak{X}, \mathscr{U})$ be a fuzzy chaotic centred quasi-unform space and let U be a fuzzy chaotic centred entourage of $(\mathfrak{X}, \mathscr{U})$. Then there exists a fuzzy chaotic centred entourage V such that $V^2 \subset U$ and $\neg U \subset \sim V$.

Proof. By Proposition 3.13, choose a fuzzy chaotic centred entourage *V* such that $V^3 \subset U$. By Proposition 3.12, $V^2 \subset U$ and there exists a fuzzy chaotic centred entourage *W* such that $\mathfrak{X} \times \mathfrak{X} = V \cup \neg W$ by (U4). Consider (p_i, q_i) in $\neg U$ and (r_i, s_i) in *V*. If $(p_i, r_i) \in V$ and $(s_i, q_i) \in V$, then $(p_i, q_i) \in V^3 \subset U$, which is a constradiction. Hence either $(p_i, r_i) \in \neg W$ and so $p_i \neq r_i$, or else $(s_i, q_i) \in \neg W$ and so $s_i \neq q_i$. Thus $(p_i, q_i) \neq (r_i, s_i)$. It follows that $\neg U \subset \sim V$.

Proposition 3.15. Let $(\mathfrak{X}, \mathscr{U})$ be a fuzzy chaotic centred quasi-unform space. If *U* is a fuzzy chaotic centred entourage of $(\mathfrak{X}, \mathscr{U})$, then for all integers $n \ge 2$, there exists a fuzzy chaotic centred entourage *V* such that $V^n \subset U$ and $\mathfrak{X} \times \mathfrak{X} = U \cup \sim V$.

Proof. If *U* is a fuzzy chaotic centred entourage of $(\mathfrak{X}, \mathscr{U})$, then there exists a fuzzy chaotic centred entourage $W \in \mathscr{U}$ such that $\mathfrak{X} \times \mathfrak{X} = U \cup \neg W$. By Proposition 3.14, there exists a fuzzy chaotic centred entourage $V \in \mathscr{U}$ such that $\neg W \subset \sim V$. Also by Proposition 3.14, there exists a fuzzy chaotic centred entourage *V* such that $V^2 \subset U$, which gives the proof for n = 2. Since the proof is true for n = 2, by the induction hypothesis it is true for power of 2, say 2^k where *k* is a positive integer. Let $2^k > n$. Hence there exists a fuzzy chaotic centred entourage $V \in \mathscr{U}$ such that $V^{2k} \subset U$ and $\mathfrak{X} \times \mathfrak{X} = U \cup \sim V$. By Proposition 3.12, $V^n \subset V^{2k}$. Thus $V^n \subset V^{2k} \subset U$, which completes the proof.

References

- ^[1] Assaf IV, D and Gadbois, S : Definition of Chaos, *Ametican Mathematical Monthly*, (letter), 99(9)(1992), 865.
- [2] Banks, J, Brooks, J, Cairns, G Davis, G and Stacey, P: On Devaney definition of chaos, *American Mathematical Monthly*, 99(1992), 332-334.
- [3] Brown, L. M and R. Erturk : Fuzzy Sets and Texture Spaces, I. Representation Theorems, *Fuzzy Sets Syst.*, 110(2)(2000), 227-236.
- [4] Chang, C.L : Fuzzy topological spaces, J. Math. Anal. Appl. 24(1968), 182-190.
- [5] Devaney, R. L : Introduction to chaotic dynamical systems, Redwood city, Calif : Addison-wesley 1986.
- [6] Malathi, R and Uma, M. K : Fuzzy orbit* continuous mappings, *Annal of Fuzzy Mathematics and Informatics*, 13(4)(2017), 465-474.
- [7] Smets, M : The degree of belief in a fuzzy event, *Inform. Sci.*, 25(1981), 1-19.
- [8] Sugeno, M : An introductory survey of fuzzy control, *Inform. Sci.*, 36(1985), 59-83.
- [9] Uma, M. K and Malathi, R : Fuzzy chaotic centred structure Di-structure spaces, *The Journal of Fuzzy Mathematics*, 26(2)(2018).
- [10] Uma, M. K, Roja, E and Balasubramanian, The mothed of Centred Systems in Fuzzy topological spaces, *The Journal of Fuzzy Mathematics*, 15(4)(2007).
- [11] Vellekoop, M and Berglund, R : On intervals, transitivity
 = chaos. American Mathematical Monthly, 101(4)(1994), 353-355.
- ^[12] Zadeh, L : Fuzzy Sets, *Inform. and Control*, 8(1965), 338-353.

ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******