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1. Introduction

Suppose o7 be the class containing functions which are of the
form:
fR)=z+ Y tnd" (1.1)
n=2
and are also analytic in the unit disk f(z) = {z: |z| < 1}.
Furthermore we assumes to be the subclass of .7 which con-

sists of all univalent functions in A,then the logarithmic coef-
ficients y,of fS, satisfies:

log <f22)> :Zi Yo (f)Z"z€A
n=1

¥ (f)can be written as ,. In the history of univalent function,
these logarithmic coefficients play a significant role in vari-
ous estimates. [2] Kayumov solved Brennan’s conjecture for
conformal mappings using these logarithmic coefficients.
Equation (1.2) can be written as

(1.2)

o

2Y ' = [netnd +ud .~ Lnet s +nd . )

n=1

+% [IQZ+I3ZZ+Z‘4Z3+...]3+...

Equating the coefficients of 7" for n = 1,2, 3,on both sides
of the above equation ,we get:

2n=n
1
29 = 13— 5t°
2 =t4— otz + 31°

(1.3)

Definition 1.1 Starlike function of complex order d: For
the function f (z) € & to be starlike of complex order d (d €

C\ {0}),it must follow the condition: @ #0(z€ A)and

s ()

we denote this class by S (d).

Definition 1.2 Convex function of complex order d: For
the function f (z) €47 to be convex of complex order d (d €
C\{0}), it must follow the conditions given below:

f'(z) #0and

Re{lﬁ(%)} >0, (1)

We denote this class by K, (d).

A function f(z)e«/ is close-to-convex of complex order
dd (d € C\ {0}) if there exists a function g(z) € K,(d)(d €
C\ {0})which satisfy the following condition :-

1 ([
Re {1+3 (g,é) —1)} >0,(z€A)
We denote this class by C,(d).

Definition 1.3 Subordination: If f and g are two functions

analytic in A, then the function f is subordinate to g in
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Aie.f (z) < g(z), if there exists a Schwarz function o, an-
alytic in A with @ (0) =0 and |@ (z)| < 1 such tha f(z) =
g(w(2)) (z&A). articularly, if the function gis univalent inA,
then f < g if the following conditions hold f (0) = g (0)and
f(L)Cg(h)

Nasr and Aouf [4] introduced and studied the classesS, (b) and
Ko (D). Ma and Minda [5] introduced and studied the class
S* (¢) which consists of functionsf € Ssatisfying the follow-
ing conditions

zf' (2)
f(2

In this paper we define a more general class of starlike func-
tion and convex function of complex order following Ma and
Minda and find bounds for logarithmic coefficients for this
class.

Definitions 1.4 : Let S (¥)be a class consisting of all ana-
lytic function f.7 where d (C/{0}) and ¥ (z)is any analytic
function with positive real part on A satisfying ¥ (0) = 1,
¥’ (0) > 0 and maps A ontoa region starlikewith respect to
1 and symmetric with respect to the real axis. Then S (¥)
consists of all analytic functions f.of satisfying

2f' ()
1+d(f@

The class K;( W) consists of the functions ./ which satisfies
the following condition:

1(zf7(2)
1+d (f’(z) ) <¥(z)

<9(2),(z4).

1) <¥(z) (1.4)

(1.5)

Furthermore, we let S* (M, N,d)and K (M,N,d) (d # 0,complex)l.emma 5. [11]If v (z) =

denote the class S} (¥) and K, ( ¥)respectively, where

1+Mz
14Nz’

Y(z) = (-1<N<M<1).

The Class S* (M,N,d), and therefore the class S, (¥), spe-
cialize to many well known classes of univalent functions for
suitable choice of M,N and d.

Recently many researchers have worked on the similar prob-
lems of logarithmic coefficients, such as the functlonk( )=

z(1 — ¢%)72 has logarithmic coefficientsy, = <—~,n > 1 for
every 6. In [6] (Theorem 4), it has been proved that the
logarithmic coefficients y,0f every function f€S satisfy:

oo 2
2 T

< —

,,2:1'%' <%

and the equality is attained for the Koebefunction. Ali et al.
[3] and P. Kumar et al. [7] in 2018 found the bounds for log-
arithmic coefficient y,for definite classes of close-to-convex
functions. In 2019, E.A. Adegani, NakEun Cho and Mostafa
Jafari [1] obtained bounds for logarithmic coefficients for cer-
tain subclasses of starlike and convex functions defined by
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subordination. But the problem for n >3, for the logarithmic
coefficients of univalent function is still a matter of concern.

On the basis of the results obtained in the previous pa-
per, we have tried to obtain the bounds for the logarithmic
coefficients y,0f the general classes S); (¥) and K;( W) in this

paper.
The lemmas will be using in our proofs are as follows:
Lemma 1. [8]. Let w be a Schwarz function such that w(z) =

(=<}
Z WnZn7
n=1

then

|W1|§ 13|Wn| < 17|W1|2,}’l:2,3,...

Lemma 2. [9] Suppose y,¢ € &/ be convex in A, such

that f(z) < y(z) and g(z) < (z), then f(z) * g (z) < ¥ (2) *
¢ (z), where f,g o/ and " x” represents convolution

Lemma 3. [6,10]Suppose [ (z) = Z IhZ"and k (z) = ): knZ"be
analytlc in A, and assume [/ < kwhere kis un1va1ent inA.
Then ): |lm\ < Z |km\ n=12,...

m=1 m=1

Lemma 4. [6,10] (Theorom 6.4(i)). Suppose j (z)

h(z) =

e
univalent in A\, then

= Y Jjn2"and
n=1

Y. h,Z"be analytic in Aand assuming j < Awherehis
=1

(11 On condition thathis convex; |j,| < | (0)] = hy,n =
1,2,....

[2I' On condition that h is starlike (starlike with respect to
D3l jnl < nlh

Z v,Z" € Q,where Qdenotes the

class of schwarz functions i 1n A Then for any real number p;
and py, the following sharp estimate holds:

[v3+ p1viva + pavi| < H (p13p2),

where,
H(plaPZ)
L, if(p1,p2) €D1UDU{(2,1)},
218 if (1,p2) € Ug_3Dx
5
1\Z
HUZIER)) (3|p|lp‘l+‘:r+pz> sif (p1,p2) € DsUDy
H(p1,p2) = !

Jif (p1,p2) € DioUD\{(2,1)}

> 24 24
% (#5) (255
HUZE) <3|,,|lp‘l,‘:,,2)
where the sets D,k = 1,2,...,12are given by
Di={(p1,p2) : |p1|< 3, |p2| <1},
Dy ={(pr.p2) 1 3 < Il 2,5 ((Ipal+1)°)
—(Ip[+1) <|p2| <1}

=

L if (p1,p2) €Dy

Ds={(p1,p2) : |p1|< 3, |p2| < -1},
Dy={(p1,p2) : [p1|> 3, )}
={(p1,p2) : P11 2,|p2| > 1},
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De={(p1.p2) : 2 < |p1|<4.[p2| > 75 (PT+38) }.
D7= {(Plapz |Pl|>4|P2|23(| 1= )}’
:{ Pl,Pz )3 <Ipl <2, }
-3 |P1\+1)<P2§27(|P1|+1) = (Ipt[+1)
2\P1|(\P1+1|)}
Do={ (p1,p )22, 3 (ol +1) S pr < il
2 1
Dio={(p1,p2) :2 < p1] <4, 20D < py < (7 +8) |
2[py [(|p1 +11) < 2pil(pi=1D)
D= {(PlvPZ )i [pi| =4 7mfp W}’
2 1))
Diz={(p1.p2) : p1] = 4, 28U < py < 2 (jpy| — 1)}

2. Main Results

Here we are assuming ¥ (z) to be an analytic univalent func-
tion in A which follows the condition; ¥ (0) = 1 and is given
by

lP(Z):lJ'_ZDnZn ’

n=1

D1 #0 @.1)

Theorem 1. Suppose the functionf € S (). Then the loga-
rithmic coefficients follows the conditions

B! In case that W is convex;

AR ,neN, 2.2)
2n
2 _d* & D,
n=1 n=1
and
o d2 o |Dn‘2
YmlP<=Y (2.4)
n=1 4 n=1 }’l2
(i) In case that ¥ (z)is starlike with respect to 1;
d
|yn|§§\D1|,n€N 2.5)

The above inequalities in the cases (i) and (ii)are sharp such
that for any n € N, there exists function f,, satisfying:

1+$ (% — 1) = (") and the function f satisfying: 1+

1 (Z;/(S) ) = y(z), respectively.
Proof : Assume that f € S(¥).Then by the definition of
S (W) and using (1.2), we deduce that

(a2

and thus we obtain

1 - n

- 1] <¥(z),ze A

Y(z)—1:=¢(z),z€A
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Now, firstly to prove inequality (2.2), let us suppose that
¥(z)is convex in A. Then ¢ (z)is also convex with ¢’ (0) = Dy,
so by applying Lemma 4 (i), we obtain

2n

7 %] < |9 (0)| = D]
which gives the result:

1l < L IDyfnen

~ 2n
Again, to prove inequality (2.3), we define the analytic func-
1

tion A (z) = (@) ¢ which satisfy the following :

- o) (2.6)

h(z) d
Alsowe know that the function (see [12])

E,(2) =10g ( 112) = il %

n—=
belongs to the class K, and forf € 7

0

Then, by Lemma 2 and equation (2.6), we get

2 (z) 1 (zf/(z)_1> L 0().zen

2.7

Zh (2)
h(z)

Using (2.7), the exceeding equation reduces to

(1) ]2
0

Also we know that (see [13]), the function % @dx, is convex
univalent. Using (1.2),the above relation becomes

*Eo(2) < 9(2) % E, (2)

Now by using Lemma 3, the above subordination yields
4 k ) k |Dn 2
ﬁ Z |7n| < Z n2
n=1 n=1

This concludes inequality (2.3).
Assumingk — o,

o d I
Z h/n 2 Z Z
n=1 n=1

this gives equation (2.4).

Lastly assume that ¥(z) is starlike with respect to 1 in A, this
implies ¢ (z) is starlike, therefore using lemma 4(ii), we de-
duce

2n
Il <nlo"(0)| =nlDi|,neN
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This gives equation (2.5),
To get the sharp bounds, it is sufficient to consider the follow-

ing :
a iz (o (52))] =3 [

and so these results are sharp in cases (i) and (ii), such that for

any neEN, there exists the function f, given by 1+ ; [an(( )) — 1} =

¥(7"), and the functionfgiven byl 4 5 [ (<>) — 1} Y(z),
respectively, hence proved.
Corollary 1. For 0 < a < 1, if f € §j(a+ (1 — a)e*), Then

the logarithmic coefficients of f, follows the conditions given
below || < % (I1—a),n€ N and

(=] d oo
; 4 ,; (n))*n?
The above conditions are sharp for function fjsatisfying :

1+$ (Zf]:f((zz)) _1) =a+(l-a)e neN

and the function f given by:

42 (Z;(i)) 1) —a+

(1—a)é

Corollary 2.Assumingd = 1, Class S} (¥(z)) reduces to S*(¥(z))
defined by Ma and Minda [5]. For the function f € §*(\¥(z)),the

results of Theorem 1 reduces to the logarithmic coefficients);
given by E.A. Adegani et al. [3],(see Theorem 1).

Corollary 3. Suppose the function f € S} (1 + l%azz) and
0 < o < 1. Then the logarithmic coefficients of f assures:

d
|yi’l| S Eae N

Theorem 2. Suppose the function f € K;(¥). Then the
logarithmic coefficients of f satisfies the following conditions:

d|Dy|
< —/ 2.8
ml << 8
e d\D1|7 if |4D2+dD}| < 4|D;| 2.9)
JAIRS ‘ .
w if [4Dy +dD?| > 4|D|
and if Dy,D; and Dj are real values,
d|D;
Iyl < | |H(P1§P2) (2.10)
24
4D,
. . D+5=
where H (p1; p2) is stated in Lemma 5, p; = ——-andp, =

- 2d)Dz+2D‘}

The bounds of equations(2.8) and (2.9) are sharp.

Proof: Assume f € K;(\V). By considering the deﬁnition of
Z ann

n=1

subordination, there exists w € Q with w(z) =

that

1| @)

4|7 k) = 1+le1Z+(le2+D2b%)Z2
+(D1b3 +2b1byD> +D3b3)2 + ...

(2.11)
Equating the coefficients of z"(n=1,2,3), we obtain
2% =D1b;

=Dib, +D2b12
=D1b3+2b1b>D; +b13D3

2
G134ty (2.12)

12t4— 18113 +8[‘2
d

The result is sharp for any n€ N, there exists function fysatisfying: Now by putting the values of t, (n=1,2,3) from (2.11) in (1.3);

2fn (2) B 4
"t (ﬁm‘l)‘”l—azzn'

Corollary 4. Suppose the function f € S(z+
then the logarithmic coefficients of f satisfies:

(1+2%))

d
|’)/n|§ 576 N

This result is sharp such that for any n € N, there exists func-
tion fysatisfying:

. <Zf”/ @) —1) = (" /(1 +22).

fa(2)

668

= dD21b1
84D by +db3 (2dD3+8D,)
2p= o
D +4D2 (G-2a)Ds+ 32\ 4
2y3=TL | b3+ "L biby+ | ——5—L | b}

(2.13)

Now, for 7; we apply Lemma 1 and get

d|Dy|

Inl < 7

and this bound is sharp for |b;| =1
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Again, for 5, we apply Lemma land obtain

41D (1= o1 ) -+ [4Ds + D3| b1
48

lp| <d

d
= 25 |41D1]+ ([4D2+aD¥ —4|D1[) b1

<{ WDl if |4Dy+dD}| < 4|D|
> d|4D,+dD?| .
%, if |4D,+dD3| <4|D,|

These bounds are sharp for b; = Oand |b;| = 1 respectively.
At the last, for y3, using Lemma 5, we get

dp,+32 (3-2d)D,+ 23
21l < 950 oy L2y 4 202
d|D
S H(PI;PZ) . ‘121‘
Where
D+ (3-2d)Dy+ 32
p1= 5 -andpy = fl
Thus we get the result.
Remark 1. Assuming
cz
P =1+1— (C03)

and d =1, we obtain the result given by ponnusamy et al. [14]
Remark 2. Let d=1, in theorem 2, then we get the result
obtained by E.A. Adeganiet al. [2].
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